
ESAIM: PROCEEDINGS, Vol. ?, 2011, 1-10

Editors: Will be set by the publisher

BLOCK-STRUCTURED ADAPTIVE MESH REFINEMENT -
THEORY, IMPLEMENTATION AND APPLICATION

Ralf Deiterding1

Abstract. Structured adaptive mesh refinement (SAMR) techniques can enable cutting-edge sim-
ulations of problems governed by conservation laws. Focusing on the strictly hyperbolic case, these
notes explain all algorithmic and mathematical details of a technically relevant implementation tai-
lored for distributed memory computers. An overview of the background of commonly used finite
volume discretizations for gas dynamics is included and typical benchmarks to quantify accuracy and
performance of the dynamically adaptive code are discussed. Large-scale simulations of shock-induced
realistic combustion in non-Cartesian geometry and shock-driven fluid-structure interaction with fully
coupled dynamic boundary motion demonstrate the applicability of the discussed techniques for com-
plex scenarios.

Contents

Introduction 2
1. Fundamentals 2
1.1. Hyperbolic conservation laws 2
1.2. Finite volume methods 3
1.3. Upwind schemes 5
1.4. High-resolution methods 7
1.5. Euler equations 10
1.6. Meshes and adaptation 12
2. SAMR for hyperbolic problems 15
2.1. Serial algorithm 15
2.2. Parallel algorithm 22
2.3. Refinement indicators 27
2.4. Design of SAMR software 29
2.5. Computational examples 32
3. Complex hyperbolic SAMR applications 35
3.1. Non-Cartesian boundaries 35
3.2. An embedded boundary method 36
3.3. Shock-induced combustion 39
3.4. Fluid-structure interaction 43
Outlook 50
References 50

1 Oak Ridge National Laboratory, P.O. Box 2008 MS-6367, Oak Ridge, TN 37831, USA, E-mail: deiterdingr@ornl.gov

c© EDP Sciences, SMAI 2011

2 ESAIM: PROCEEDINGS

Introduction

The most important discretization approach for conservation laws is the finite volume method, which is
constructed particularly to account properly for the discontinuous solutions inherent to hyperbolic equations.
Today, numerous high-resolution shock-capturing schemes are available for those that provide proper upwinding
based on the local characteristic information, are non-oscillatory across discontinuities and achieve higher order
in regions where the solution is smooth. The canonical set of equations considered are usually the Euler equations
for a single polytropic gas and computational examples are typically one-, occasionally two-dimensional. The
provided computer codes have in general a few hundred lines and utilize a uniform Cartesian mesh on a single-
processor system.

Predictive computational science, involving hyperbolic (sub-)problems, however, usually requires highly re-
solved results in typically three space dimensions. The computational costs increase dramatically mandating the
use of parallel high-performance computing systems and the application of mesh adaptation on-the-fly. When
parallelism and dynamic mesh modification need to be combined in a single implementation, one is faced with a
considerable increase in algorithmic and software complexity. In here, we consider primarily the block-structured
adaptive mesh refinement (SAMR) method for hyperbolic conservation laws [14,16] including its parallelization
and application to numerous realistic scientific computing problems.

We start in Section 1 with a specification of the problem class, the introduction of the finite volume method,
and the description of the most important classes of high-resolution shock-capturing schemes. Two frequently
used upwind schemes for the Euler equations are given. We contrast the SAMR approach to other mesh adapta-
tion techniques and give a brief overview of freely available SAMR software. In Section 2, we define the SAMR
method exactly. The description is topologically accurate and intended as an unambiguous algorithmic basis
for an error-free implementation. All necessary sub-algorithms are detailed. We describe the rigorous domain
decomposition approach chosen for parallelization in our own SAMR framework AMROC [31] and discuss its
basic software design, as one example for implementing the described algorithms with object-oriented concepts.
Three typical SAMR test cases for Euler equations are given to verify and benchmark the software. Finally,
Section 3 is devoted to the utilization of SAMR techniques for large-scale and technically relevant computa-
tions. We describe a straightforward level-set-based approach for considering complex, moving boundaries. The
primary application of the embedded boundary method is fluid-structure interaction (FSI) simulation and we
sketch the algorithmic and software extensions implemented in our FSI system Virtual Test Facility [41] to
enable this problem class. Further on, we describe well-resolved simulations of shock-induced combustion with
detailed chemistry, for which mesh adaptation is particularly efficient. Necessary extensions of the previously
described standard upwind schemes are also included, as examples for realistic hyperbolic systems and to ensure
reproducibility of the given results.

1. Fundamentals

1.1. Hyperbolic conservation laws

In the following we are concerned with the construction of advanced adaptive finite volume methods for
hyperbolic conservation laws. In Cartesian coordinates such conservation laws have the structure

∂

∂t
q(x, t) +

d∑
n=1

∂

∂xn
fn(q(x, t)) = s(q(x, t)) , x ∈ Rd , t > 0 . (1)

Herein, t ∈ R+
0 denotes the time and x = (x1, . . . , xd)T ∈ Rd denotes a point in Cartesian coordinates. The

vector-valued mapping q = q(x, t) from D := {(x, t) ∈ Rd × R+
0 } into the space of admissible states S ⊂ RM

is called vector of state. The components of the vector of states are physical meaningful quantities, like mass,
momentum or energy, that have to be conserved because of fundamental physical principles. The functions
fn(q) are called flux functions, s(q) is a source term.

ESAIM: PROCEEDINGS 3

Definition 1. (Hyperbolicity). Let An(q) = ∂fn(q)/∂q denote the Jacobian matrix of flux function fn(q).
System (1) is called hyperbolic, if the matrix A(q, ν) = ν1A1(q) + · · · + νdAd(q) has M real eigenvalues
λ1(q, ν) ≤ ... ≤ λM (q, ν) and M linear independent right eigenvectors rm(q, ν), m = 1, . . . ,M defined by
A(q, ν) rm(q, ν) = λm(q, ν) rm(q, ν) for all admissible states q ∈ S and ν = (ν1, . . . , νd) ∈ Rd with |ν1|+ · · ·+
|νd| > 0.

The theory of hyperbolic conservation laws is very well established, cf. [49, 66, 72, 79], and it is well known
that in the general case of nonlinear flux functions classical solutions are guaranteed to exist only for small
times. Even continuously differentiable initial data may be steepened to discontinuities, cf. [72, 79], and an
integral formulation with less differentiability is required instead of Eq. (1) to define weak solutions, e.g.,

∫
Ω

q(x, t+ ∆t) dx−
∫
Ω

q(x, t) dx +
d∑

n=1

t+∆t∫
t

∫
∂Ω

fn(q(o, t))σn(o) do dt =

t+∆t∫
t

∫
Ω

s(q(x, t)) dx , (2)

cf. [108]. Herein, σn denotes the n-th component of n, the outward unit normal vector of ∂Ω, the boundary of
the problem domain Ω.

1.2. Finite volume methods

Finite volume (FV) methods are tailored for problems with discontinuities and are built on Eq. (2). Numerous
text books are available nowadays, cf. [49, 59, 66, 72, 111] and we restrict the description to the basic concepts.
Without loss of generality we assume d = 2 in the following.

1.2.1. Discretization

Let the computational domain, D, be discretized with a rectangular grid with mesh widths ∆x1,∆x2 in
each coordinate direction and a time step ∆t. The discrete mesh points are then defined by (xj1, x

k
2) :=((

j + 1
2

)
∆x1,

(
k + 1

2

)
∆x2

)
, j, k ∈ Z. Further on, it is useful to define x

j−1/2
1 := xj1 − ∆x1

2 , j ∈ Z and
x
k−1/2
2 := xk2 − ∆x2

2 , k ∈ Z. Discrete time values are defined by ti := i∆t , i ∈ N0 and we denote the value in
the discrete point (xj1, x

k
2 , ti) by Qi

jk. We define a rectangular computational cell Cjk around each mesh point

(xj1, x
k
2). The domain of cell Cjk is Ijk = [xj−1/2

1 , x
j+1/2
1] × [xk−1/2

2 , x
k+1/2
2]. We use Ijk and the discrete time

interval [ti, ti+1[as integration domain in the integral form (2) and obtain

∫
Ijk

q(x, ti+1) dx−
∫
Ijk

q(x, ti) dx +
d∑

n=1

ti+1∫
ti

∫
∂Ijk

fn(q(o, t))σn(o) do dt =

ti+1∫
ti

∫
Ijk

s(q(x, t)) dx dt . (3)

Within each computational cell Cjk the value Qjk(t) is an approximation to the exact cell average value

Qjk(t) ≈ 1
|Ijk|

∫
Ijk

q(x, t) dx . (4)

By employing the approximated values Qjk(t) instead of q(x, t) as argument for s(q(x, t)) a natural approxi-
mation to the cell average of the source term function is found immediately:

s(Qjk(t)) ≈ 1
|Ijk|

∫
Ijk

s(q(x, t)) dx (5)

4 ESAIM: PROCEEDINGS

Furthermore, we define numerical flux functions Fn at the sides of Cjk by

F1,±1/2
jk (Q(t)) ≈ 1

∆x2

x
k+1/2
2∫

x
k−1/2
2

f1(q(xj±1/2
1 , x2, t)) dx2 , F2,±1/2

jk (Q(t)) ≈ 1
∆x1

x
j+1/2
1∫

x
j−1/2
1

f2(q(x1, x
k±1/2
2 , t)) dx1 .

(6)
We insert these approximations into Eq. (3) and divide by |Ijk|. We obtain

Qjk(ti+1) = Qjk(ti)−
d∑

n=1

1
∆xn

ti+1∫
ti

(
Fn,+1/2
jk (Q(t))− Fn,−1/2

jk (Q(t))
)
dt+

ti+1∫
ti

s(Qjk(t)) dt . (7)

If the Euler Method is used to approximate all time integrals of Eq. (7), the time-explicit scheme

Qi+1
jk = Qi

jk −
d∑

n=1

∆t
∆xn

(
Fn,+1/2
jk (Qi)− Fn,−1/2

jk (Qi)
)

+ ∆t s(Qi
jk) (8)

is derived. For s ≡ 0 the scheme is discretely conservative, i.e.,
∑
j,k∈Z Qi+1

jk =
∑
j,k∈Z Qi

jk. As written here,
the scheme (8) is just first-order accurate, yet high-resolution methods are available that use the method of
lines and spatial inter- and extrapolation in the approximation of Fn to achieve at least second-order accurate
in smooth solution regions and resolve discontinuities sharply (cf. Section 1.4).

1.2.2. The method of fractional steps

In many applications it is convenient to apply the time-operator splitting approach or method of fractional
steps [62] to numerically decouple the source term s(q) from the partial differential equation. The homogeneous
partial differential equation

∂q
∂t

+
d∑

n=1

∂

∂xn
fn(q) = 0 , IC: Qi ∆t=⇒ Q̃i+1 (9)

and the ordinary differential equation

∂q
∂t

= s(q) , IC: Q̃i+1 ∆t=⇒ Qi+1 (10)

are solved successively with the result of the preceding step as initial condition (IC). If we denote the discrete
solution operator of (9) by H(∆t) and the discrete operator of (10) by S(∆t), the entire splitting scheme (9-10)
reads

Qi+1 = S(∆t)H(∆t)(Qi) . (11)

A second-order accurate alternative is

Qi+1 = S(1
2 ∆t)H(∆t)S(1

2 ∆t)(Qi) , (12)

which is called Strang splitting [110]. The idea of operator splitting can also be applied to the solution of
sub-problem (9), i.e., to the homogeneous operator H(∆t). A simple dimensional splitting scheme in two space
dimensions is

∂q
∂t

+
∂

∂x1
f1(q) = 0 , IC: Qi ∆t=⇒ Q̃1/2 ,

∂q
∂t

+
∂

∂x2
f2(q) = 0 , IC: Q̃1/2 ∆t=⇒ Qi+1 . (13)

ESAIM: PROCEEDINGS 5

By denoting the dimensional steps by X (∆t)
1 and X (∆t)

2 scheme (13) is written in analogy to scheme (11)
as Qi+1 = X (∆t)

2 X (∆t)
1 (Qi). Like the standard Godunov splitting, Eq. (11), the latter scheme is first-order

accurate in time if the solution operators X (∆t)
n are at least first-order accurate [111]. A second-order accurate

scheme (provided that the operators X (∆t)
n are at least second-order) is Qi+1 = X (1

2 ∆t)
1 X (∆t)

2 X (1
2 ∆t)

1 (Qi).
Dimensional splitting is a simple and efficient means of extending (high-resolution) schemes, that originally
have been developed in one space dimension, to multiple dimensions. Therefore, we restrict the following
presentation of numerical schemes for the hydrodynamic transport to the one-dimensional case.

1.3. Upwind schemes

High-resolution finite volumes schemes are usually built on first-order accurate upwind methods that utilize
characteristic information. In order to introduce the idea of upwinding and to supply the basis of the flux-
difference splitting methods (see Section 1.3.3) we study the linear case first.

1.3.1. Linear upwind scheme

In the case of a linear hyperbolic equation

∂

∂t
q(x, t) + A

∂

∂x
q(x, t) = 0 , x ∈ R , t > 0 (14)

a finite volume scheme can easily be built by considering the analytic solution of the Cauchy problem between
two constant states q

L
and q

R
(also denoted as Riemann Problem). Assuming (for simplicity) that A has M

distinct real eigenvalues λ1 < · · · < λM with M linear independent right eigenvectors rm, m = 1, . . . ,M , the
exact solution of the Riemann Problem reads

q(x, t) = q
L

+
∑

λm<x/t

amrm = q
R
−

∑
λm≥x/t

amrm =
∑

λm≥x/t
δmrm +

∑
λm<x/t

βmrm , (15)

where

q
L

=
M∑
m=1

δmrm , q
R

=
M∑
m=1

βmrm ⇒ q
R
− q

L
=

M∑
m=1

(βm − δm)rm =
M∑
m=1

amrm . (16)

The complete derivation can be found for instance in [72]. Obviously, the solution of (14) is self-similar, i.e.,
q(x, t) ≡ v(x/t). In particular, q(0, t) = const. holds true for t ∈ R+. Hence, the flux F(q

L
,q
R

) := f(q(0, t)) =
Aq(0, t) can easily be evaluated for all times t for the exact solution (15) as

F(q
L
,q
R

) = Aq
L

+
∑
λm<0

amλmrm = Aq
R
−
∑
λm≥0

amλmrm =
∑
λm≥0

δmλmrm +
∑
λm<0

βmλmrm . (17)

We introduce the notations

Λ+ := diag(λ+
1 , . . . , λ

+
M), λ+

m = max(λm, 0) = 1
2 (λm + |λm|) for all m = 1, ...,M ,

Λ− := diag(λ−1 , . . . , λ
−
M), λ−m = min(λm, 0) = 1

2 (λm − |λm|) for all m = 1, ...,M
(18)

and A+ := R Λ+ R−1 , A− := R Λ−R−1 with A = A+ + A− ,|A| = A+ −A− and write expression (17) with
these definitions in short as

F(q
L
,q
R

) = Aq
L

+ A−∆q = Aq
R
−A+∆q = A+q

L
+ A−q

R
. (19)

Further on, summation yields the useful expression

F(q
L
,q
R

) =
1
2
(
Aq

L
+ Aq

R
− |A|∆q

)
. (20)

6 ESAIM: PROCEEDINGS

A numerical scheme for Eq. (14) that naturally considers the characteristic information can be constructed by
assuming a FV discretization as introduced in Section 1.2 with cell values Qi

j , j ∈ Z, i ∈ R+
0 and by solving the

Riemann initial-value problem between two neighboring cells in every time step. We choose Qi
j as q

L
and Qi

j+1

as q
R

and introduce the notation ∆Qi
j+1/2 = Qi

j+1 −Qi
j . The numerical flux function then reads

F(Qi) = F(Qi
j ,Q

i
j+1) = AQi

j + A+∆Qi
j+1/2 = AQi

j+1 −A−∆Qi
j+1/2 . (21)

We insert these numerical fluxes into Eq. (8) and obtain the FV upwind scheme for linear systems

Qi+1
j = Qi

j −
∆t
∆x

(
F(Qi

j ,Q
i
j+1)− F(Qi

j−1,Q
i
j)
)

= Qi
j −

∆t
∆x

(
A−∆Qi

j+1/2 + A+∆Qi
j−1/2

)
. (22)

Scheme (22) is Godunov’s Method for Eq. (14) and of first-order accuracy [72]. The linear upwind scheme (22)
is stable under the Courant-Friedrichs-Levy (CFL) condition [49,72,111]

ClinCFL := |λm|∆t∆x
≤ 1 , for all m = 1, . . . ,M . (23)

In general, Godunov’s Method requires the exact solution q(x, t) of the Riemann Problem (RP) between q
L

and q
R

, at least for x = 0. Yet, the values used are only approximations on a finite grid. Satisfying results can
often also be obtained if the intermediate Riemann problems are solved approximately. Schemes utilizing an
approximate Riemann solver within Godunov’s Method are said to be of Godunov-type.

In case of nonlinear hyperbolic systems even the approximate solution of the RP can be a very challenging
task, especially for complex equations of state. Therefore, methods for nonlinear systems usually avoid the
evaluation of the intermediate state and try to approximate the flux at x = 0 directly on the basis of upwind
directions of the neighboring values q

L
and q

R
. Two different approaches here are flux-vector splitting (FVS)

and flux-difference splitting (FDS). FDS methods are of Godunov-type. They utilize a suitable linearization of
f(q) on the basis of q

L
and q

R
and solve the linear RP as described. FVS methods are simpler and identify

upwind directions separately for q
L

and q
R

.

1.3.2. Flux-vector splitting approach

The FVS approach requires a splitting of f(q) into two components f+(q) and f−(q), such that the equation

f(q) = f+(q) + f−(q) (24)

is satisfied under the restriction that the eigenvalues λ̂+
m and λ̂−m of the split Jacobian matrices

Â+(q) =
∂f+(q)
∂q

, Â−(q) =
∂f−(q)
∂q

(25)

fulfill the conditions λ̂+
m ≥ 0 and λ̂−m ≤ 0 for all m = 1, . . . ,M . Further on, the splitting is required to reproduce

regular upwinding, i.e.,

f+(q) = f(q) , f−(q) = 0 if λm ≥ 0 for all m = 1, . . . ,M ,
f+(q) = 0 , f−(q) = f(q) if λm ≤ 0 for all m = 1, . . . ,M .

(26)

The FVS approach then approximates the unknown intermediate flux F(q
L
,q
R

) by

F(q
L
,q
R

) = f+(q
L

) + f−(q
R

) . (27)

ESAIM: PROCEEDINGS 7

1.3.3. Flux-difference splitting approach

The FDS approach uses an approximate Riemann solver to calculate an approximation to the unknown
intermediate flux F(q

L
,q
R

). Instead of the RP between q
L

and q
R

for the original, possibly nonlinear equation,
a RP with the same initial data for the modified conservation law

∂q̄
∂t

+
∂ f̄(q̄)
∂x

= 0 (28)

with a linear flux function f̄(q̄) = Â(q
L
,q
R

)q̄ is solved. Herein, Â(q
L
,q
R

) denotes a suitable constant
Jacobian, chosen with respect to the initial data. The RP for this modified linear conservation law can easily
be solved exactly (see Section 1.3.1), but care must be taken in the approximation of the intermediate flux
F(q

L
,q
R

). The obvious choice F̄(q
L
,q
R

) according to Eq. (17) leads to a scheme that is inconsistent with
the original conservation law. The scheme would satisfy a different discrete conservation property and hence
converge toward the wrong weak solution. Using Eqs. (16-17) plus a conservation argument, cf. [32], yields

F(q
L
,q
R

) = f(q
L

) +
∑
λ̂m<0

amλ̂mr̂m = f(q
R

)−
∑
λ̂m≥0

amλ̂mr̂m , (29)

or in terms of the notations of Section 1.3.1

F(q
L
,q
R

) = f(q
L

) + Â−∆q = f(q
R

)− Â+∆q (30)

=
1
2

(
f(q

L
) + f(q

R
)− |Â|∆q

)
. (31)

If these flux approximations are used within scheme (22), the update formula becomes

Qi+1
j = Qi

j −
∆t
∆x

(
Â−(Qi

j ,Q
i
j+1)∆Qi

j+ 1
2

+ Â+(Qi
j−1,Q

i
j)∆Qi

j− 1
2

)
. (32)

A necessary stability condition for scheme (32) is

CnlCFL := max
j∈Z
|λ̂m,j+ 1

2
|∆t
∆x
≤ 1 , for all m = 1, . . . ,M. (33)

The difficult task in the FDS approach is the derivation of a constant matrix Â(q
L
,q
R

) for each RP that approx-
imates the original Jacobian appropriately. Roe suggested the following three properties for such a matrix [98]:

(i) Â(q
L
,q
R

) is diagonalizable with real eigenvalues, (ii) Â(q
L
,q
R

) → ∂f(q)
∂q

smoothly as q
L
,q
R
→ q, (iii)

Â(q
L
,q
R

)∆q = f(q
R

)− f(q
L

). The third property ensures the conservation of the resulting scheme and is just
another form of Eq. (30). Obviously, scheme (32) can be implemented without explicit evaluation of F(q

L
,q
R

).
It suffices to calculate the fluctuations

Â−(q
L
,q
R

)∆q =
∑
λ̂m<0

amλ̂mr̂m , Â+(q
L
,q
R

)∆q =
∑
λ̂m≥0

amλ̂mr̂m . (34)

1.4. High-resolution methods

The basic shock-capturing upwind schemes described previously are just of first order approximation accuracy.
While this allows the construction of very reliable, monotonity-preserving schemes, first-order accurate schemes
are computationally rather inefficient. Even when dynamic mesh adaptation is available, a high-resolution
approach should be employed that achieves at least second-order accuracy in smooth solution regions by proper
interpolation and gives an oscillation-free extrapolation near discontinuities.

8 ESAIM: PROCEEDINGS

1.4.1. TVD schemes

Since strictly monotone scheme are restricted to first order [57], the slightly relaxed concept of total variation
diminishing (TVD) discretizations provides good guidance for the construction of high-resolution methods.

Definition 2. (TVD property). A scheme Ql+1
j = H(∆t)(Qi; j) is called total variation diminishing (TVD),

if the property TV (Qi+1) ≤ TV (Qi) is satisfied for all discrete sequences Qi. Herein, TV (Q) denotes the
discrete total variation, which is defined by TV (Qi) :=

∑
j∈Z |Qi

j+1 −Qi
j |.

TVD schemes maintain the property that no new extrema in x can be created. Local minima are non-
decreasing, while local maxima are non-increasing, which is termed monotonicity-preserving [55]. Relaxed
concepts are employed for the construction of (Weighted) Essentially Non-Oscillatory (WENO/ENO) schemes
[105], the Flux-Corrected Transport (FCT) approach [88], and the Piecewise Parabolic Method (PPM) [28].
The book by Laney [68] gives an excellent overview of higher order schemes.

1.4.2. MUSCL-Hancock method

A method for the practical construction of second-order five-point TVD schemes, especially on the basis of
Godunov-type upwind schemes, has been developed by Van Leer [116]. Profound descriptions of this technique,
which is also called the variable extrapolation approach or slope limiting can be found in the books of Toro [111]
and Hirsch [59]. In here, we just give the basic formulas.

In the MUSCL (Monotone Upwind Schemes for Conservation Laws) variable extrapolation method, the cell-
wise constant approximation Qij is replaced by a linear or quadratic interpolation Q̃j(x), x ∈ [xj−1/2, xj+1/2]
utilizing the three values Qij−1, Qij and Qij+1. At the boundaries of cell j, the one-sided extrapolated and
limited values read

Q̃
L

j+ 1
2

= Qn
j

+
1
4

[
(1− ω) Φ

+

j− 1
2
∆j− 1

2
+ (1 + ω) Φ

−
j+ 1

2
∆j+ 1

2

]
, (35)

Q̃
R

j− 1
2

= Qn
j
− 1

4

[
(1− ω) Φ

−
j+ 1

2
∆j+ 1

2
+ (1 + ω) Φ

+

j− 1
2
∆j− 1

2

]
, (36)

with ∆j−1/2 = Qnj − Qnj−1, ∆j+1/2 = Qnj+1 − Qnj . Note that this interpolation is second-order accurate for
ω = 1/3 and first-order accurate for all other values [59]; discrete conservation is preserved only for ω = 0. In
Eqs. (35-36), the factors Φ

±
j∓1/2 are

Φ
+

j− 1
2

:= Φ
(
r+
j− 1

2

)
, Φ

−
j+ 1

2
:= Φ

(
r−
j+ 1

2

)
with r+

j− 1
2

:=
∆j+ 1

2

∆j− 1
2

, r−
j+ 1

2
:=

∆j− 1
2

∆j+ 1
2

, (37)

where the choice of the slope limiters function, Φ, to ensure the TVD property is the crucial step. Very reliable
are the Minmod-type limiter

Φ(r) = max(0,min(r, 1)) , (38)
or the less diffusive Van Albada-type limiter [115]

Φ(r) = max
(

0,
r2 + r

1 + r2

)
. (39)

The utilization of interpolated values in the numerical flux approximation of Eq. (22) alone gives a scheme
that is usually unstable. A stable, second-order accurate scheme requires a higher-order temporal integration.
Very effective for MUSCL-type methods is the Hancock approach [118], which constructs extrapolated values
first and evolves these values by ∆t/2 with a midpoint rule, i.e.,

Q̄
L

j+ 1
2

= Q̃
L

j+ 1
2
− 1

2
∆t
∆x

(
f(Q̃

L

j+ 1
2
)− f(Q̃

R

j− 1
2
)
)
, Q̄

R

j− 1
2

= Q̃
R

j− 1
2
− 1

2
∆t
∆x

(
f(Q̃

L

j+ 1
2
)− f(Q̃

R

j− 1
2
)
)
, (40)

ESAIM: PROCEEDINGS 9

before they are utilized for the flux approximation, for instance, at xj+1/2 as F (Q̄Lj+1/2, Q̄
R
j+1/2). For the proof

of the TVD property of the MUSCL-Hancock approach, see [111]. Note that the theoretical basis is strictly
sound only for scalar problems with s ≡ 0.

1.4.3. Wave Propagation Method

The Wave Propagation Method is a second-order accurate extension for FDS schemes that utilize the fluctu-
ations (34) instead of the numerical fluxes, see [69, 73–75]. Utilizing the waves Wm := amr̂m and introducing
the notation

A−∆ =
∑
λ̂m<0

λ̂mWm , A+∆ =
∑
λ̂m≥0

λ̂mWm . (41)

instead of (34), the one-dimensional Wave Propagation Method reads

Ql+1 = Ql
j −

∆t
∆x

(
A−∆j+ 1

2
+A+∆j− 1

2

)
− ∆t

∆x

(
F̃j+ 1

2
− F̃j− 1

2

)
. (42)

Herein, F̃j±1/2 denote additional terms that are necessary to achieve second-order accuracy in smooth regions
of the solution. The basic second-order scheme of the Wave Propagation Method is the Lax-Wendroff scheme.
At each cell interface, F̃j+1/2 is uniquely defined by the difference between the second-order Lax-Wendroff flux
and the first-order upwind flux (32). This difference reads

F̃j+ 1
2

=
1
2
|A|
(

1− ∆t
∆x
|A|
)

∆j+ 1
2

=
1
2

M∑
m=1

|λ̂mj+ 1
2
|
(

1− ∆t
∆x

)
|λ̂mj+ 1

2
| W̃m

j+ 1
2
. (43)

In order to achieve a TVD scheme, limited waves W̃m
j+1/2 are used instead of the original waves. The wave

limiting is calculated by W̃m
j+ 1

2
= Φ(Θm

j+ 1
2
)Wm

j+ 1
2

with

Θm
j+ 1

2
=

{
am
j− 1

2
/am
j+ 1

2
, λ̂m

j+ 1
2
≥ 0 ,

am
j+ 3

2
/am
j+ 1

2
, λ̂m

j+ 1
2
< 0 .

(44)

Typical slope limiter functions, such as (38) or (39), can also be applied as wave limiters [73]. Setting
Ã±∆j±1/2,k := A±∆j±1/2,k+ F̃j±1/2,k and denoting the limited fluctuations in the x2-direction by B̃±∆j,k±1/2,
a truly two-dimensional Wave Propagation Method can be formulated as [69]

Qi+1
jk = Qi

jk −
∆t
∆x

(
Ã−∆j+ 1

2 ,k
− 1

2
∆t
∆y

[
A−B̃−∆j+1,k+ 1

2
+A−B̃+∆j+1,k− 1

2

]
+

Ã+∆j− 1
2 ,k
− 1

2
∆t
∆y

[
A+B̃−∆j−1,k+ 1

2
+A+B̃+∆j−1,k− 1

2

])
−∆t

∆y

(
B̃−∆j,k+ 1

2
− 1

2
∆t
∆x

[
B−Ã−∆j+ 1

2 ,k+1 + B−Ã+∆j− 1
2 ,k+1

]
+

B̃+∆j,k− 1
2
− 1

2
∆t
∆x

[
B+Ã−∆j+ 1

2 ,k−1 + B+Ã+∆j− 1
2 ,k−1

])
,

(45)

with stability condition

CwpCFL := max
j,k∈Z

{
|λ̂m,j+ 1

2 ,k
| ∆t
∆x1

, |λ̂m,j,k+ 1
2
| ∆t
∆x2

}
≤ 1 , for all m = 1, . . . ,M. (46)

10 ESAIM: PROCEEDINGS

In combination with a a linearized Riemann solver (cf. Section 1.5.3), Eq. (45) gives a second-order accurate
scheme for two-dimensional nonlinear systems. A canonical problem of the original Wave Propagation Method
is that the wave limiting approach used can produce serious overshoots in derived quantities, such as the
hydrodynamic pressure in case of Euler equations, especially when physical units are used. If a system in
conservation form is solved, usage of the robust slope-limited MUSCL-Hancock approach and application of the
multi-dimensional correction terms of (29) can be combined by computing the second-order accurate fluctuations
in the normal direction, e.g.,

Ã−∆j+1/2,k := F(Q̄L
j+1/2,k, Q̄

R
j+1/2,k)− f(Qi

jk) (47)

according to (30). We have found that the resulting scheme is very reliable, yet preserves the multi-dimensional
accuracy of Eq. (45) entirely.

1.5. Euler equations

As a practically relevant example for a nonlinear hyperbolic conservation law without source term we consider
the Euler equations of gas dynamics. Most numerical methods have been initially proposed for the Euler
equations and we provide two first-order accurate upwind operators X (∆t)

1 in here from which the operators for
the other spatial directions can easily be derived by canonically exchanging the velocities un and the index n.

1.5.1. Governing equations for an ideal gas

Using the vector of state q = [ρ1, ρu1, . . . , ρud, ρE]T and the flux functions

fn(q) = [ρun, ρu1un + δ1np, . . . , ρudun + δdnp, un(ρE + p)]T for n = 1, . . . , d, (48)

we write the governing equations for the flow of an inviscid ideal gas in terms of the notations of Section 1.1 as

∂

∂t

ρ
ρu1

...
ρud
ρE

+
d∑

n=1

∂

∂xn

ρun

ρu1un + δ1np
...

ρudun + δdnp
un(ρE + p)

 = 0 . (49)

Herein, ρ > 0 is the density, E > 0 is the specific total energy, and we denote the n-th component of the velocity
vector u = (u1, . . . , ud)T by un, and δjn is the Kronecker-Symbol. The total specific enthalpy is H := E + p

ρ ,
and internal specific energy and enthalpy can be computed as e = E − 1

2u2 and h = H − 1
2u2, respectively. In

order to close system (49), an equation of state for the hydrostatic pressure p is required. For a polytropic ideal
gas, the equation of state is the explicit expression

p = (γ − 1)
(
ρE − 1

2
ρu2

)
, (50)

with γ denoting the adiabatic constant. For any ideal gas, the speed of sound is given by

c2 =
∂p

∂ρ
= γ

p

ρ
. (51)

Using Eqs. (50-51), it is a straightforward exercise to verify that the Jacobian An = ∂fn/∂q of the flux
function (48) has a complete eigendecomposition with d + 2 real eigenvalues and that system (49) thereby
satisfies Def. 1 for all admissible states. The eigenvalues of An are λ1 = un − c, λ2 = · · · = λd+1 = un, and
λd+2 = un + c.

ESAIM: PROCEEDINGS 11

1.5.2. The Van Leer flux vector splitting for Euler equations

As a practically relevant example for a flux-vector splitting scheme (cf. Section 1.3.2), we provide the FVS
by Van Leer [117]. A complete derivation can also be found, for instance, in [68]. The Van Leer FVS has
been derived specifically for the Euler equations of a polytropic gas. It circumvents typical problems of simpler
splittings, adds comparably little numerical diffusion, and additionally, it is very robust. For instance, in the
x1-direction the split functions read

f±1 (q) = ± ρ

4c
(u1 ± c)2

[
1,

(γ − 1)u1 ± 2c
γ

, u2, . . . , ud,
((γ − 1)u1 ± 2c)2

2 (γ2 − 1)
+

u2 − u2
1

2

]T
. (52)

Equation (52) is explicitly constructed for −c ≤ u1 ≤ c. For |u1| > c, the relations (26) have to be applied.
Note that the necessary stability condition is

CV LCFL := max
j∈Z

[(|u1,j |+ cj) Πj]
∆t
∆x
≤ 1 with Πj =

γ + 3

2γ + u1,j(3− γ)/cj
if |u1,j | < cj ,

1 otherwise .
(53)

1.5.3. The approximate Riemann solver of Roe for Euler equations

The archetype of a flux-difference splitting method for a nonlinear hyperbolic system (cf. Section 1.3.3) is
the approximate Riemann solver of Roe for the Euler equations of a polytropic gas, Eqs. (49-50). At each cell
interface, a locally constant Jacobian Ân(q

L
,q
R

) is sought, enforcing the properties (i-iii) given on page 7. The
challenging property is (iii) and using the definitions ∆v := vr − vl and the specific average

v̂ :=
√
ρlvl +

√
ρrvr√

ρl +
√
ρr

(54)

for un and H, the average of the density ρ̂ :=
√
ρlρr, and the averaged speed of sound

ĉ :=
(

(γ − 1)(Ĥ − 1
2
û2)
)1/2

, (55)

the Roe scheme for Euler equations evaluates the waves Wm := amr̂m (cf. Eqs. (32-34)), for instance, in the
x1-direction as

a1,d+2 =
∆p∓ ρ̂ĉ∆u1

2ĉ2
, r̂1,d+2 =

[
1, û1 ∓ ĉ, û2, . . . , ûd, Ĥ ∓ û1ĉ

]T
, (56)

a2 = ∆ρ− ∆p
ĉ2

, r̂2 =
[
1, û1, û2, . . . ûd,

û2

2

]T
, (57)

a
n+1 = ρ̂∆un , r̂

n+1 = [0, . . . , 0, δ2n, . . . , δdn, ûn]T for n = 2, . . . , d, (58)

with the eigenvalues λ̂1,d+2 = û1∓ĉ and λ̂n+1 = û1 for n = 1, . . . , d. A comprehensive derivation is given in [111].
The approximate Riemann solver of Roe adds very little numerical diffusion and is thereby an excellent building
block for high-resolution schemes; however, it does not satisfy a maximum principle and can produce states with
ρ ≤ 0 or E ≤ 0 near vacuum that are not admissible. Further on, a linearized Riemann solver by construction
neglects smooth rarefaction waves intrinsic to the Euler equations that can occur instead of discontinuous
shock waves in the genuinely nonlinear characteristic fields associated to the eigenvalues λ1,d+2. The linearized
inter-cell flux approximation becomes incorrect only for the special case of a transonic rarefaction wave, yet the
resulting entropy violation needs to be avoided to make the solver generally applicable. Commonly used entropy
corrections are the identification of transonic rarefaction fans by the Lax entropy conditions and subsequent

12 ESAIM: PROCEEDINGS

explicit flux correction [56] or the addition of an appropriate amount of numerical viscosity near sonic points [55].
The latter can be accomplished effectively by replacing λ̂m in the flux approximation, Eq. (29), by

|λ̄m| =
{
|λ̂m| , |λ̂m| ≥ 2η ,

|λ̂2
m|/(4η) + η , |λ̂m| < 2η .

(59)

A natural choice for the parameter η for Euler equations is η = 1
2 (|u1,r − u1,l| + |cr − cl|), cf. [101]. In one

space dimension, Eq. (59) only needs to be applied to m = 1, d+ 2; two- and three-dimensional simulations
with strong grid-aligned shocks require a suitable extension of Eq. (59) to all other fields, cf. Section 3.3.3.

1.6. Meshes and adaptation

Solutions of the Euler equations, Eq. (49), often involve a wide range of different scales. A common require-
ment is usually to increase resolution along discontinuities, while in smooth solution regions resolution can be
reduced. Efficient implementations of the described FV schemes therefore have to utilize non-uniform grids.
Various techniques to adapt the discretization dynamically to the solution have been developed during the last
two decades.

1.6.1. Unstructured approach

Unstructured triangulations offer superior geometrical flexibility. The coordinates of all vertices have to be
stored explicitly and the basic discretization is intrinsically non-uniform (cf. Fig. 1). Consequently, existing
implementations can relatively easily be supplemented with dynamical adaptation. Cells that have been flagged
for refinement are simply replaced by finer ones and the numerical solution is advanced on the entire grid
simultaneously. A coarsening step is necessary to recombine fine cells. For time-explicit FV schemes this
simple strategy can be inefficient as it requires a global time step to satisfy a CFL-type condition for the
smallest cell. Further on, unstructured triangulations are usually implemented with cell-based data structures
that store all neighborhood relationships explicitly. Without complicate re-numbering and re-arrangement of
the vector of cells based on the mesh topology the memory access during computation is highly irregular and
the performance on vector or super-scalar computers rather poor. Implementations on parallel computers
with distributed memory have to solve complex load-balancing problems on the fly. In particular, appropriate
synchronization regions (overlaps) with respect to the numerical stencil are difficult to compute. Freely available
generic C++-libraries that support unstructured meshes on distributed memory machines are GrAL1 (Grid
Algorithms Library) by Berti [19] and DUNE2 by Bastian et al. [9].

1.6.2. Structured approach

If geometric flexibility is only of secondary interest, the numerical scheme can be formulated on a logically
rectangular (not necessarily Cartesian) mesh. Rectangular meshes allow optimizations that moderate some of
the technical complexities of unstructured refinement techniques. A structured refinement strategy replaces or
overlays a single coarse cell by a regular refinement block of rd cells. For simplicity, the refinement factor r
is often fixed and all successively generated refinement blocks can be accessed efficiently by utilizing a regular
data tree (see Fig. 2). The data tree avoids explicit storage of parent- or child-relations and the use of a global
integer coordinate system (cf. Section 2.4.2) allows an easy evaluation of neighborhood relationships.

In the case of time-explicit FV schemes the construction of time-space interpolated internal boundary con-
ditions can be implemented with moderate expense allowing a successive time step refinement with factor r.
A disadvantage of all types of structured refinement is that hanging nodes along the coarse-fine interfaces are
unavoidable (cf. left sketch of Fig. 2).3

1http://gral.berlios.de
2www.dune-project.org
3A conforming closure is possible if unstructured cells are employed. Such a hybrid refinement strategy is used in the UG

multigrid package of Bastian & Wittum [8]. Note that hybrid discretization techniques require implementations of the numerical

ESAIM: PROCEEDINGS 13

Figure 1. Unstructured
refinement strategy.

Figure 2. Mesh and corresponding local quad-tree of
a structured mesh refinement strategy (r = 2, d = 2).

A recent freely available FV program for distributed memory machines that allows arbitrary refinement
factors is the NASA code PARAMESH4 by MacNeice et al. [78] that has also been used as the basis for the
Flash code5. Another notable implementation of cell-based structured mesh refinement is the RAGE code [48].

Although the structured approach uses the available computer memory better than the unstructured tech-
nique, consecutive memory blocks of rd cells are usually not large enough to fill the vector pipelines of modern
super-computers satisfactory. Furthermore, a large number of small refinement blocks requires a large syn-
chronization overhead. If the numerical scheme is implemented with ghost cells, the waste due to overlapping
neighboring ghost cells may be considerable (see [86] for a detailed discussion). Such overlap can be eliminated
completely if refinement blocks of arbitrary size are considered.

1.6.3. Block-structured adaptive mesh refinement

The structured adaptive mesh refinement technique (SAMR) for hyperbolic partial differential equations
has been pioneered by Berger & Oliger [12, 16]. While the first approach utilized rotated refinement grids
that required complicated conservative interpolation operations, SAMR denotes today especially the simplified
variant of Berger & Collela [14] that only allows refinement patches aligned to the coarse-grid mesh. The
efficiency of this simplified variant, in particular on vector and super-scalar computers, was demonstrated by
Bell et al. [11].

Instead of replacing single cells by finer ones the SAMR method follows a patch-wise refinement strategy.
Cells being flagged by various error indicators are clustered with a special algorithm (cf. Section 2.1.10) into
rectangular boxes of appropriate size. They describe refinement regions geometrically and subgrids with the
same refinement factor in all space directions and also in time are generated according to them. Refined
subgrids are derived recursively from coarse-level grids and an entire hierarchy of successively embedded grid
patches is thereby constructed, cf. Fig. 3. Like in the structured approach, only the implementation of
the numerical scheme on a single rectangular grid is required. The adaptive algorithm calls this application-
dependent routine automatically. Further on, it uses interpolation functions to transfer cell values between
refined subgrids and their coarser parents appropriately. It is important to note, that refined grids overlay the
coarser subgrids from which they have been created. The numerical solution on a particular level is first of all
advanced independently. Values of cells covered by refined subgrids are overwritten by averaged fine-grid values
subsequently. The superfluous work on the coarse grid is deemed negligible compared to the computational
costs for integrating the superimposed fine grids. Unlike the refinement technique of Section 1.6.2, that only
allows for one parent cell, the SAMR method requires a general data tree as arbitrary parent- and child-relations
need to be considered. In Fig. 3, this generality is expressed by grid G2,2 that overlays two parents.

scheme on unstructured and logically rectangular meshes and are usually more complex that an accurate modification of the
numerical stencil at hanging nodes.

4http://sourceforge.net/projects/paramesh. Generic library that supports parallel time-explicit and implicit FV methods.
5http://flash.uchicago.edu/website/home. Parallel adaptive code for solving the magneto-hydrodynamic equations with self-

gravitation.

http://sourceforge.net/projects/paramesh
http://flash.uchicago.edu/website/home

14 ESAIM: PROCEEDINGS

G2,1

G2,2

G1,1

G1,2

G1,3

G0,1

Figure 3. The SAMR method creates a hierarchy of rectangular subgrids.

Replacing coarse-cell values by averaged fine-grid values modifies the numerical stencil on the coarse grid.
In general the important property of conservation is lost. A flux correction replacing the coarse-grid flux at
the affected side of a neighboring cell by accumulated fine-grid fluxes is necessary to ensure conservation. In
the SAMR method, this conservative fixup is usually implemented as a correction pass. Like in the structured
approach, described in the previous subsection, hanging nodes additionally have to be considered in two and
three space dimensions. The correction procedure is explained in detail in Section 2.1.6.

Various implementations of the SAMR method for single-processor computers have been developed [29,46,86].
Freely available are the two-dimensional codes AMRClaw6 by Berger & LeVeque [15] and Amrita7 by Quirk. The
extension of the SAMR approach to parallel computers with shared memory is rather straightforward: It suffices
to parallelize the loop updating the grids, cf. [11]. On distributed memory machines, however, communication
costs cannot be neglected and parallelization strategies are significantly more complex. Freely available SAMR
software systems, that all support three-dimensional FV computations and MPI-based distributed memory
parallelism are the very mature SAMRAI8 (Structured Adaptive Mesh Refinement Application Infrastructure)
[60], Chombo9 by Colella et al., and our own software system AMROC10 (Adaptive Mesh Refinement in Object-
oriented C++) [32, 33]. Notable are further the Overture system11 by Henshaw et al. [23], that provides tools
for solving PDEs on overlapping SAMR meshes, the BoxLib12 collection of C++ classes by Bell et al. [97], and
the Uintah13 SAMR code for the simulation of accidental fires and explosions.

6http://www.clawpack.org. Serial Fortran 77 code for the explicit two-dimensional Wave Propagation Method [74].
7http://www.amrita-cfd.org. Supports serial two-dimensional explicit FV schemes. Embedded boundary algorithm for complex

geometry representation available.
8https://computation.llnl.gov/casc/SAMRAI. Generic parallel framework that supports explicit FV schemes directly, implicit

methods through an interface to the Hypre package (https://computation.llnl.gov/casc/linear solvers). Mapped geometry and some

embedded boundary support.
9https://seesar.lbl.gov/anag/chombo. Redesign of BoxLib, both parallel explicit and implicit FV algorithms demonstrated at

large scale. Some embedded boundary support.
10V2.0 available at http://www.cacr.caltech.edu/asc. Generic parallel support for explicit FV schemes, embedded boundaries

and fluid-structure coupling. Large number of provided schemes. Implicit multigrid algorithms prototyped but not distributed yet.

V1.0 is still available at http://amroc.sourceforge.net but demonstrates just the Wave Propagation Method (cf. Section 1.4.3) in
parallel on strictly Cartesian meshes.

11https://computation.llnl.gov/casc/Overture. Explicit and implicit schemes supported on geometrically complex overlapping

adaptive meshes. Special mesh generation tools provided.
12https://ccse.lbl.gov/Software. Explicit and implicit FV schemes supported but codes are not available to the public anymore.
13http://www.uintah.utah.edu. Implements explicit ICE scheme and Material Point Method to allow for fluid-structure coupling.

http://www.clawpack.org
http://www.amrita-cfd.org
https://computation.llnl.gov/casc/SAMRAI
https://computation.llnl.gov/casc/linear_solvers
https://seesar.lbl.gov/anag/chombo
http://www.cacr.caltech.edu/asc
http://amroc.sourceforge.net
https://computation.llnl.gov/casc/Overture
https://ccse.lbl.gov/Software
http://www.uintah.utah.edu

ESAIM: PROCEEDINGS 15

2. SAMR for hyperbolic problems

2.1. Serial algorithm

In this chapter we define the SAMR method exactly. Like in Section 1.2 we concentrate (without loss of
generality) on the two-dimensional case. For simplicity, we assume that the numerical scheme is a conservative
time-explicit FV method in two space dimensions, based on the update formula (8) with s ≡ 0 and d = 2, i.e.,

Qi+1
jk = Qi

jk −
∆t

∆x1

(
F1
j+ 1

2 ,k
(Qi)− F1

j− 1
2 ,k

(Qi)
)
− ∆t

∆x2

(
F2
j,k+ 1

2
(Qi)− F2

j,k− 1
2
(Qi)

)
, (60)

that is formulated on a rectangular Cartesian grid G. We denote the update operator (60) by H(·) and assume
that its implementation requires s ≥ 1 auxiliary cells (ghost cells) around G to define discrete boundary
conditions.

2.1.1. The grid hierarchy

Let the SAMR hierarchy consist of a sequence of levels l = 0, . . . , lmax. Analogous to Section 1.2.1 we
define a discretization of the computational domain on each level l with successively finer mesh widths ∆xn,l,
n = 1, . . . , d with d = 2 and a refined time step ∆tl. All mesh widths of Level l > 0 are set to be rl-times
smaller than those of level l − 1. With rl ∈ N, rl ≥ 2 for l > 0 and r0 = 1 we define ∆tl := ∆tl−1/rl and
∆xn,l := ∆xn,l−1/rl for all n = 1, . . . , d . Therefore, the ratios

∆tl
∆xn,l

=
∆tl−1

∆xn,l−1
= · · · = ∆t0

∆xn,0
for all n = 1, . . . , d (61)

remain constant on all levels and a time-explicit FV scheme can expected to be stable under a CFL-condition
on all grids of the hierarchy [14].

2.1.2. Topology

With the notations of Section 1.2.1 we define the domain of the m-th grid on level l by

Gl,m :=]xj−1/2
1,l , x

j+µ1−1/2
1,l [×]xk−1/2

2,l , x
k+µ2−1/2
2,l [. (62)

It has µ1 · µ2 FV cells and corresponds to the interior grid of Fig. 4. The boundary of Gl,m is ∂Gl,m and
Ḡl,m = Gl,m ∪ ∂Gl,m is its hull. With a total number of Ml grids on level l the domain of the entire level is

Gl :=
Ml⋃
m=1

Gl,m with Gl,m ∩Gl,n = ∅ for m 6= n , (63)

where we have assumed that the grids Gl,m do not overlap. The problem domain G0 =
⋃
mG0,m does not need

to be a single grid. In order to specify the setting of ghost cell values exactly and to derive geometric relations
between the grids of different levels we introduce enlarged grid domains Gσl,m that extend Gl,m at all sides by
σ > 0 additional cells, i.e.

Gσl,m :=]xj−σ−1/2
1,l , x

j+µ1+σ−1/2
1,l [×]xk−σ−1/2

2,l , x
k+µ2+σ−1/2
2,l [. (64)

Analogous to Gl we denote the enlarged level domain
⋃
mG

σ
l,m by Gσl . For σ = s, expression (64) yields the

domain required for the numerical update on grid Gl,m. We denote the additional necessary ghost cell region
Gsl,m\Ḡl,m by G̃sl,m. Note that values σ 6= s are also used in the following description to express geometric
inter-level relations. For instance, only properly nested refinements will be allowed that satisfy the equation

Grll ∩Gl−1 = Grll ∩G0 (65)

16 ESAIM: PROCEEDINGS

µ1

µ2

Interior grid with buffer cells - Gl,m

Complete grid

with ghost
cells - Gσ

l,m

Figure 4. Parts of a refinement grid Gl,m.

for all l > 0 (cf. Fig. 3). Condition (65) assures that internal cells of level l can abut only internal cells of the
levels l − 1 and l + 1.

2.1.3. Grid-based data

The notation Q(Gsl,m, x
j
1,l, x

k
2,l) denotes the approximations of the vector of state that are defined on all

discrete points (xj1,l, x
k
2,l), j, k ∈ Z, which satisfy (xj1,l, x

k
2,l) ∈ Gsl,m. In general, some points (xj1,l, x

k
2,l) will

be contained in multiple extended grids Gsl,m. We assume that the data values associated to such points are
equal in all sets Q(Gsl,m, ·, ·). Under this assumption, we define the vector of state on level l as the union of all
grid-based data sets Q(·, xj1,l, xk2,l) by

Ql :=
Ml⋃
m=1

Q(Gsl,m, x
j
1,l, x

k
2,l) . (66)

The notations Fn(Ḡl,m, ·, ·), n = 1, . . . , d denote the numerical fluxes on the edges of Ḡl,m. While F1(Ḡl,m,
x
j+1/2
1,l , xk2,l) is used for the discrete fluxes in the x1-direction, F2(Ḡl,m, x

j
1,l, x

k+1/2
2,l) denotes the flux approxi-

mations in the x2-direction. Analogous to (66), the numerical fluxes on level l are defined by

Fn,l :=
Ml⋃
m=1

Fn(Ḡl,m, ·, ·) . (67)

The notations δFn(∂Gl,m, ·, ·), n = 1, . . . , d are only used on levels with l > 0. They denote correction terms
associated to the numerical fluxes of level l − 1 that are defined on the boundary of Gl,m. The set of cor-
rection terms for F1,l−1 is δF1(∂Gl,m, x

j+1/2
1,l−1 , x

k
2,l−1) and the corrections for F2,l−1 are stored in δF2(∂Gl,m,

xj1,l−1, x
k+1/2
2,l−1). The correction terms on level l are δFn,l :=

⋃Ml

m=1 δF
n(∂Gl,m, ·, ·). The values of correction

terms are only required on lower-dimensional domains ∂Gl\∂G0 where a fine level l > 0 abuts the next coarser
level. Since the geometric location of the data values in the different sets has now been explained in detail, we
neglect the point information in the following.

2.1.4. Numerical update

Suppose all cell values Ql are set appropriately, a whole level l is updated by applying the solution operator
H(·) to all grids on level l in a simple loop:

ESAIM: PROCEEDINGS 17

Cells to correct Fn,l Fn,l+1 δFn,l+1

Figure 5. Usage of fine- instead of coarse-grid fluxes to integrate cells abutting a fine grid.
Cells needing correction are shaded. The circles mark the locations of the relevant fluxes Fn,l,
Fn,l+1 and of the correction terms δFn,l+1.

For all m = 1 To Ml Do

Q(Gsl,m, t) ,F
n(Ḡl,m, t)

H(∆tl)−→ Q(Gl,m, t+ ∆tl)

The loop involves the grid-wise update of the flux approximations Fn,l.

2.1.5. Conservative averaging

When two levels l and l+ 1 reach the same discrete time, the fine-level values are projected onto the coarser
level since the fine-level approximation can be assumed to be more accurate. Each interior cell value of level l
in Gl ∩Gl+1 is replaced by the conservative average of the r2

l+1 internal cells of level l + 1 that overlay it. The
value Ql

jk of cell (j, k) is replaced by

Q̂l
jk :=

1
(rl+1)2

rl+1−1∑
κ=0

rl+1−1∑
ι=0

Ql+1
v+κ,w+ι . (68)

Note that the application of the projection formula (68) generally results in a conservation error because
numerical fluxes between the fine- and the coarse-level domain are not considered. A special flux correction is
applied along coarse-fine boundaries to account for this issue. The correction has to be applied in all coarse-level
cells abutting a higher-level refinement region.

2.1.6. Conservative flux correction

When the update formula (60) is applied to the cells of level l contained in (Grl+1
l+1 \Gl+1) ∩ Gl, we have to

replace the coarse flux approximation with all modified neighboring cells by the sum of all overlying fine-level
fluxes [14]. Note that condition (65) ensures that only cells of level l have to be corrected. Figure 5 shows these
cells for a particular refinement. As an example, we consider the cell (j, k). The correct update for Ql

jk is

Q̌l
jk(t+ ∆tl) = Ql

jk(t)− ∆tl
∆x1,l

(
F1,l

j+ 1
2 ,k
− 1
r2
l+1

rl+1−1∑
κ=0

rl+1−1∑
ι=0

F1,l+1

v+ 1
2 ,w+ι

(t+ κ∆tl+1)

)

− ∆tl
∆x2,l

(
F2,l

j,k+ 1
2
− F2,l

j,k− 1
2

)
.

(69)

18 ESAIM: PROCEEDINGS

In order to replace Ql
jk(t + ∆tl) (calculated with the unaltered scheme (60)) by Q̌l

jk(t + ∆tl), we use the
correction procedure proposed in [14] that avoids the modification of the numerical scheme. After the update
on level l we initialize the correction term δF1,l+1

j− 1
2 ,k

, which belongs to the fine-level boundary but is associated

to the point (xj−1/2
1,l , xk2,l), by

δF1,l+1

j− 1
2 ,k

:= −F1,l

j− 1
2 ,k

. (70)

During the rl+1 update steps of level l + 1 we accumulate all necessary fine-level fluxes, i.e.

δF1,l+1

j− 1
2 ,k

:= δF1,l+1

j− 1
2 ,k

+
1
r2
l+1

rl+1−1∑
ι=0

F1,l+1

v+ 1
2 ,w+ι

(t+ κ∆tl+1) . (71)

When the integration of the fine level is complete, the correction is applied by modifying Ql
jk(t+ ∆tl) by

Q̌l
jk(t+ ∆tl) := Ql

jk(t+ ∆tl) +
∆tl

∆x1,l
δF1,l+1

j− 1
2 ,k

. (72)

To avoid the usage of the numerical fluxes of the entire level, we combine the numerical update and the
computation of the correction terms in a single loop:

update level(l)

For all m = 1 To Ml Do

Q(Gsl,m, t) ,F
n(Ḡl,m, t)

H(∆tl)−→ Q(Gl,m, t+ ∆tl)
If level l > 0

Add Fn(∂Gl,m, t) to δFn,l

If level l + 1 exists
Init δFn,l+1 with Fn(Ḡl,m ∩ ∂Gl+1, t)

Algorithm 1. Numerical update of Q and calculation of correction terms on level l.

2.1.7. Boundary conditions

Three different types of boundary conditions have to be considered in the SAMR method to set the values
of Q(G̃sl,m) in the ghost cell region G̃sl,m := Gsl,m\Ḡl,m. Cells in

P̃ sl,m = G̃sl,m\G0 (73)

are auxiliary cells outside of the physical domain. Their values are used to implement physical boundary
conditions. Cells in

S̃sl,m = G̃sl,m ∩Gl (74)

have a unique interior cell analogue and are set by copying the data value from the data set of the grid, where the
interior cell is contained. We call the overwriting of ghost cell values with internal cell values synchronization.
It assures the validity of the equal data assumption necessary for the definitions of Section 2.1.3. On the root
level no further boundary conditions need to be considered. Yet, for l > 0 also internal boundaries can occur.
In the SAMR method ghost cells in the domain

Ĩsl,m = G̃sl,m\(S̃sl,m ∪ P̃ sl,m) (75)

are used to set internal Dirichlet boundary conditions by time-space interpolation, where Gl,m abuts Gl−1. The
SAMR method is usually implemented with simple linear interpolation operations [14]. For instance, for the

ESAIM: PROCEEDINGS 19

Synchronization with Gl - S̃s
l,m = G̃s

l,m ∩Gl

Interpolation from Gl−1 - Ĩs
l,m = G̃s

l,m\(S̃s
l,m ∪ P̃ s

l,m)

Physical boundary conditions - P̃ s
l,m = G̃s

l,m\G0

Figure 7. Ghost cell regions of a refinement grid Gl,m.

fine-level cell (v, w) of Fig. 6, a frequently used bilinear spatial interpolation reads

Q̌l
vw := (1− f1)(1− f2) Ql−1

j−1,k−1 + f1(1− f2) Ql−1
j,k−1 + (1− f1)f2 Ql−1

j−1,k + f1f2 Ql−1
jk (76)

with factors

f1 :=
xv1,l − xj−1

1,l−1

∆x1,l−1
, f2 :=

xw2,l − xk−1
2,l−1

∆x2,l−1
. (77)

The interpolation (76) is followed by a linear time-interpolation to supply suitable internal boundary conditions
at discrete time steps that do not exist on level l − 1, i.e.,

Q̃l(t+ κ∆tl) :=
(

1− κ

rl

)
Q̌l(t) +

κ

rl
Q̌l(t+ ∆tl−1) for κ = 0, . . . rl − 1 . (78)

Figure 7 displays all types of boundary conditions for levels with l > 0. The setting of all ghost cell values
on level l requires just a loop over all subgrids and the application of the three types of boundary conditions.

k − 1

k

j − 1 j

v

w

(xj−1
1,l , xk−1

2,l)

Figure 6. Cells used for interpolating
data into the fine-level cell (v, w).

Since the domains P̃ sl,m, S̃sl,m, Ĩsl,m do not overlap, the order is
arbitrary.

The interpolation formula (76) is also employed to initial-
ize Ql from coarser data in new refinement regions during
the regridding procedure. The maximal domain of the space-
interpolation (76) is Gνl with ν = (bs/rlc+ 1) rl.14 Since the
condition bs/rlc + 1 ≤ s is satisfied for all rl ≥ 2, s ≥ 1 the
interpolation domain Gνl is always fully contained within Gsl−1,
yet in general exceeds the interior grid domain Gl−1. Conse-
quently, time-space interpolation on level l requires the previous
ghost cell setting for Ql−1 on the entire domain at both time
steps t and t+ ∆tl−1.

14b.c denotes the Gauss-function which rounds off to the next integer.

20 ESAIM: PROCEEDINGS

1

2

3 4

5

6 7

8

9 10

11

12 13

Root Level
r0 = 1

Level 1
r1 = 4

Level 2
r2 = 2

Time
Regridding of finer levels.
Base level () stays fixed.

Figure 8. Recursive integration order of SAMR.

2.1.8. The recursive algorithm

Interpolation in time during the rl time steps of level l necessitates the availability of the coarse-level values
Ql−1(t) and Ql−1(t+ ∆tl−1). Therefore, the numerical update must be calculated first on level l − 1. Further
on, the ghost cell values of Ql−1(t+ ∆tl−1) must be set before advancing level l. On the other hand, we want
to replace coarse-level values successively with the highest level approximation available. A recursive algorithm
is most appropriate to achieve these purposes. The basic SAMR algorithm is formulated in Algorithm 2.
Except the function regrid(l), that modifies the grid hierarchy, all elements of Algorithm 2 have already been
explained. Note that the setting of the boundary values of Ql(t) at the beginning of advance level(l) is
mandatory. Although boundary values of coarser levels have already been set before advancing the next finer
level, a further application of the boundary conditions is necessary to take changes due to restriction and flux
correction into account. An example for the temporal integration order of the numerical solution on a three level
hierarchy is shown in Fig. 8. The arrows denote regridding of finer levels. The level at which the regridding
procedure is initiated (marked by the circles) stays fixed. The recursive integration order of Algorithm 2 can
be started by calling advance level(0) on the root level.

advance level(l)

Repeat rl times
Set ghost cells of Ql(t)
If time to regrid

regrid(l)
update level(l)
If level l + 1 exists

Set ghost cells of Ql(t+ ∆tl)
advance level(l + 1)
Average Ql+1(t+ ∆tl) onto Ql(t+ ∆tl)
Correct Ql(t+ ∆tl) with δFn,l+1

t := t+ ∆tl

Algorithm 2. The basic recursive SAMR algorithm.

2.1.9. Grid generation

A level l initiates the creation of new refinement grids based upon the data of all levels ι that satisfy ι ≥ l.
Level l by itself is not modified. To consider the nesting condition (65) already in the grid generation, the

ESAIM: PROCEEDINGS 21

regridding procedure starts at the highest level available that allows further refinement. We denote its level
number by lc, which satisfies the condition 0 ≤ lc < lmax.

Special indicators (see Section 2.3) are used to flag cells for refinement. Grid-based integer data sets N ι :=⋃
mN(Gι,m, x

j
1,ι, x

k
2,ι) are used to store these flags. Additional buffer cells are marked around each flagged cell.

In order to ensure that a feature, which has caused the flagging, remains within the refinement region until the
next regridding, the size of the buffer zone b must satisfy the relation b ≥ κr. Herein, κr denotes the number
of time steps between two regridding procedures. To minimize the influence of internal boundary conditions on
the solution, b > κr should be used. A buffer zone of two cells is typical for the standard strategy of regridding
in every time step (cf. Fig. 8).

A special clustering algorithm (cf. Section 2.1.10) is employed to create new refinement grids Ğι+1,m ⊂ G0

on the basis of N ι. This algorithm generates successively smaller grids until the ratio between flagged and all
cells in every new grid Ğι+1,m is above a prescribed threshold 0 < ηtol < 1. As usual, we use Ğι :=

⋃
m Ğι,m.

In order to ensure that the previously generated new refinement grids of the next finer level are fully contained
in Ğι+1, all cells in N ι below Ğι+2 are also flagged before creating the buffer zone. Before the new grids Ğι+1

can be used to replace Gι+1, the validity of the nesting condition (65) has to be enforced. In Algorithm 3, we
evaluate the invalid region for level ι+ 1 by calculating the complement CĞι := G0\Ğι of the next coarse-level
domain Ğι in G0 and by enlarging CĞι by one additional cell, i.e. CĞ

1

ι . The operation Ğι+1 := Ğι+1\CĞ1

ι

then eliminates all regions violating (65) from the new level domain Ğι+1. Note that Algorithm 3 can create
only one new level above lc; however, all levels above l could be removed.

regrid(l) - Regrid all levels ι > l

For ι = lc Downto l Do
Flag N ι according to Qι(t)
If level ι+ 1 exists?

Flag N ι below Ğι+2

Flag buffer zone on N ι

Generate Ğι+1 from N ι

Ğl := Gl
For ι = l To lc Do

CĞι := G0\Ğι, Ğι+1 := Ğι+1\CĞ1

ι

recompose(l)

Algorithm 3. The regridding procedure.

The reinitialization of the hierarchy is done in recompose(l). In particular, grid-based auxiliary data Q̆(Ğι, t)
are necessary to reorganize the grid-based data of the vector of state. Cells in newly refined regions Ğι\Gι
are initialized by interpolation; values of cells in Ğι ∩ Gι are copied. Since interpolation requires the previous
reorganization of Qι−1(t) (including an update of ghost cell values), recomposition starts on level l + 1.

recompose(l) - Reorganize all levels ι > l

For ι = l + 1 To lc + 1 Do

Interpolate Qι−1(t) onto Q̆ι(t)
Copy Qι(t) onto Q̆ι(t)
Set ghost cells of Q̆ι(t)
Qι(t) := Q̆ι(t), Gι := Ğι

Algorithm 4. Serial recomposition.

22 ESAIM: PROCEEDINGS

x x
x x

x x
x x
x x
x x

x
x

x
x

x
x

x
x

x
x

x
x

x
x x x

2
2
0
2
2
2
3
3
6
6

6 6 2 3 2 2 2 2 2Υ

x x
x x

x x
x x
x x
x x

x
x

x
x

x
x

x
x

x
x

x
x

x
x x x

2
2
2
3
3
6
6

0
1
-1
3
-3

4 4 2 3 2 2 2 2 2
-2 3 -2 1 0 0 0

Υ
∆

x x
x x

x x
x x
x x
x x

x
x

x
x

x
x

x
x

x
x

x
x

x
x x x

2
2
2
3
3

0
1
-1

4 4 2 1 1
-2 11

Υ
∆

x x
x x

x x
x x
x x
x x

x
x

x
x

x
x

x
x

x
x

x
x

x
x x x

1
3

2 1 1
1

Υ
∆

Figure 9. Grid generation by signatures [11].

2.1.10. Clustering by signatures

We use the algorithm proposed by Bell et al. [11] to cluster flagged cells into new Grids Ğι+1,m (see also
[13, 17]). This method, inspired by techniques used in image detection, counts the number of flagged cells in
each row and column on the entire domain of N ι. The sums Υ are called signatures. First, cuts into new boxes
are placed on all edges where Υ is equal to zero (upper left picture of Fig. 9). In the second step, cuts are
placed at zero crossings of the discrete second derivative ∆ = Υν+1 − 2 Υν + Υν−1. The algorithm starts with
the steepest zero crossing and uses recursively weaker ones, until the ratio between flagged and all cells in every
new grid is above the prescribed threshold value ηtol (upper right and lower left picture of Fig. 9). Typical
values for ηtol are between 0.7 and 0.9.

2.2. Parallel algorithm

The computationally most expensive operation of Algorithm 2 is the numerical update in update level(l).
The update loop over all subgrids Gsl,m can be parallelized in a straightforward way by computing the update
of different grids on different computing nodes. A time-explicit scheme only requires the synchronization of
Ql(t) before the grid-based data is distributed and this operation is already part of the boundary update in
the basic algorithm. Hence, the efficient usage of parallel computers with shared memory is straightforward.
Only an estimation of the necessary work on each subgrid is necessary to split the loop in update level(l) in a

ESAIM: PROCEEDINGS 23

Processor 1 Processor 2

Figure 10. Splitting of refinement grids due to distribution based on the root level.

load-balancing manner. However, this simple strategy is not practicable on parallel computers with distributed
memory. The computing nodes of distributed memory architectures usually do not have enough memory to store
the complete data of large-scale problems and the hierarchical data itself must be distributed among the available
nodes. Unfortunately, the order of partitioning objectives is not clear: (i) the recursive algorithm (in principle)
requires load balanced work on each level, (ii) existing subgrids should not be split, (iii) synchronization and
inter-level communication costs should be small, and (iv) the repartitioning overhead during regridding should
be minimal. In the following, we describe the rigorous domain decomposition approach that was chosen in our
own implementation AMROC [31,33] that satisfies all partitioning objectives, although with some compromises
in (i) and (ii). The main idea has been proposed by Parashar & Browne [91, 92] and was implemented in the
hierarchical data structures of the DAGH library15. An alternative approach has been pursued by Rendleman
et al. [97] in Berkeley-Lab-AMR. They used a partitioning strategy based on the level-wise application of a
Knapsack algorithm that satisfies objectives (i) and (ii) almost perfectly but neglects (iii) and (iv) entirely.

2.2.1. Decomposition of the hierarchy

We assume a parallel machine with P identical processing nodes. The core idea of the chosen rigorous domain
decomposition approach is to partition first of all the computational domain. The root domain G0 is split into
P non-overlapping portions Gp0, p = 1, . . . , P by

G0 =
P⋃
p=1

Gp0 with Gp0 ∩Gq0 = ∅ for p 6= q , (79)

which are defined as usual as the union of new non-overlapping grids Gpl,m by

Gp0 :=
Mp

0⋃
m=1

Gp0,m . (80)

The key idea now is that all higher level domains Gl are required to follow the decomposition of the root level:

Gpl := Gl ∩Gp0 (81)

Condition (81) can cause the splitting of a subgrid Gl,m into multiple subgrids Gpl,κ on different processors.
Although the merging of subgrids Gpl,κ on processor p is allowed, the total number of grids in

⋃
pG

p
l usually

exceeds the number of grids in Gl, i.e.,
∑
pM

p
l > Ml.16 Under requirement (81) we estimate the work on an

15http://userweb.cs.utexas.edu/users/dagh. Mere C++ prototypical data structures, no schemes included.
16For the example of Fig. 10 we have Mp

1 = 2, Mq
1 = 1 and M1 = 2.

http://userweb.cs.utexas.edu/users/dagh

24 ESAIM: PROCEEDINGS

arbitrary rectangular sub-domain Ω ⊂ G0 by

W(Ω) =
lmax∑
l=0

[
Nl(Gl ∩ Ω)

l∏
κ=0

rκ

]
. (82)

Herein, Nl(G) is the total number of FV cells of level l that are completely contained in Ḡ. The product in
(82) is used to consider the time step refinement. A nearly equal distribution of the work necessitates

Lp :=
P · W(Gp0)
W(G0)

≈ 1 for all p = 1, . . . , P . (83)

The creation of a load-balanced decomposition Gp0 requires an appropriate partitioning algorithm.
Note that the reduction of the communication overhead is already considered in condition (81) in a natural

way. Together with the use of synchronized ghost cells this condition allows a strictly local execution of most
SAMR operations. In particular, no major modification of Algorithm 2 is necessary, which simplifies the
practical implementation.

2.2.2. Boundary conditions

Our domain decomposition technique involves a slight increase in complexity for ghost cell synchronization.
In the parallel algorithm, the synchronization domain of a decomposed grid Gs,pl,m on node p is divided into the
local domain

S̃s,pl,m = G̃s,pl,m ∩Gpl , (84)

and the parallel domains

S̃s,ql,m = G̃s,pl,m ∩Gql , q = 1, . . . , P , q 6= p . (85)

While the cell values in S̃s,pl,m can be copied from interior cells, which are locally available on p, the setting of
cells in S̃s,ql,m requires communication with node q, on which the interior cells originally reside.

The setting of physical and internal boundaries remains strictly local. Analogous to Section 2.1.7, the domain
for the spatial interpolation, Gν,pl , is fully contained in Gs,pl−1, the local domain of the next coarser level. Since
the parallel synchronization of Ql−1(t) and Ql−1(t + ∆tl−1) is guaranteed by the SAMR algorithm itself, the
parallel synchronization of level l itself is the only communication operation necessary to set the ghost cells on
this level.

2.2.3. Numerical update and flux correction

The function update level(l) does not involve any parallel overhead. Apparently, the new vector of state
Q(Gpl,m, t + ∆tl) on each grid Gpl,m and the fluxes Fn(Ḡpl,m, t) can be computed strictly local on the basis of
Q(Gs,pl,m), but also the computation of the correction terms does not require communication.

To illustrate this, we assume a parallel border in Fig. 11 at j − 1
2 . Let cell (j, k) be contained in Gql and

let cell (v, w) be contained in Gpl+1. Then, the necessary correction term δF1,l+1
j−1/2,k resides on node p as it is

assigned to the fine level. The initialization of this term in (70) requires the coarse-grid flux F1,l
j−1/2,k. This flux

is available on node p, because the basic SAMR strategy ensures that below (v, w) an interior coarse-level cell
(j − 1, k) exists, having F1,l

j−1/2,k as flux into a ghost cell (j, k). On the other hand, F1,l
j−1/2,k is also computed

on q, where (j, k) is interior and (j − 1, k) is a ghost cell. Since the ghost cells have been synchronized before
the numerical update, the same boundary flux is calculated on both nodes (cf. level l in Fig. 11). The fine-grid
fluxes F1,l+1

v+1/2,w+ι are only available on p, because no abutting interior fine-grid cell exists on q. Since the

correction term δF1,l+1
j−1/2,k is also stored on p, the summation in (71) remains local (cf. level l + 1 of node p in

Fig. 11).

ESAIM: PROCEEDINGS 25

Node p Node qv + 1
2

w

j − 1 j j − 1 j

k

Fn,l Fn,l+1 δFn,l+1

parallel exchange

Figure 11. Parallelized conservative flux correction. Cells needing correction are shaded.
The circles mark the locations of the relevant fluxes Fn,l, Fn,l+1 and of the correction terms
δFn,l+1.

The only operation of the flux correction that necessarily requires communication is the application of cor-
rection terms in Eq. (72). In our example, the term δF1,l+1

j−1/2,k of node p has to be added to the value of the
interior cell (j, k), which is stored on node q. Our practical implementation only allows the setting of ghost cell
values from interior cells. We achieve the parallel exchange by employing auxiliary grid-based cell-centered data
H(G1,p

l,m, x
j∗
1,l, x

k∗
2,l) that has an overlap of one cell. Hl is initialized with zero everywhere. On node p, the value

δF1,l+1
j−1/2,k is copied into the interior cell (j− 1, k). Hl is then synchronized and all values are shifted by one cell

to the right. On node q, this technique transfers δF1,l+1
j−1/2,k from the ghost cell (j−1, k) to the interior cell (j, k),

where it can be applied. The simultaneous application of this trick to all correction terms δFn,l+1 reduces the
parallel overhead for the entire procedure to two synchronization operations per space direction. The transfer
and application of δF1,l+1

j−1/2,k via Hl to the interior cell (j, k) is expressed by the black arrow in Fig. 11.
Finally, we remark that the strict locality of the inter-level averaging (68) follows directly from condition

(81). This property avoids the expensive parallel communication of volume data during the averaging operation.

2.2.4. Parallel grid generation

Analogous to Algorithm 2 the regridding procedure formulated in Algorithm 3 is hardly affected by paral-
lelization. The flagging of cells on each level can be done locally. If an error estimation criterion is used (cf.
Section 2.3), the computation of auxiliary time steps involves parallel boundary synchronization, yet it does not
alter Algorithm 3 itself. The only difficult task in the creation of Ğι+1 from N ι in Algorithm 3 is the clustering.

Two possibilities exist for running the cluster algorithm in parallel. The cluster algorithm could be executed
strictly local on N(Gpι) or it could be executed on the data of the entire level N(Gι). Note that both options
can be guaranteed to give an identical result only for a clustering threshold of ηtol = 1. For ηtol < 1 the
algorithm has some freedom in combining flagged and non-flagged cells leading to slightly different results for
both approaches. Naively implemented, the second option would require a global concatenation of all data sets
N(Gpι) to N(Gι), which is prohibitively expensive for large-scale problems. A truly parallel cluster algorithm has
recently been presented by Gunney et al. [52]; however, we have opted to accept some ambiguities in parallel
for ηtol < 1 for the sake of simplicity in our approach. We execute the cluster algorithm strictly local and
communicate only the result Ğpι+1 to obtain the global list Ğι+1 =

⋃
p Ğ

p
ι+1. The global list Ğι+1 is mandatory

to ensure the correct proper nesting of the new hierarchy. To consider the buffer zone before local clustering,
we use extended grid-based data Ñ ι :=

⋃
mN(Gbι,m, x

j
1,ι, x

k
2,ι) instead of N ι. Herein, b is the size of the buffer

region (see Section 2.1.9). By synchronizing Ñ ι before creating the buffer zone we ensure that all interior cells
are flagged correctly.

26 ESAIM: PROCEEDINGS

recompose(l) - Reorganize all levels

Generate Gp0 from {G0, ..., Gl, Ğl+1, ..., Ğlc+1}
For ι = 0 To lc + 1 Do

If ι > l

Ğpι := Ğι ∩Gp0
Interpolate Qι−1(t) onto Q̆ι(t)

else

Ğpι := Gι ∩Gp0
If ι > 0

Copy δFn,ι onto δF̆n,ι

δFn,ι := δF̆n,ι

If ι ≥ l then κι = 0 else κι = 1
For κ = 0 To κι Do

Copy Qι(t+ κ∆tι) onto Q̆ι(t+ κ∆tι)
Set ghost cells of Q̆ι(t+ κ∆tι)
Qι(t+ κ∆tι) := Q̆ι(t+ κ∆tι)

Gpι := Ğpι , Gι :=
⋃
pG

p
ι

Algorithm 5. Parallel recomposition. Executed on each node p = 1, . . . , P .

The main changes in the regridding procedure are in recompose(l). Instead of Algorithm 4 we apply
Algorithm 5. Due to our distribution strategy, we have now to consider a complete reorganization of the entire
hierarchy, even for a regridding at a higher level. In Fig. 8, this corresponds to the three regridding operations
initiated by level 1. Particularly, the whole relevant data of levels with ι ≤ l has to be copied. Like the
synchronization operation, these copy operations are partially local and parallel. For levels with ι < l the
relevant data is Qι(t), Qι(t+ ∆tι) and δFn,ι, for level l we have to copy Ql(t) and δFn,l. The initialization of a
level with ι > l is in principle identical to Algorithm 4. As explained in the previous section, the interpolation is
a strictly local operation, provided that the next coarser level has already been reorganized. The copy operation
is a combination of local and parallel copy.

2.2.5. Partitioning

It is evident that the overall efficiency of the chosen parallelization strategy depends especially on the first
step of recompose(l), the partitioning algorithm. This algorithm has to create a load-balanced domain decom-
position for the new hierarchy, which consists for ι ≤ l of unchanged level domains Gι and for ι > l of new
domains Ğι. The algorithm has to meet several requirements: It must balance the estimated workload, while
the amount of data, that has to be synchronized during the numerical solution procedure, should be as small
as possible. A slight change of the grid hierarchy should involve a moderate data redistribution. Execution of
the partitioning algorithm should be fast as it is carried out on-the-fly.

Distribution strategies based on space-filling curves give a good compromise between these partially compet-
ing requirements. A space-filling curve defines a continuous mapping from [0, 1] onto [0, 1]d, d ≥ 2, cf. [100].
As such curves can be constructed recursively, they are locality-preserving and therefore avoid an excessive
redistribution overhead. Further on, the surface is small, which reduces synchronization costs. By applying the
mapping of a space-filling curve to the discrete index space of the root level, the root level cells become ordered.
This sequence can easily be split into portions of equal size yielding load-balanced new distributions Gp0. The
computational time necessary for distribution can be decreased if neighboring cells with the same workload are
concatenated. In this case, generalized space-filling must be employed [91,92].

In our case, computation of a generalized space-filling curve is done directly in the cell indices, which requires
an index domain satisfying (2ν)d with ν ∈ N. In most cases, the space-filling curve thereby exceeds the

ESAIM: PROCEEDINGS 27

High workload

Medium workload

Low workload

Proc. 1

Proc. 2

Proc. 3

Calculation
domain

Necessary domain of
space-filling curve

Figure 12. A generalization of Hilbert’s space-filling curve is used to distribute grid blocks.
The domain of the space-filling curve exceeds the calculation domain as the number of cells in
the x1- and x2-direction are not of the same power of 2.

computational domain (see Fig. 12); however, the possibly resultant disconnect of some processor sub-domains
and thereby increased communication costs are assumed to be negligible.

2.3. Refinement indicators

Rigourously derived error estimations for finite volume schemes for conservation laws are only available for
scalar equations [67] and are usually not particularly sharp. Their efficiency is rather modest and practitioners
still employ primarily heuristic and physically motivated indicators instead. In the following, we describe two
frequently used refinement indicators that we apply to selected scalar quantities, e.g., to some components of
the vector of state or additionally evaluated derived quantities.

2.3.1. Scaled gradients

An adaptation along discontinuities can easily be achieved by evaluating gradients multiplied by the step size
(aka scaled gradients) in all directions. Cell (j, k) is flagged for refinement if any of the relations

|w(Qj+1,k)− w(Qjk)| > εw , |w(Qj,k+1)− w(Qjk)| > εw , |w(Qj+1,k+1)− w(Qjk)| > εw (86)

is satisfied for an arbitrary scalar quantity w, which is derived from the vector of state Ql(t). The constant εw
denotes a prescribed refinement limit.

2.3.2. Heuristic error estimation

A simple adaptation criterion for regions of smooth solutions is the heuristic estimation of the local truncation
error by Richardson extrapolation [12,14,16]. The local truncation error of a difference scheme of order o satisfies

q(x, t+ ∆t)−H(∆t)(q(·, t)) = C∆to+1 +O(∆to+2) . (87)

If q is sufficiently smooth, we have for the local error at t+ ∆t, after two time steps with ∆t,

q(x, t+ ∆t)−H(∆t)
2 (q(·, t−∆t)) = 2 C∆to+1 +O(∆to+2) , (88)

28 ESAIM: PROCEEDINGS

1. Error estimation on interior cells2. Coarsened auxiliary data 3. Compare temporary solutions

H∆tl Ql(t−∆tl) Ql(t + ∆tl) = H∆tl
2 Ql(t−∆tl),

Q̄l(t + ∆tl) = Q̂l(t + ∆tl)

Ql(t + ∆tl) = H2∆tl Q̂l(t−∆tl)

Figure 13. Utilization of Richardson extrapolation to estimate the error on a refinement subgrid.

and for the local error at t+ ∆t, after one time step with 2∆t,

q(x, t+ ∆t)−H(2∆t)(q(·, t−∆t)) = 2o+1C∆to+1 +O(∆to+2) . (89)

Subtracting (88) from (89) one obtains the relation

H(∆t)
2 (q(·, t−∆t))−H(2∆t)(q(·, t−∆t)) = (2o+1 − 2)C∆to+1 +O(∆to+2) , (90)

which can be employed to approximate the leading-order term C∆to+1 of the local error at t + ∆t. The
implementation of a criterion based on (90) requires a discrete solution Ql defined on a mesh two times coarser
than the mesh of level l, cf. Fig. 13. With yj1,l = (2j + 1)∆x1,l and yk1,l = (2k + 1)∆x2,l, j, k ∈ Z we therefore
introduce

Ql :=
⋃
m

Q(Gsl,m, y
j
1,l, y

k
2,l) . (91)

A coarse approximation Ql(t + ∆tl) is obtained by restriction of Ql(t −∆tl), i.e., Ql(t −∆tl) := Q̂l(t −∆tl),
and taking a time step of 2∆tl (cf. blue, dashed arrow of Fig. 13). Finally, a second coarsened solution Q̄l is
derived by advancing Ql(t) tentatively by ∆tl and restriction of Ql(t + ∆tl), i.e., Q̄l(t + ∆tl) := Q̂l(t + ∆tl)
(cf. pink arrows of Fig. 13). The difference

τwjk :=
|w(Q̄ljk(t+ ∆tl))− w(Qljk(t+ ∆tl))|

2o+1 − 2
> ηw (92)

is an approximation to the leading-order term of the local error of quantity w. If the latter inequality is satisfied,
all four cells below the coarsened cell (j, k) are flagged for refinement. Note that usage of (92) and the choice
of ηw can be rather cumbersome for computations in physical units. In such scenarios, we have obtained best
results with the criterion

τwjk
max(|w(Qljk(t+ ∆tl))|, Sw)

> ηrw (93)

that additionally considers a scaling parameter Sw and combines absolute and relative error.

ESAIM: PROCEEDINGS 29

2.4. Design of SAMR software

The explanation of the SAMR method in the previous sections forms the basis for the design of our object-
oriented framework AMROC [31]. AMROC currently consists of approximately 46,000 lines of code (loc) in
C++ plus approximately 6, 000 loc for visualization and data conversion. Computationally expensive single-grid
operations (numerical update, prolongation, etc.) are written in Fortran. The same implementation approach
is chosen in Berkeley-Lab-AMR that consists of approximately 50, 000 loc [97]. Although both packages are
written independently of the spatial dimension whenever possible, the drastic increase in complexity compared
to the serial two-dimensional Fortran 77 code AMRClaw with approximately 8, 500 loc due to the support of
distributed memory parallelism is apparent. A salient feature of AMROC, however, is the realization of object-
oriented framework concepts on all levels of software design. This allows for effective code re-use in implementing
parallel SAMR algorithms and extensive capabilities for customization through subclass derivation.

2.4.1. Three-level design

In block-structured dynamically adaptive codes three abstraction levels can be identified. At the top level, a
particular physical simulation problem is formulated by providing a numerical scheme, by setting boundary and
initial conditions, and by specifying prolongation and restriction methods for the inter-level transfer operations.
Characteristic for block-structured methods is that at this level only single-patch routines operating on Q(Gsl,m)
have to be provided. In AMROC, SAMR implementation classes call the single-patch routines through abstract
class interfaces. For a fully implemented SAMR algorithm, the system is used as an application framework
invoked by a generic main program.

Classes implementing SAMR algorithms and their auxiliary components operating on and manipulating
complex hierarchical data exactly along the lines of Sections 2.1 and 2.2 make up the second level. A comparison
of typical SAMR algorithms, e.g., the Berger-Colella technique for time-explicit finite volume schemes with
geometric adaptive multigrid methods for implicit discretizations, reveals that the SAMR auxiliary components
show great similarity and can easily be re-used. In AMROC, components such as the flagging of cells for
refinement depending on various criteria (cf. Section 2.3), the clustering of flagged cells into rectangular regions
(cf. Section 2.1.10), inter-level data transfer (Eqs. (68) and (76)) and flux correction (cf. Section 2.1.6) reside
in clearly separated classes. This is highlighted in Fig. 14 that displays the most important AMROC classes
and their relationships in Unified Modeling Language (UML) notation [21] for the purely Cartesian case. The
recursive SAMR algorithm for hyperbolic problems is realized here in the central class HypSAMRSolver; all other
classes are generic, enabling the utilization of AMROC as a software framework for the efficient implementation
of different SAMR algorithms, typically implemented in new central SAMRSolver-classes. The middle level
operates mainly on grid-based hierarchical data structures that are supplied by the base level.

2.4.2. The hierarchical data structures

The base level is divided into elementary functionality for single grid patches and the implementation of
various lists that store these patches hierarchically. A common design for the base level (see also [97]) involves a
Box-class that specifies a single rectangular box in global integer index space. Methods for geometric operations
on boxes like ∩, ∪, \ and the enlargement operation Gσl,m are available. The implementation of these operations
can be simplified significantly if a global integer coordinate system is employed. All coordinates in the description
in Section 2.1 can be mapped uniquely into this integer coordinate system by replacing the mesh widths ∆xn,l,
l = 0, . . . , lmax by increasing integers, i.e.,

∆xn,l ∼=
lmax∏
κ=l+1

rκ for all n = 1, . . . , d . (94)

Further on, we use a similar mapping to denote the discrete time steps by a unique positive integer. The use of
integer coordinates eliminates round-off errors completely [11] and speeds up the execution.

30 ESAIM: PROCEEDINGS

+set_patch()

NumericalScheme

+set_patch_boundary()

BoundaryConditions

+set_patch()

InitialConditions

+next_step()

+advance_level()

+update_level()

+regrid()

HypSAMRSolver

1

1

1

1

+restrict_patch()

+prolong_patch()

LevelTransfer

+find_boxes()

Clustering

+flux_correction()

+add_fine_fluxes()

+add_coarse_fluxes()

Fixup

+recreate_patches()

GridFunction

dim:int, data_type

1

+VectorOfState1

+set_new_boxes()

+redistribute_hierachy()

GridHierarchy

-follows distribution0..*

1

Patch

dim:int, data_type

1 0..*

Box

1 0..*

0..1

1

TimeStepControler

1

1

+evaluate()

Criterion

+flag_patch()

Flagging

0..*

1

1
+Flags

1

0..1

1

1

0..1

1

-dF

1..*

1

1

0..1

1

0..1

1

Figure 14. UML diagram for the most important AMROC classes implementing explicit
Cartesian SAMR.

A Patch-class adds consecutive data storage to a Box representing a rectangle Gl,m in the global integer
index space. In AMROC, the geometrical description of all refinement areas is stored in hierarchical lists of
Box-objects inside a single GridHierarchy. GridHierarchy holds the global list Gl and the local one, Gpl , that
stores each processor’s local contribution. Grid-based data are allocated locally with respect to Gpl inside
the GridFunction-class. For each grid Gpl,m, GridFunction allocates a Patch-object. The type of data used
is a template parameter for GridFunction. The GridFunction-class also considers parameters for assigning
data to different mesh locations (cell centers, edges, vertices), differently sized ghost cell regions, and the
reduction of grids to lower-dimensional slices thereby allowing the representation of Ql, δFn,l+1, and N l.
The usage of a templatized base class for all kind of hierarchical grid-based data exploits the commonality
in organizing rectangular data blocks independent of their storage type and reduces the implementation work
without sacrificing computational performance significantly.

The function recompose(), described in pseudo-code in Algorithm 5, is therefore implemented as an interplay
between a single GridHierarchy- and multiple GridFunction-objects. When the SAMRSolver-object calls the
GridHierarchy method redistribute hierachy() with new lists Ğl, the space-filling curve partitioner (cf.
Section 2.2.5) is called and new GridBoxLists Gl and Gpl are created. redistribute hierachy() then calls
the GridFunction method recreate patches() of each GridFunction-object to initiate redistribution of the
patch data. This corresponds to the partially local and parallel copy-operations in Algorithm 5. Further on,
GridFunction implements the setting of boundary conditions for Ql. In this case, each GridDataBlock allocates
extended data Q(Gs,pl,m) and stores detailed topological information on P sl,m, Isl,m, Ss,pl,m and Ss,ql,m. GridFunction
sets ghost cells in P sl,m by a call to the user-defined physical boundary routine. Cells in Isl,m are set by applying
the interpolation function to Ql−1.

ESAIM: PROCEEDINGS 31

Table 1. Refinement after the last time step of the test problem of Section 2.5.2 for four
computations with an increasing number of refinement levels with AMROC’s DAGH and the
original DAGH, refinement factors r1,2,3,4 = 2.

lmax Level 0 Level 1 Level 2 Level 3 Level 4

1 43/22500 145/38696
AMROC’s

2 42/22500 110/48708 283/83688
DAGH

3 36/22500 78/54796 245/109476 582/165784
grids/cells

4 41/22500 88/56404 233/123756 476/220540 1017/294828

1 238/22500 125/41312
Original

2 494/22500 435/48832 190/105216
DAGH

3 695/22500 650/55088 462/133696 185/297984
grids/cells

4 875/22500 822/57296 677/149952 428/349184 196/897024

Figure 15. Comparison of the refinement grids of the four-level solution with AMROC’s
DAGH (top left) and the original DAGH (bottom right).

2.4.3. AMROC’s DAGH package

The design of the hierarchical data structures in AMROC is based on the DAGH (Distributive Adaptive
Grid Hierarchies) package by Parashar & Browne [92] that itself was intended as software framework for SAMR
algorithms. However, the large complexity of SAMR algorithms and their auxiliary components makes frame-
work concepts at higher design levels (see above) more effective. Further on, a complete redesign of parts of the
DAGH package was necessary to allow the SAMR algorithm as it was described previously. AMROC’s version
of DAGH implements GridFunction- and GridHierarchy-classes that are much more general and allow a more
efficient adaptation than the original DAGH package. The GridFunction-class of the original DAGH package is
restricted to grids that are aligned to the base mesh coarsened by a factor of 2, i.e.,

G?l,m :=](2j − 1)∆x1,0, (2j + µ?1 − 1)∆x1,0[×](2k − 1)∆x2,0, (2k + µ?2 − 1)∆x2,0[. (95)

In general, we have Gl ⊆ G?l , yet for l > 0 typically Gl ⊂ G?l is satisfied. Therefore, the original DAGH usually
refines more cells than required. The limitation in DAGH follows from the simplifying assumption that two
grids on neighboring levels only can be connected by a 1 : 1 relation. A coarse-level grid may only have one
child and a fine-level grid has exactly one parent. If this assumption is violated, the coarse-level grids are split.
Consequently, the maximal number of grids on all levels is equal. This reduces the recomposition overhead on
higher levels, but leads to an increasing number of unnecessarily refined cells when advancing the numerical

32 ESAIM: PROCEEDINGS

solution. As the entire computational time is usually dominated by the numerical update, AMROC’s DAGH is
a significant improvement over the original package.

Figure 15 displays the level domains (indicated by different gray scales) used by AMROC’s DAGH and the
original DAGH of a four-level solution for the two-dimensional spherical shock wave test problem, described
in depth in Section 2.5.2, at tend. Table 1 shows the number of grids and cells for a constant refinement
factor of 2. All solutions have been computed with Hilbert’s space-filling curve on 7 processors. Obviously,
the simplified data structures perform well if just one or two refinement levels are used, yet for deeper, more
realistic hierarchies, the drastic improvement by allowing arbitrary SAMR grids becomes apparent.

Additional new features in AMROC, compared to the original DAGH, are level-dependent refinement factors,
periodic boundary conditions, a restart option from memory for explicit schemes with automatic time step
adjustment and a restart feature for a variable number of computing nodes.

2.5. Computational examples

In this sub-section, we discuss some typical SAMR benchmarks for the Euler equations, expression (49), in
two and three space dimensions. The adiabatic constant of Eq. (50) is set to the value commonly used for air
(γ = 1.4) in all computations.

2.5.1. Accuracy verification

Our first two-dimensional test is tailored to verify the order of accuracy of the SAMR implementation.
Utilizing a first-order accurate interpolation operation (cf. Section 2.1.7), a method of overall second order
accuracy can be expected. We use second-order accurate dimensional splitting as explained in Section 1.2.2 and
apply the Van Leer FVS detailed in Section 1.5.2. The MUSCL-Hancock variable extrapolation technique with
MinMod-limiter (cf. Section 1.4.2) is used to construct a second-order accurate high-resolution scheme. We
use the computational domain Ω = [−1, 1]2 with periodic boundary conditions at all sides. As initial density
distribution, the Gaussian function

ρ0(x1, x2) = 1 + exp
(
−x

2
1 + x2

2

r2

)
, (96)

with r = 1/4 is applied. The velocity field is initialized with the constant values u1,0 = u2,0 = 1 and the pressure
with p0 = 1 everywhere, giving constant velocity advection of the unperturbed shape along the diagonal. Using
tend = 2 as final time replicates the initial conditions and the evaluation of error norms becomes straightforward
on uniform grids. In here, we use the L1-error, that is evaluated in the SAMR case as the sum of the errors
on the domain Gl of level l without higher refinement. Denoting by lmax the highest level available, the norm
calculation reads

L1(ρ) = L1(∆xn,lmax , Glmax) +
lmax−1∑
l=0

L1(∆xn,l, Gl \Gl+1), (97)

where

L1(∆xn, ·) =
l∑
j,k

|ρjk − ρ0(xj1,l, x
k
2,l)|∆x1,l∆x2,l (98)

is the L1-error norm on a sub-domain of level l. The results for computations on uniform grids with N2 cells
and corresponding computations using two levels of mesh adaptation with r1,2 = 2 are given in Table 2. The
refinement in all adaptive computations is based on the estimation of the absolute local error, Eq. (92), with
threshold ηρ = 5 · 10−5. The clustering tolerance is set to ηtol = 95% and the buffer zone width to b = 2 (cf.
Section 2.1.9). The graphic right of Table 2 shows the domains of refinement for the adaptive case with base grid
1602 at tend. As it can be expected, the absolute error of the SAMR computations is slightly larger than in the
unigrid case; however, a rate of convergence indicating a second-order accurate method, even in the SAMR case,
can be confirmed. Additionally, the functioning of the conservative flux correction (fixup), cf. Section 2.1.6, is

ESAIM: PROCEEDINGS 33

Table 2. Accuracy verification test case: L1-error norms of density ρ and order of convergence.
Right: Final refinement domains.

N
Unigrid SAMR - fixup SAMR - no fixup

Error Order Error Order ∆ρ Error Order ∆ρ
20 0.109464
40 0.042394 1.369
80 0.014082 1.590 0.015948 0 0.015960 2e-5
160 0.004929 1.514 0.005267 1.598 0 0.005305 1.589 2e-5
320 0.001461 1.754 0.001565 1.751 0 0.001638 1.695 -1e-5
640 0.000418 1.805 0.000515 1.603 0 0.000600 1.449 -6e-5

verified. If the fixup is deactivated, the density accumulated throughout the domain experiences a mass loss
∆ρ that increases the error visibly and affects the rate of convergence. Note that this computation used the
strictly conservative interpolation

Q̌l
v,w := Ql−1

jk + f1(Ql−1
j+1,k −Ql−1

j−1,k) + f2(Ql−1
j,k+1 −Ql−1

j,k−1) (99)

with

f1 =
xv1,l − xj1,l−1

2∆x1,l−1
, f2 =

xw2,l − xk2,l−1

2∆x2,l−1
, (100)

instead of (76), which is not monotonicity-preserving and thereby only applicable to smooth problems. For
problems with discontinuities, usage of (76) is recommended.

2.5.2. Parallel benchmark

In order to evaluate our chosen parallelization strategy, we use a circular two-dimensional shock wave expan-
sion problem. The used scheme H(·) is the second-order accurate Wave Propagation Method (cf. Section 1.4.3)
with the approximate Riemann solver of Roe (cf. Section 1.5.3) with Minmod-limiter, thereby allowing a direct
comparison to the serial SAMR code AMRClaw (coded in Fortran 77). The domain is Ω = [0, 1]2 and ideally
reflective wall boundary conditions are used at all sides (cf. [32] for a discussion of typical boundary conditions
for Euler equations). A circle of uniform high density and pressure, ps = 5 and ρs = 5, respectively, of radius
r = 0.3 is positioned at (0.4, 0.4). The ambient density and pressure are ρ0 = 1 and p0 = 1, and the velocities are
u1,0 = u2,0 = 0 everywhere. After a few time steps, the initial discontinuity separates into a rapidly expanding
discontinuous shock wave, a following slower contact discontinuity and a collapsing smooth rarefaction wave.

The computations use a base grid of 1502 cells, and a two-level SAMR refinement with the factors r1 = 2 and
r2 = 4 is applied. As adaptation criteria, the scaled gradient of the density with ερ = 0.4 and the absolute error
threshold ηρ = 0.1 are used. The clustering tolerance is ηtol = 70% and the buffer zone width is b = 2. About 200

Table 3. Parallel benchmark: compute times
on P nodes.

Task [%] P =1 P =2 P =4 P =8 P =16

Update by H(·) 86.6 83.4 76.7 64.1 51.9

Flux correction 1.2 1.6 3.0 7.9 10.7

Boundary setting 3.5 5.7 10.1 15.6 18.3

Recomposition 5.5 6.1 7.4 9.9 14.0

Misc. 4.9 3.2 2.8 2.5 5.1

Time [min] 151.9 79.2 43.4 23.3 13.9

Efficiency [%] 100.0 95.9 87.5 81.5 68.3

root level grid time steps with CCFL ≈ 0.8
to tend = 0.5 were computed. A repar-
titioning of the hierarchy is done only at
root level time steps, cf. Section 2.2.4. A
standard Linux-Beowulf-cluster of Pentium-
III-1 GHz CPUs connected with Fast Eth-
ernet (effective bandwidth ≈ 40 MB) was
used for the benchmarks. Exemplary re-
sults on eight processing nodes are shown
in Fig. 16. While the AMROC computation
on one node required 152 min, the execution
time decreased to 13.9 min on 16 nodes. Ta-

34 ESAIM: PROCEEDINGS

t = 0.1, 38 time steps t = 0.2, 79 time steps

Figure 16. Parallel benchmark: circular Riemann problem in an enclosed box. Isolines of
density on two refinement levels (indicated by gray scales) and distribution to eight nodes
(indicated by different colors).

ble 3 shows a breakdown of the computational time for the most important SAMR operations. Parallel efficiency
is decent, but levels off for larger node count, which is to be expected given the conventional network used and
the moderate size of the test problem. For one node, the fractions spent in different parts of the code are in
good agreements with the results in [14] and our overall mixed C++/Fortran 77 code is about 14.5% slower
on one node than AMRClaw, which is a small prize to pay for the generality of parallelization and dimension
independence.

2.5.3. Three-dimensional refinement benchmark

As an example for a suitable large-scale three-dimensional SAMR benchmark, we discuss results for a Sedov
problem [103]. Similar point explosions are prototypical for supernovae and are commonly used to test the
hydrodynamics of astro-physical simulation codes. The detailed configuration was suggested as a hyperbolic
benchmark for SAMR implementations at the 2003 Chicago workshop on AMR methods,17 and the shown
AMROC results have been obtained for this purpose on the provided benchmark machine, an SGI Altix 3000
shared memory system.

The equations solved are again the Euler equations of a polytropic gas and we utilize the second-order
accurate Wave Propagation Method, but the approximate Riemann solver is now blended between the HLL
and the Roe scheme for robustness (cf. Section 3.3.5). The computational domain is Ω = [−1, 1]3 with outflow
boundary conditions at all sides. The ambient density is set to ρ0 = 1, the ambient pressure to p0 = 10−5, and
all velocities are zero everywhere. The explosion is initiated by increasing the energy (and thereby the pressure)
uniformly in a sphere of radius r centered in the origin. The integral energy of the entire sphere is set to 1,
which yields e =

(
4
3πr

3
)−1 for the specific internal energy and p = (γ − 1)e with γ = 1.4 for the pressure. The

sphere radius is set to be four cell widths of the highest available resolution, i.e., r = 4∆xlmax . The refinement
criterion is

max {wj±1,k,m, wj,k±1,m, wj,k,m±1}
min {wj±1,k,m, wj,k±1,m, wj,k,m±1} − 1 > 0.1 (101)

applied to density and pressure. The used SAMR base grid is 323 and computations are carried out for
lmax = {2, . . . , 5}, all refined by a factor rl = 2, which is equivalent to unigrid computations on 1283, 2563,
5123, and 10243 meshes. Defined as part of the benchmark, the cluster tolerance is ηtol = 85% and the buffer
zone width is b = 1. The final time of all computations is tend = 0.05.

Details of the mesh refinement for all adaptive computations for AMROC are given in Table 4. The simula-
tions were run on eight cores of the SGI Altix 3000 server, where communication between cores was still done

17http://flash.uchicago.edu/amr2003/bsession.html

http://flash.uchicago.edu/amr2003/bsession.html

ESAIM: PROCEEDINGS 35

Table 4. Three-dimensional refinement benchmark: number of grids and cells for the SAMR
simulation and compute times on 8 cores of an SGI Altix 3000 server. Note that the overall
compute times for the two highest resolved unigrid configurations were estimated by timing
only a small number of actual time steps.

l
lmax = 2 lmax = 3 lmax = 4 lmax = 5

Grids Cells Grids Cells Grids Cells Grids Cells

0 28 32,768 28 32,768 33 32,768 34 32,768
1 8 32,768 14 32,768 20 32,768 20 32,768
2 63 115,408 49 116,920 43 125,680 50 125,144
3 324 398,112 420 555,744 193 572,768
4 1405 1,487,312 1,498 1,795,048
5 5,266 5,871,128P

180,944 580,568 2,234,272 8,429,624

Time steps 15 27 52 115

SAMR [min] 0.5 5.1 73.0 2, 100

Uni [min] 5.4 160 5, 000 180, 000

Savings 11 31 69 86

l = 1 l = 2 l = 3 l = 4 l = 5

Figure 17. Color plot of the density shown on the subgrids of all five adaptation levels for
the case lmax = 5.

through MPI. Figure 17 shows the refinement grids for the highest resolved case with lmax = 5. The succes-
sively smaller subgrids are visible, and from Table 4 it can be inferred that the average subgrid had roughly
1,000 to 2,000 cells, which is significantly larger than in a structured but cell-based refinement approach (cf.
Section 1.6.2). Table 4 also shows the time steps taken (the variations are due to the resolution-dependent
initial conditions) and the wall clock time to complete the computation. For comparison, the compute times
for equivalent unigrid computations (uni) is also given and used to evaluate the savings factor due to the usage
of SAMR. Note that the savings factor is smaller than the ratio of cells in the SAMR computation versus the
unigrid case as the mesh (re-)organization costs (see also Table 3) increase for deeper refinement hierarchies.

3. Complex hyperbolic SAMR applications

3.1. Non-Cartesian boundaries

Our previous description of schemes and algorithms was restricted to the purely Cartesian case, yet technically
relevant flow computations usually take place in non-Cartesian domains. If a suitable geometric mapping is
available, topologically structured grids can still be applied and the SAMR algorithms of Section 2 can be used
without modification. Only the single-grid discretization and the grid-wise applied inter-level transfer operators
need to consider the mapping. The utilization of structured but non-Cartesian meshes is, for instance, common

36 ESAIM: PROCEEDINGS

for solving flow problems around bodies for which the resolution of the viscous boundary layer is important,
cf. [121]. A refinement of this approach is the overlapping mesh (aka Chimera) technique [83] that uses boundary-
aligned but structured meshes near bodies and Cartesian grids in the far-field. Data transfer in an overlap area
is done via (usually non-conservative) interpolation operations. The approach can also be combined with
structured mesh adaptation [58] and is very capable for simulating moving objects in viscous flow. However,
for inviscid flows governed by Euler equations or very slow viscous flows immersed boundary approaches are
generally more efficient. Immersed boundary techniques utilize a strictly Cartesian mesh on which non-Cartesian
boundary conditions are enforced (see also [99] and [114]). Strictly local mesh generation is inherently part of
the approach and cumbersome global meshing operations are avoided.

Figure 18.
Cut-cell mesh.

One differentiates between cut-cell techniques that resolve the embedded
boundary sharply and techniques that diffuse the boundary location within
one cell [84]. A typical cut-cell mesh in two space dimensions with linear
boundary approximation in each cell is depicted in Fig. 18. The approach
considers the accurate discrete cell area and edge lengths and is strictly
conservative. A canonical problem are very small cells that would constrain
a global CFL-conditions severely. Cell merging [94], as depicted in Fig. 18,
is a common solution approach to this issue; elaborate flux redistribution
techniques have also been proposed, cf. [18,93]. The boundary representation
in a cut-cell techniques can be explicit [3], but can also be implicit and based
on a scalar level set function [85,87].

3.2. An embedded boundary method

Due to the involved complexity we have decided against a cut-cell technique and opted to implement a
generic diffused boundary representation technique in AMROC V2.0. The boundary geometry is mapped onto
the Cartesian mesh by employing a scalar level set function ϕ that stores the signed distance to the boundary
surface. The boundary itself is represented by the isosurface at ϕ = 0 [104]. Geometrically complex moving
boundaries are then considered within the Cartesian upwind scheme outlined above by using some of the finite
volume cells as ghost cells to enforce immersed boundary conditions, cf. [45]. Utilization of a differentiable level
set function allows the evaluation of the boundary outer normal in every mesh point as n = ∇ϕ/|∇ϕ| [89]. We
consider a cell as interior if the distance in the cell midpoint is positive and it is treated as exterior otherwise.
The numerical stencil by itself is not modified, which causes a diffusion of the boundary location throughout the
method and results in an overall non-conservative scheme. The boundary undergoes a staircase approximation
but by refining the embedded boundary, typically up to the highest available resolution, we alleviate these
problems effectively. A refinement criterion based on ϕ = 0 has been implemented to ensure highest level
refinement when required (see also Fig. 26).

For the inviscid Euler equations, Eq. (49), the boundary condition at a rigid wall moving with velocity w is
u · n = w · n. Enforcing the latter with ghost cells, in which the discrete values are located in the cell centers,
requires the mirroring of the primitive values ρ, u, p across the embedded boundary. The normal velocity in
the ghost cells is set to (2w · n − u · n)n, while the mirrored tangential velocity remains unmodified. The
construction of the velocity vector within the ghost cells therefore reads

u′ = (2w · n− u · n)n + (u · t)t = 2 ((w − u) · n) n + u (102)

with t denoting the boundary tangential. This construction of discrete values in ghost cells (indicated by gray)
for our model is depicted in one space dimension in Fig. 19.

The utilization of mirrored ghost cell values in a ghost cell center x requires the calculation of spatially
interpolated values in the point

x̃ = x + 2ϕn (103)

ESAIM: PROCEEDINGS 37

ρj−1 ρj ρj ρj−1

uj−1 uj 2w − uj 2w − uj−1

pj−1 pj pj pj−1

ut

ut

ut

w

uj

2w − uj

Figure 19. Moving wall boundary conditions
for Euler equations in one space dimension.

Figure 20. Interpolation from in-
terior cells to ghost cells (gray).

from neighboring interior cells. For instance in two space dimensions, we employ the monotonicity-preserving
bilinear interpolation Eq. (76) to interpolate values at locations x̃ within the rectangle formed by four neighbor-
ing cell midpoints. Directly near the boundary the number of interpolants in Eq. (76) needs to be decreased,
cf. Fig. 20. The interpolation locations according to Eq. (103) are indicated in Fig. 20 by the origins of the red
arrows.

3.2.1. Verification

As a verification test for the proposed embedded boundary scheme, we consider a Mach reflection problem
in physical quantities. A planar two-dimensional shock wave in nitrogen impinges on a ramp inserted into the
shocktube at angle α = 43o and creates a growing transitional Mach reflection pattern. We model the ramp
with a level set function and embedded wall boundary conditions, as described in the previous section. For
comparison, the computation is repeated in a strictly Cartesian domain, yet the shock wave is now rotated.

The shocktube is filled with nitrogen (γ = 1.4) at rest (u1,0 = u2,0 = 0) at room temperature (273 K) and
ambient pressure p0 = 2 kPa, leading to a density of ρ0 = 0.11450 kg/m3 and speed of sound c0 = 494.51 m/s.
The shock wave travels at Mach number M = 2.38, which leads to the constant state ρs = 0.03642 kg/m3,
un,s = 805.16 m/s, ut,s = 0, and ps = 12.827 kPa behind the shock. Herein, un,s and ut,s denote the component
of the velocity vector normal and tangential to the shock front, respectively. For the simulations with embedded
boundary we use the computational domain [−4 mm, 22 mm] × [0, 22 mm]; in the strictly Cartesian case the
domain is [−4 mm, 32 mm] × [0, 16 mm]. The shock front is always initially located at (0, 0) with the shock
propagating to the right. In the embedded boundary case, we use constant inflow boundary conditions at the
left boundary, reflective wall boundary conditions at the bottom, and outflow boundary conditions elsewhere.
In the strictly Cartesian case, constant inflow boundary conditions are used at the left boundary, at the bottom
for x1 ≤ 0 and at the upper boundary behind the shock wave. For x1 > 0 and x2 = 0, reflective wall boundary
conditions are used. Outflow boundary conditions are applied at the right and at the upper boundary ahead of
the shock wave, requiring the implementation of a time-dependent boundary condition based on the constant
shock velocity in the x1-direction, v1 = Mc0 cosα.

We simulate both problems with the Roe scheme of Section 1.5.3, where we use the MUSCL-Hancock extrap-
olation technique with MinMod-limiter plus the second-order multi-dimensional correction terms of the Wave
Propagation scheme (cf. last paragraph of Section 1.4.3). In both cases, we use three additional levels of SAMR
with refinement factors r0 = 2, r1,2 = 4, where adaptation is based on ηρ = 10−3 and additionally ϕ = 0 in
the embedded boundary case. The strictly Cartesian computation uses a base mesh of 360× 160 cells; the one
with embedded boundary method employs a base mesh of 390× 330 cells. The finest resolution along the ramp
boundary is ∆x1 = 3.125µm and ∆xe = 2.849µm, respectively. The strictly Cartesian run required 20,768
finest level time steps, the one with embedded boundary method 33,984. The results at tend = 17.03µs are
shown in Fig 21. The qualitative agreement of the Mach reflection patterns is excellent, with all discontinuities
predicted at the same locations. An enlargement of just the triple point pattern is shown in Fig. 22. The

38 ESAIM: PROCEEDINGS

Figure 21. SAMR Simulation of a transitional
Mach reflection pattern. Left: embedded bound-
ary method, right: strictly Cartesian setup. Con-
tour lines of ρ on domains of refinement (gray).

Roe FDS, MUSCL+WaveProp Roe FDS, MUSCL+WaveProp Van Leer FVS, MUSCL+DimSplit

∆x1 = 12.5µm ∆xe = 11.4µm ∆x1 = 12.5µm

∆x1 = 3.125µm ∆xe = 2.849µm ∆x1 = 3.125µm

Figure 22. Enlargement of the Mach reflection pattern using two (upper row) and three
(lower row) additional level of SAMR refinement. Contour lines of the density shown.

upper row shows less refined results computed without using the finest level. The right column shows results
for the strictly Cartesian SAMR setup but using the Van Leer FVS (MUSCL reconstruction, MinMod-mimiter)
with dimensional splitting. As can be inferred particularly from the vortices along the slip line (the contact
discontinuity emanating from the triple point onto the ramp boundary), which is Kelvin-Helmholtz unstable for
Euler equations, a change of the numerical scheme has larger influence on the solution than utilizing our embed-
ded boundary method. Although the proposed boundary representation technique is not strictly conservative,
test cases (not included here) exhibit first-order convergence in the L1-error norm, which makes our approach
well applicable to technically relevant computations. Validation results that compare SAMR simulations using
the proposed embedded boundary technique directly to experimental results can be found for instance in [71]
and [20].

3.2.2. Implementation

We have implemented the described embedded boundary method largely independent of a specific single-grid
FV scheme within the framework design of AMROC V2.0 [41]. Figure 23 shows the most important classes

ESAIM: PROCEEDINGS 39

+calculate_in_patch()

Extra-/Interpolation

+apply_boundary_conditions()

EmbeddedBoundaryMethod

+set_patch()

LevelSetEvaluation

EBMHypSAMRSolver

HypSAMRSolver

0..*1

+set_cells_in_patch()

EmbeddedBoundaryConditions

1

1

GridFunction

1

+phi1

0..1
1

1

1

Figure 23. Class structure extension of Fig. 14 for level-set-based embedded boundary methods.

that have been added. An abstract class LevelSetEvaluation is provided to evaluate the scalar GridFunction ϕ
patch-wise; EmbeddedBoundaryConditions allows the specification of the detailed boundary value modification.
Multiple EmbeddedBoundaryMethods can also be considered and are incorporated with minimal implementa-
tion overhead into the existing algorithms of the SAMRSolver-class for hyperbolic problems, HypSAMRSolver,
through the derived class EBMHypSAMRSolver. The only operation, that had to be extended, was that of
applying physical boundary conditions.

3.3. Shock-induced combustion

Dynamic mesh adaptation is often vital for the efficient simulation of chemically reacting flows [37, 96].
Chemistry is modeled as a source term s(q) in the conservation law, Eq. (1), and the accurate representation
of the interaction between nonlinear source and hydrodynamic transport can require very fine local resolutions
in space and in time, making the SAMR approach very suitable.

3.3.1. Euler equations for gas-mixtures

Chemically reacting flows of premixed inviscid gases are modeled with extended Euler equations. In here,
we use a symmetric model of K reactive species with vector of state q = (ρ1, . . . , ρK , ρu1, . . . , ρud, ρE)T . The
partial density of the i-th species is denoted by ρi, where i = 1, . . . ,K. The total density of the mixture is
ρ =

∑K
i=1 ρi. The ratios Yi = ρi/ρ are called mass fractions. In analogy to (48), the flux functions of the

multi-component model are

fn(q) = [ρ1un, . . . , ρKun, ρu1un + δ1np, . . . , ρudun + δdnp, un(ρE + p)]T for n = 1, . . . , d. (104)

It is assumed that all species are ideal gases in thermal equilibrium, for which the same temperature T can be
used in the partial pressures as pi = RTρi/Wi, with R denoting the universal constant and Wi the molecular
weight, respectively. According to Dalton’s law the total pressure is given by

p =
K∑
i=1

pi = RT
K∑
i=1

ρi
Wi

. (105)

For the representation of realistic chemical reactions, it is vital to consider temperature-dependent specific heats
cpi(T). The specific enthalpies are written as

hi(T) = h0
i +

∫ T

T 0
cpi(σ)dσ , (106)

40 ESAIM: PROCEEDINGS

with h0
i called the heat of formation at the reference temperature T 0. For the enthalpy of the mixture h =∑K

i=1 Yi hi(T) holds true. Inserting this into the thermodynamic relation ρh−ρe−p = 0 and inserting Eq. (105)
for p yields

K∑
i=1

ρi hi(T)− ρe−RT
K∑
i=1

ρi
Wi

= 0 . (107)

Equation (107) has a unique temperature solution [32]. Unfortunately, a closed form of the inverse can only be
derived under simplifying assumptions (e.g. cpi = const. for all i in case of polytropic gases) and the iterative
computation of T from Eq. (107) (in our case by Newton iteration) is required whenever the pressure p has to
be evaluated. Analogous to the case of a single polytropic gas the frozen speed of sound is given by c2 = γ p/ρ.
It may be calculated by applying the basic relations cp =

∑
Yi cpi, W = (

∑
Yi/Wi)

−1 and γ = cp
cp−R/W .

3.3.2. Reactive source terms

We write the chemical production of a single species as product of its chemical production rate in molar
concentration per unit volume ω̇i and its constant molecular weight Wi. The source term s(q) then reads

s(q) = [W1 ω̇1, . . . ,WK ω̇K , 0, . . . , 0, 0]T . (108)

The chemical production rates ω̇i = ω̇i(ρ1, . . . , ρK , T) are derived from a reaction mechanism that consists of J
chemical reactions

K∑
i=1

νfjiSi

K∑
i=1

νrjiSi , j = 1, . . . , J, (109)

where νfji and νrji are the stoichiometric coefficients of species Si, appearing as a reactant and as a product.
Note that for a large number of species the majority of the coefficients νfji, ν

r
ji is usually zero in most reactions.

The entire molar production rate of species Si per unit volume is then given by

ω̇i =
J∑
j=1

(νrji − νfji)
[
kfj

K∏
l=1

(
ρl
Wl

) νfjl

− krj
K∏
l=1

(
ρl
Wl

) νrjl
]
, i = 1, . . . ,K , (110)

with kfj (T) and krj (T) denoting the forward and backward reaction rate of each chemical reaction. The reaction

rates are calculated by the Arrhenius law k
f/r
j (T) = A

f/r
j T β

f/r
j exp(−Ef/rj /RT). The computations shown in

here were all produced with the same hydrogen-oxygen reaction mechanism proposed within a larger hydrocar-
bon mechanism [119]. The employed subset consists of 34 elementary reactions and considers the nine species
H, O, OH, H2, O2, H2O, HO2, H2O2 and Ar. The computationally expensive reaction rate expressions (110)
are evaluated by a loop-free, reaction-mechanism-specific Fortran 77 function, which is produced by a source
code generator built on top of the Chemkin-II library [65].

3.3.3. Used schemes

Chemically reactive flows are ideal candidates for the method of fractional steps introduced in Section 1.2.2.
The fractional step approach allows the separate numerical integration of the homogeneous Euler equations with
an explicit FV method and the application of a time-implicit discretization for the typically stiff ODE resulting
from the chemical sources according to (10) separately in each grid cell. In here, we employ a semi-implicit
Rosenbrock-Wanner method of fourth order with automatic step-size adjustment [64].

The used FV upwind operator is an extension of the linearized Riemann solver of Roe (cf. Section 1.5.3) to
multiple thermally perfect species [35, 37]. In analogy to Eqs. (56-58), the waves Wm := amr̂m are computed
as [51]

a1,K+d+1 =
∆p∓ ρ̂ĉ∆u1

2ĉ2
, r̂1,K+d+1 =

[
Ŷ1, . . . , ŶK , û1 ∓ ĉ, û2, . . . , ûd, Ĥ ∓ û1ĉ

]T
,

ESAIM: PROCEEDINGS 41

a
i+1 = ∆ρi − Ŷi∆p

ĉ2
, r̂

i+1 =

[
δ1i, . . . , δKi, û1, û2, . . . , ûd, û2 − φ̂i

γ̂ − 1

]T
,

a
K+n = ρ̂∆un , r̂

K+n = [0, . . . , 0, 0, δ2n, . . . , δdn, ûn]T for n = 2, . . . , d.
As before, v̂ denotes the Roe average, Eq. (54). Specific to the thermally perfect model are the averages

γ̂ :=
ĉp
ĉv

with ĉ{p/v} =
K∑
i=1

Ŷiĉ{p/v}i , ĉ{p/v}i =
1

Tr − Tl

∫ Tr

T
l

c{p,v}i(τ) dτ

and

φ̂i := (γ̂ − 1)
(

û2

2
− ĥi

)
+ γ̂

R
Wi

T̂ , ĉ :=

(
(γ̂ − 1)(Ĥ − û2) +

K∑
i=1

Ŷiφ̂i

)1/2

,

Figure 24. H-
correction.

where the linearized eigenvalues now read λ̂1,K+d+1 = û1 ∓ ĉ and λ̂i+1 = λ̂K+n = û1

for i = 1, . . . ,K and n = 2, . . . , d. For the detailed derivation, see [32].
Since we are interested in the simulation of combustion, induced by strong shock

waves, the approximate Riemann solver also needs to be stabilized against the so called
carbuncle phenomenon, a multi-dimensional numerical crossflow instability that occurs
at strong grid-aligned shocks or detonation waves [95]. The carbuncle phenomenon can
be avoided completely by applying Eq. (59) to all characteristic fields and evaluating
η in a multi-dimensional way. We utilize the “H-correction” by Sanders et al. [101] for
this purpose. For instance, in the x2-direction between the cells (j, k) and (j, k+ 1) it
takes the form

η̃j,k+ 1
2

= max
{
ηj+ 1

2 ,k
, ηj− 1

2 , k
, ηj, k+ 1

2
, ηj− 1

2 , k+1, ηj+ 1
2 , k+1

}
(111)

in the two-dimensional case (see Fig. 24). As mentioned in Section 1.5.3, Roe-type schemes are not guaranteed
to be positivity-preserving. To ensure positivity of the mass fractions Yi we apply the correction [70]

F?i = Fρ ·
{
Y li , Fρ ≥ 0 ,
Y ri , Fρ < 0 . (112)

with Fρ :=
∑K
i=1 Fi after evaluating the numerical flux according to Eq. (29). Finally, the linearized Riemann

solver is extended to a high-resolution multi-dimensional method with the MUSCL-Hancock reconstruction
technique (using primarily limiter (39)) and dimensional splitting (cf. Section 1.2.2). We recommend to apply
the MUSCL extrapolation to ρ, p, Yi and ρun and to derive a thermodynamically consistent extrapolated vector
of state from these [32].

3.3.4. Shock-induced combustion around a sphere

As an example for combustion in hypersonic flow, we consider the shock-induced ignition of a combustible
mixture by the bow shock ahead of a supersonic projectile [36]. If the speed of the projectile is sufficiently large,
the temperature in the stagnation point will exceed the autoignition temperature of the mixture and combustion
occurs. In here, we consider a test case suggested by Hung [61] of a small spherical projectile traveling with
vI = 2170.6 m/s through a hydrogen-oxygen-argon mixture (molar ratios 2:1:7) at p0 = 6.67 kPa and T0 = 298 K.
The simplicity of initial conditions and setup, steadiness of the solution, and moderate resolution requirements
make this an excellent verification case for numerical methods.

The computation is carried out under the assumption of cylindrical symmetry in the frame of reference
of the projectile. A two-dimensional domain of [−4.0 mm, 13.5 mm] × [0, 10.0 mm] is used, where the axis of
symmetry is aligned with the x1-axis. The non-differential terms arising additionally in the Euler equations
under cylindrical coordinate transformation are considered in the originally two-dimensional Cartesian method
in a splitting approach, in which the arising ODE is integrated with a 2-stage Runge-Kutta scheme at the end of

42 ESAIM: PROCEEDINGS

Figure 25. Iso-contours of p (black) and YH2 (white) on domains of different refinement levels
(gray) at t = 350µs for a 3-level (left) and a 4-level computation (right).

Table 5. Refinement indicator values
used for projectile-induced combustion
simulations.

Yi SYi · 10−4 ηrYi · 10−4

O2 10.0 4.0
H2O 5.8 3.0

H 0.2 10.0
O 1.4 10.0

OH 2.3 10.0
H2 1.3 4.0

ερ = 0.02 kg m−3, εp = 16 kPa
Figure 26. Refinement indicators on l = 2
at t = 350µs. Blue: ερ, light blue: εp, green
shades: ηrYi , red: embedded boundary.

S(·), cf. [76]. The midpoint of the sphere is located at (0, 0) and the radius is 1.5 mm. While outflow boundary
conditions are applied at the upper and the right boundary, inflow boundary conditions are used at the left
domain side. The inflow velocity is ramped with constant acceleration from zero to vI during the first 10µs
of the simulation. A steady flow situation of a shock-induced combustion front separating gradually from the
expanding bow shock develops quickly. We simulate 400µs which corresponds to a flight of 85.7 cm distance.

We discuss dynamically adaptive simulations on a base mesh of 70 × 40 cells. We employ a physically
motivated combination of the refinement indicators described in Section 2.3. The scaled gradients of total
density ρ and total hydrodynamic pressure p are used to achieve adaptation to the bow shock; the combustion
front is captured by applying the relative error criterion (93) to the mass fractions Yi of the most relevant
chemical species. Figure 25 shows a comparison between a 3-level computation with r0,1 = 2 and a 4-level
computation with r0,1 = 2 and r2 = 4 at t = 350µs. As it is characteristic for chemically reactive flows with
hydrodynamic discontinuities, the bow shock around the projectile is captured at the same location in both
computations, yet the combustion zone is visibly more diffused and appears at a slightly different position in the
coarser computation. A visualization of the type of refinement criteria leading to the highest level refinement
in the right graphic of Fig. 25 is depicted in Fig. 26. At the time shown, this computation uses 223,068 cells on
the finest level and 255,914 total, where a uniformly refined computation would use 716,800 cells.

3.3.5. Detonation defraction

In order to demonstrate that the SAMR approach is also well suited for cutting-edge combustion simula-
tions (see also [24]), we briefly present exemplary results for a two-dimensional hydrogen-oxygen detonation
propagating out of a tube into unconfinement [34]. The simulation reproduces the critical width for square

ESAIM: PROCEEDINGS 43

Figure 27. Final distribution to 48 nodes and density distribution on four refinement levels,
t = 240µs after the detonation has left the tube simulated. Multiple zooms are necessary to
display the finite volume cells.

tubes and is in perfect qualitative agreement with experimental results. The computation required ∼ 3850 h
CPU (∼ 80 h wall time) on a cluster of 48 Athlon-1.4 GHz single-processor nodes. As detonation simulations
require an extraordinarily high local resolution to capture the influence of the chemical kinetics correctly, the
computation benefits remarkably from dynamic mesh adaptation. The graphics in Fig. 27 display the solution
on the refinement levels 240µs after the detonation has left the tube (730 root level time steps with CCFL ≈ 0.8,
one half of the domain was simulated) and the enormous efficiency of the refinement is apparent. The base grid
used 508 × 288 cells and four levels of refinement with r1,2,3 = 2, r4 = 4, which corresponds to ∼ 150 M cells,
yet at the time step displayed, the simulation uses less than 3.0 M cells on all levels.

A crucial modification of the approximate Riemann solver of Section 3.3.3 to enable this detonation defraction
simulation is to replace the numerical flux at a few cell interfaces near the edge of the tube with the strictly
positive but highly diffusive HLL flux [43] when the detonation is exiting. Due to shock wave diffraction, a
near-vacuum situation occurs below the tip that causes the linearized Riemann solver to fail (cf. Section 1.5.3).
We have found that this switching can effectively and reliably be accomplished by evaluating the intermediate
states q?

l
= q

l
+W

1
and q?r = qr −WK+d+1

in the linearized Riemann problem and to use the HLL flux if
ρ?l/r ≤ 0 or e?l/r ≤ 0.

3.4. Fluid-structure interaction

The final type of complex SAMR applications considered in here is the simulation of shock-driven fluid-
structure interaction (FSI) problems. The objective is to dynamically couple an explicit, shock-capturing FV
scheme to an explicit solid mechanics solver. Large structural deformations, fracture and even fragmentation,
might have to be considered. Our approach to this problem is to employ the level-set-based embedded boundary
method of Section 3.2 in combination with SAMR for this problem class [26,39,40,42].

44 ESAIM: PROCEEDINGS

3.4.1. Coupling approach

Fluid-structure interaction is assumed to take place only at the evolving interface I between fluid and solid
and is implemented numerically by exchanging boundary data after consecutive time steps. In the case of
inviscid flows, the boundary conditions along I are

vn = un , σnn = p , (113)

with vn and un denoting the velocity in the normal direction in solid and fluid, respectively. The solid stress
tensor is denoted by σ, σnn are the normal stresses, and p is the fluid pressure. We accomplish the coupling
between fluid and solid solver with the simple fractional step method:

un := vn(t)|I
update fluid(∆t)
σnn := p(t+ ∆t)|I
update solid(∆t)
t := t+ ∆t

Algorithm 6. Basic fluid-structure coupling algorithm.

The adaptive fluid solver with embedded boundary capability receives the velocities and the discrete geometry
of the solid surface, while only the hydrostatic pressure is communicated back to the solid solver as a force
acting on the solid’s exterior [77, 109]. As the inviscid Euler equations can not impose any shear on the solid
structure, cf. [5, 44], the fluid pressure is sufficient to prescribe the entire stress tensor on the solid boundary.
We have implemented this algorithm with an ad-hoc partitioning into dedicated fluid and solid processes that
communicate to exchange the data along a triangulated interface I, cf. [42].

3.4.2. Fluid-structure coupling with SAMR

While the implementation of a loosely coupled FSI method is straightforward with conventional solvers with
consecutive time update, the utilization of the recursive SAMR method is non-apparent. In our SAMR-FSI
software system [41], called Virtual Test Facility (VTF), we treat the fluid-solid interface I as a discontinuity
that is a-priori refined at least up to a coupling level lfsi. The resolution at level lfsi has to be sufficiently fine
to ensure an accurate wave transmission between fluid and structure, but might not necessarily be the highest
level of refinement. We formulate the corresponding extension of Algorithm 2 in Algorithm 7, where some of the
steps explicitly formulated in Algorithm 2 are suppressed for clarity. The extended version of advance level()
calls the routine level set generation() to evaluate the signed distance ϕ for the actual level l based on the
currently available interface I. Together with the recent solid velocity on the interface v|I , the discrete vector
of state in the fluid Q is updated for the entire level. The method then proceeds recursively to higher levels
and utilizes the (more accurate) data from the next higher level to correct cells overlaid by refinement. If level
l is the coupling level lfsi, we use an updated fluid data field to evaluate the pressure on the discrete vertices of
I, which is sent to the solid and to receive updated mesh positions and nodal velocities. The recursive order of
the SAMR algorithm automatically ensures that updated interface mesh information is available at later time
steps on coarser levels and to adjust the grids on level lfsi.

In order to achieve a proper matching of communication operations, we start the cycle by posting a receive-
message in the routine fluid step() (which does one fluid time step on level 0) before entering into the SAMR
recursion. The routine fluid step() below highlights a straightforward automatic time step adjustment for
the SAMR method coupled to a solid solver. During one root level time step at level 0, the time steps on all
levels remain fixed and are calculated in advance by employing the refinement factor with respect to the root
level Rl =

∏l
ι=0 rl. The root level time step ∆τ

F
itself is taken to be the minimum of the stable time step

estimations from all levels and a corresponding time step ∆τ
S

in the solid. We define ∆τ
S

as a multiple of the
stable time step estimation in the solid solver with respect to the communication frequency Rlfsi in one fluid
root level step and an additional factor K that allows sub-iterations in the solid solver in case of considerably

ESAIM: PROCEEDINGS 45

advance level(l)

Repeat rl times
If time to regrid

regrid(l)
level set generation(ϕl, I)
update fluid level(Ql, ϕl, v|I, ∆tl)
If level l + 1 exists

advance level(l + 1)
Correct Ql(t+ ∆tl) with Ql+1(t+ ∆tl)

If l = lfsi
send interface data(p(t+ ∆tl)|I)
receive interface data(I, v|I)

t := t+ ∆tl

Algorithm 7. Fluid-structure coupling with SAMR.

F1

T
im

e

S2

S1

F5

l=0 l=2l=l =1
c

F2

F7

F4

F6

F3

l = 0 lfsi = 1 l = 2

Figure 28. Data exchange between
Algorithm 7 and an explicit solid dy-
namics solver.

smaller solid time steps. The solid update algorithm used to advance the solid by one fluid root level step is
given below.

The data exchange between solid step() and fluid step() is visualized in Fig. 28 for an exemplary SAMR
hierarchy with two additional levels with r1,2 = 2. Figure 28 pictures the recursion in the SAMR method by
numbering the fluid update steps (F) according to the order determined by advance level(). The order of
the solid update steps (S) on the other hand is strictly linear. The red arrows correspond to the sending of the
interface pressures p|I from fluid to solid at the end of each time step on level lfsi. The blue arrows visualize
the sending of the interface mesh I and its nodal velocities v|I after each solid update. The modification
of refinement meshes is indicated in Fig. 28 by the gray arrows; the initiating base level, that remains fixed
throughout the regridding operation, is indicated by the gray circles.

solid step()

∆τ
S

:= min(K ·Rlfsi · stable solid step(), ∆τ
F
)

Repeat Rlfsi times
te := t+ ∆τ

S
/Rlfsi, ∆t := ∆τ

S
/(KRlfsi)

While t < te
send interface data(I(t), ~uS |I (t))
receive interface data(pF |I)
update solid(pF |I, ∆t)
t := t+ ∆t
∆t := min(stable solid step(), te − t)

fluid step()

∆τ
F

:= min
l
(Rl· stable fluid step(l), ∆τ

S
)

∆tl := ∆τ
F
/Rl for l = 0, · · · , lmax

receive interface data(I, ~uS |I)
advance level(0)

Algorithms 8 (left) and 9. Implementation
of time stepping when using the recursive SAMR
method with FSI coupling.

3.4.3. Implementation

The incorporation of the algorithms described above into the AMROC framework is relatively straightfor-
ward. Utilizing the design for general embedded boundary methods sketched in Sec. 3.2.2, we have implemented
fluid step() and the fluid-structure coupled version of advance level() in a class CoupledHypSAMRSolver
derived from EBMHypSAMRSolver (cf. Fig. 29). CoupledHypSAMRSolver interpolates the pressure values
p|I along the surface mesh and communicates them to CoupledSolidSolver through the coupling module In-
terSolverCommunication. CoupledHypSAMRSolver receives an updated interface mesh I that it passes to the

46 ESAIM: PROCEEDINGS

+fluid_step()

-advance_level()

-stable_fluid_timestep()

CoupledHypSAMRSolver

EBMHypSAMRSolver

+next_step()

CoupledSolver11

TimeStepControler

1

1

+solid_step()

-stable_solid_timestep()

CoupledSolidSolver

1 1

+send_interface_data()

+receive_interface_data()

InterSolverCommunication

1

1

1

1

EmbeddedMovingWalls+cpt()

-scan_convert()

ClosestPointTransform

+set_cells_in_patch()

EmbeddedBoundaryConditionsLevelSetEvaluation

1

1

1

1

+update_solid()

SolidSolver

Figure 29. Class structure of the fluid-structure coupling method realized as a concrete
embedded boundary method in AMROC, see Fig. 23 for base classes.

ClosestPointTransform, which is made available as a concrete class based on LevelSetEvaluation. ClosestPoint-
Transform contains the implementation of a specially developed algorithm for efficient computation of distance
functions [82] that has linear computational complexity both in the number of Cartesian mesh points and the
surface triangles considered [42]. Further, CoupledHypSAMRSolver receives updated interface velocities v|I to
be used in EmbeddedMovingWalls as the necessary concretization of EmbeddedBoundaryConditions. In order
to re-use our standard TimeStepControler, we have incorporated CoupledHypSAMRSolver and CoupledSolid-
Solver as attributes into a single CoupledSolver that encapsulates the extended method.

3.4.4. Shock-induced elastic panel deflection

As a demonstration for our coupling approach, we simulate the quasi two-dimensional verification configu-
ration of a thin-walled steel panel impacted by a planar shock wave in air (γ = 1.4), proposed by Giordano et
al. [47]. The panel has the thickness h = 1 mm and extends 50 mm from a mounting with forward-facing step
geometry, into which it is firmly clamped. Figure 30 depicts the computational domain and initial conditions.
Inflow boundary conditions are applied on the left side, rigid wall boundary conditions anywhere else.

We assume that the fluid domain and the panel extend 5 mm in the x3-direction. The panel is modeled in
the explicit solid mechanics solver DYNA3D18 [54] simply with ten four-node shell elements. The material is
assumed to be linearly elastic with density ρs = 7600 kg/m3, elasticity modulus E = 220 GPa and Poisson ratio
ν = 0.33. The panel is embedded into a three-dimensional fluid base mesh of 320 × 64 × 2 cells that allows
up to two additional levels of dynamic isotropic refinement (based on ϕ and scaled gradients of ρ and p) with
refinement factors r1,2 = 2. Beside u3 = 0, all fluid initial conditions are shown in Fig. 30. The fluid solver is the
approximate Riemann solver of Roe with MUSCL reconstruction and dimensional splitting. Calculating 19, 864
coupled time steps at lfsi = 2 to tend = 5.0 ms required ∼ 450 h CPU (∼ 28.2 h wall time) on sixteen 3.4 GHz
processors connected with a GB-Ethernet network. To accommodate for mandatorily smaller time steps in the

18Source code (U.S. export controlled) available for licensing fee from http://www.osti.gov/estsc.

ESAIM: PROCEEDINGS 47

r=1.6458 kg/m
=112.61 m/s, =0

=156.18 kPa

3

u u

p
1 2

r=1.2 kg/m
=0, =0

=100 kPa

3

u u

p
1 2

400 mm

80 mm

265 mm

250 mm

130 mm

65 mm

Figure 30. Left: geometry setup and fluid initial conditions
for the deflecting panel case. Right: panel tip displacement
over time in FSI simulation and experiment [47].

Figure 31. Quasi two-dimensional computation of a thin-shell panel hit by a shock wave at
t ≈ 0.43 ms (left) and t ≈ 1.17 ms (right) after impact. Gray-scale schlieren of fluid density on
domains of refinement levels (indicated by color).

solid, K = 4 sub-iterations were taken in DYNA3D within one coupled FSI time step. Fifteen processors were
dedicated to AMROC, one to the serial DYNA3D code.

Figure 31 visualizes the dynamic bending of the plate strip and the evolving fluid mesh adaptation with two
additional levels (indicated by color on the back plane) as the initial shock is partially reflected and increased
vortex shedding occurs at the panel tip at later times. In the left snapshot of Fig. 31, the adaptive computation
uses 635, 264 cells in 269 subgrids on the finest level. In the right graphic of Fig. 31, 1, 295, 584 cells in 305
subgrids are used, which would compare to 1, 970, 176 cells in the uniform case. A comparison of the simulated
panel tip displacement over time versus the experimental measurements from Giordano et al. [47], shown with
error bars, is given in the right graph of Fig. 30. The agreement, especially at later times, is actually better
than the computational results in [47], Fig. 10, which is likely due to a significantly finer effective resolution,
thanks to the availability of SAMR, in the AMROC fluid solver.

3.4.5. Modeling of shocks in liquid-gas mixtures

As final configuration, we discuss briefly the coupled FSI simulation of deforming structures in water due to
impinging shock waves created by the explosion of energetic materials [38]. For the fluid solver, we consider a
multi-component mixture model based on the volume fractions αi, with

∑m
i=1 α

i = 1, that defines the mixture
quantities as

ρ =
m∑
i=1

αiρi , ρun =
m∑
i=1

αiρiuin , ρe =
m∑
i=1

αiρiei ,
p

γ − 1
=

m∑
i=1

αipi

γi − 1
,

γp∞
γ − 1

=
m∑
i=1

αiγipi∞
γi − 1

, (114)

in which each component satisfies a stiffened gas equation of state of the form pi =
(
γi − 1

)
ρiei−γipi∞. At this

point, several possibilities would exist for deriving different sets of governing transport equations for a two-fluid
model, however, we choose to follow the approach of Shyue [106] that supplements system (49) with the two

48 ESAIM: PROCEEDINGS

advection equations

∂

∂t

(
1

γ − 1

)
+

d∑
n=1

un
∂

∂xn

(
1

γ − 1

)
= 0 ,

∂

∂t

(
γp∞
γ − 1

)
+

d∑
n=1

un
∂

∂xn

(
γp∞
γ − 1

)
= 0 . (115)

Abgrall [1] proved that a multi-component continuum scheme needs to satisfy Eq. (115.1) in the discrete sense
to prevent unphysical oscillations at material boundaries. Although different scheme alterations are possible
to satisfy this requirement, cf. [2], the utilization of (115) in the governing equations and therefore direct
discretization together with (49) is the simplest remedy to the problem, cf. [106,107].

Since the equations (115) are not in conservation form, we use the Wave Propagation approach (Section 1.4.3)
to discretize the system (49), (115). In here, we use the HLLC19 scheme by Toro et al. [112] that is tailored
specifically for the Euler equations and approximates the RP (here x1-direction) with three discontinuous jumps
by

qHLLC(x1, t) =

q
l
, x1 < sl t,

q?
l
, sl t ≤ x1 < s? t,

q?r , s? t ≤ x1 ≤ sr t,
qr , x1 > sr t,

(116)

For the wave speeds sl/r we use the estimations sl = min{u1,l − cl, u1,r − cr}, sr = max{u1,l + cl, u1,r + cr}
suggested by Davis [30] and s? is given in the HLLC approach by

s? =
pr − pl + slu1,l(sl − u1,l)− ρru1,r(sr − u1,r)

ρl(sl − u1,l)− ρr(sr − u1,r)
. (117)

Conservation arguments and consideration of the structure of the RP for Euler equations lead to the specification
of the unknown solution values as

q?
k

=
[
η, ηs?, ηu2, η

[
(ρE)k
ρk

+ (s? − u1,k)
(
sk +

pk
ρk(sk − u1,k)

)]
,

1
γk − 1

,
γkp∞,k
γk − 1

]T
, η = ρk

sk − u1,k

sk − s? (118)

for k = {l, r}, cf. [111]. Knowledge of the intermediate state then allows the direct evaluation of the waves as
W1 = q?

l
− q

l
, W2 = q?r − q?

l
, W3 = qr − q?r and by setting λ1 = sl, λ2 = s?, λ3 = sr the fluctuations in the

x1-direction are defined as A−∆ =
∑
λν<0 λνWν , A+∆ =

∑
λν≥0 λνWν for ν = {1, 2, 3}.

Note that the robustness and positivity-preservation of the HLLC approach are essential for obtaining reliable
simulation results when multiple fluids with disparate material properties are involved as it is the case in the
configuration described below.

3.4.6. Deformation simulation from underwater explosion

As a practical FSI test for realistic explosion-generated shock waves in water (cf. [38]), we simulate a fluid-
structure experiment by Ashani & Ghamsari [6]. A small charge (mC4 = 20 g and mC4 = 30 g) of the explosive
C4 (energy of 1.34×TNT) is detonated in a water-filled basin at the standoff distances d = 25 cm or d = 30 cm
above a circular air-backed aluminum plate (exposed radius 85 mm) of thickness h = 3 mm. We model the basin
with the fluid domain [−1 m, 1 m]× [−0.8 m, 0.8 m]× [−1 m, 1 m]. Outflow is assumed at all domain boundaries.
In analogy to the experiment, air-backed conditions are represented by inserting a rigid cylinder of radius
150 mm from x2 = −0.8 m to x2 = 0 into the domain. The cylinder is sealed by the test plate of radius 150 mm,
discretized with 8148 triangles, which is treated as rigid for r > 85 mm. The material parameters for viscoplastic
material behavior of aluminum, that were used in these simulations, are ρs = 2719 kg/m3, Young’s modulus
of E = 69 GPa, Poisson’s ratio ν = 0.33, and yield stress σy = 217.6 MPa. The used solid mechanics solver is
the thin shell-element research code SFC by Cirak [27]. The cylinder is filled with air (γA = 1.4, pA∞ = 0) at

19HLLC:Harten-Lax-van Leer Riemann solver with restored Contact surface

ESAIM: PROCEEDINGS 49

(a)

(b) (c)

Figure 32. (a) Isolines of p on do-
mains of refinement levels (indicated
by color) at t = 0.31 ms. (b), (c) The
plane shows a color plot of p and iso-
lines of αA, the plate displays the nor-
mal vertex velocity at t = 0.14 ms and
0.31 ms.

density ρA = 1.29 kg/m3, the basin with water (γW = 7.415, pW∞ = 296.2 MPa) at ρW = 1027 kg/m3, which are
both initially at rest (un = 0) and assumed to be at atmospheric pressure p0 = 100 kPA. The shock from the
explosion is modeled as a spherical energy deposition (mC4 · 6.06 MJ/kg) uniformly distributed over a sphere of
radius 5 mm of air at temperature 1500oC located at (0, d, 0).

0

-5

-10

-15

-20

-25

1.00.80.60.40.20

Di
sp

la
ce

m
en

t i
n

x 2
-d

ire
ct

io
n[

m
m

]

Time [ms]

mC4=20g,d=25cm
mC4=30g,d=30cm

Figure 33. Center displace-
ment versus time.

The fluid domain is discretized with an SAMR base mesh of
50×40×50 cells. Four additional levels with refinement factors
r1,2,3 = 2, r4 = 4 are employed. The highest level refinement
is static and restricted to the explosion center. Fluid mesh
adaptation on all other levels is dynamic and based on ϕ and
the scaled gradient of p. However, refinement at levels 2 and 3
is restricted to the immediate vicinity of the structure and the
shock as it impinges onto it. Figure 32(a) depicts a snapshot
of the fluid mesh in a plane through the center of the domain
for the case mC4 = 20 g, d = 25 cm. The FSI simulation uses
lfsi = 3 with K = 2 solid solver sub-steps, and 1296 coupled
time steps were computed to reach the final time tend = 1 ms.

The impact of the spherical shock onto the plate and its
partial reflection are visualized in graphics (b) and (c) of Fig. 32,
respectively. The induced motion of the exposed part of the test
specimen is clearly visible. Figure 33 displays the plate center motion versus time for both cases considered.
Note that during the first ∼ 0.2 ms after the shock impact the deformation occurs with constant velocity
since the water near the plates cavitates and does not transmit significant forces onto the plate. In here, we
incorporate the effects of cavitation with a simple pressure cutoff model that is implemented by applying the
non-conservative energy correction

E :=
pc + γp∞
ρ(γ − 1)

+
1
2
uTu , for p < pc (119)

after every fluid time step. Its purpose is to limit all hydrodynamic pressures to a cutoff value pc, which in here
is set to pc = −1 MPa.

The computed maximal deflection for the case m = 20 g, d = 25 cm is 25.88 mm; for the case mC4 = 30 g,
d = 30 cm it is 27.31 mm. Those values compare reasonably well to the experimental measurements of 28.83 mm
and 30.09 mm provided in [6], where the differences are primarily due to our rather simplistic modeling of the

50 ESAIM: PROCEEDINGS

initial shock wave created by the explosion. Both computations were run on 12 nodes of a parallel cluster with
Intel-3.4 GHz-Xeon dual-processors (10 nodes fluid, 2 nodes solid dynamics solver) and required ∼ 130 h CPU
each (∼ 5.4 h wall time).

Outlook

While the present text has been restricted to the purely hyperbolic case for clarity, SAMR techniques are
also applicable to elliptic and parabolic problems. As the SAMR approach already uses hierarchical data, it is
a small step to geometric multigrid methods [25] that prolong a correction computed on coarser meshes onto
finer grids in order to achieve a significant convergence acceleration [22,53,113]. An effective multigrid method
in the SAMR context then replaces the explicit single-grid FV update with single-grid routines that implement
an implicit smoother and defect evaluation. Martin details [80] that for implicit adaptive FV methods exactly
the flux correction operation is vital to enforce the required differentiability of the solution along coarse-fine
boundaries. Specific to parabolic problems is the additional question of how to utilize hierarchical time step
refinement, when a globally coupled, elliptic sub-problem has to be solved in every time step, cf. [4, 10,81].

A recent area of interest is the construction of SAMR methods that preserve very higher orders of accu-
racy [7, 90, 122]. The challenges of higher-order SAMR methods, especially for hyperbolic problems, are the
construction of higher-order spatial interpolation operations that are monotonicity-preserving but conservative
and the realization of higher-order interpolation in time.

Of particular current interest is also the application of SAMR techniques on very large distributed systems
[50,120] and the realization of hybrid distributed/shared memory parallelization, either by combining MPI and
OpenMP parallelism [63] or by utilizing accelerators (e.g., graphics processing units) on nodes that communicate
via MPI [102]. In contrast to cell-based refinement approaches, the subgrids inherent to SAMR allow for
rather coarse-grained shared memory parallelism, making the SAMR approach the prime candidate of adaptive
methods for utilizing the new generation of super-computers effectively.

This work was sponsored by the Mathematical, Information, and Computational Sciences Division; Office of Advanced
Scientific Computing Research; U.S. Department of Energy (DOE) and was performed at the Oak Ridge National
Laboratory, which is managed by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725. This work was also
supported by the ASC program of the Department of Energy under subcontract No. B341492 of DOE contract W-7405-
ENG-48 and the German DFG high priority research program “Analysis and Numerics of Conservation Laws”, grant Ba
840/3-3.

References

[1] R. Abgrall. How to prevent pressure oscillations in multicomponent flow calculations: A quasi conservative approach. J.

Comput. Phys., 125:150–160, 1996.

[2] R. Abgrall and S. Karni. Computations of compressible multifluids. J. Comput. Phys., 169:594–523, 2001.
[3] M. J. Aftosmis. Solution adaptive Ccartesian grid methods for aerodynamic flows with complex geometries. Technical Report

Lecture Series 1997-2, von Karman Institute for Fluid Dynamics, 1997.
[4] A. S. Almgren, J. B. Bell, P. Colella, L. H. Howell, and M. L. Welcome. A conservative adaptive projection method for the

variable density incompressible Navier-Stokes equations. J. Comput. Phys., 142:1–46, 1998.

[5] M. Arienti, P. Hung, E. Morano, and J. E. Shepherd. A level set approach to Eulerian-Lagrangian coupling. J. Comput.

Phys., 185:213–251, 2003.
[6] J. Z. Ashani and A. K. Ghamsari. Theoretical and experimental analysis of plastic response of isotropic circular plates

subjected to underwater explosion loading. Mat.-wiss. u. Werkstofftechn., 39(2):171–175, 2008.
[7] M. Barad and P. Colella. A fourth-order accurate local refinement method for Poisson’s equation. J. Comput. Phys., 209:1–18,

2005.

[8] P. Bastian. Parallele adaptive Mehrgitterverfahren. Teubner Skripten zur Numerik. B. G. Teubner, Stuttgart, 1996.
[9] P. Bastian, M. Blatt, C. Engwer, A. Dedner, R. Klöfkorn, S. P. Kuttanikkad, M. Ohlberger, and O. Sander. The distributed

and unified numerics environment (DUNE). In Proc. of the 19th Symposium on Simulation Technique, Hannover, 2006.

[10] J. Bell. Block-structured adaptive mesh refinement. Lecture 2. https://ccse.lbl.gov/people/jbb/shortcourse/lecture2.pdf, 2004.

https://ccse.lbl.gov/people/jbb/shortcourse/lecture2.pdf

ESAIM: PROCEEDINGS 51

[11] J. Bell, M. Berger, J. Saltzman, and M. Welcome. Three-dimensional adaptive mesh refinement for hyperbolic conservation
laws. SIAM J. Sci. Comp., 15(1):127–138, 1994.

[12] M. Berger. Adaptive mesh refinement for hyperbolic differential equations. PhD thesis, Stanford University. Report No.

STAN-CS-82-924, Aug 1982.
[13] M. Berger. Data structures for adaptive grid generation. SIAM J. Sci. Stat. Comput., 7(3):904–916, 1986.

[14] M. Berger and P. Colella. Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys., 82:64–84, 1988.
[15] M. Berger and R. LeVeque. Adaptive mesh refinement using wave-propagation algorithms for hyperbolic systems. SIAM J.

Numer. Anal., 35(6):2298–2316, 1998.

[16] M. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys., 53:484–512,
1984.

[17] M. Berger and I. Rigoutsos. An algorithm for point clustering and grid generation. IEEE Transactions on Systems, Man,

and Cybernetics, 21(5):1278–1286, 1991.
[18] M. J. Berger and C. Helzel. Grid aligned h-box methods for conservation laws in complex geometries. In Proc. 3rd Intl. Symp.

Finite Volumes for Complex Applications, Porquerolles, June 2002.

[19] G. Berti. GrAL-the grid algorithms library. Future Generation Computer Systems, 22(1-2):110–122, 2006.
[20] C. Bond, D. J. Hill, D. I. Meiron, and P. E. Dimotakis. Shock focusing in a planar convergent geometry: experiment and

simulation. J. Fluid Mech., 641:297–333, 2009.

[21] G. Booch, J. Rumbaugh, and I. Jacobsen. The unified modeling language user guide. Addison-Wesley, Reading, Massachusetts,
1999.

[22] W. L. Briggs, V. E. Henson, and S. F. McCormick. A Multigrid Tutorial. Society for Industrial and Applied Mathematics,

2nd edition, 2001.
[23] D. L. Brown, W. D. Henshaw, and D. J. Quinlan. Overture: An object oriented framework for solving partial differential

equations. In Proc. ISCOPE 1997, appeared in Scientific Computing in Object-Oriented Parallel Environments, number 1343
in Springer Lecture Notes in Computer Science, 1997.

[24] S. Browne, Z. Liang, R. Deiterding, and J. E. Shepherd. Detonation front structure and the competition for radicals. Proc.

of the Combustion Institute, 31(2):2445–2453, 2007.
[25] J. Canu and H. Ritzdorf. Adaptive, block-structured multigrid on local memory machines. In W. Hackbuch and G. Wittum,

editors, Adaptive Methods-Algorithms, Theory and Applications, pages 84–98, Braunschweig/Wiesbaden, January 22-24 1994.

Proceedings of the Ninth GAMM-Seminar, Vieweg & Sohn.
[26] F. Cirak, R. Deiterding, and S. P. Mauch. Large-scale fluid-structure interaction simulation of viscoplastic and fracturing thin

shells subjected to shocks and detonations. Computers & Structures, 85(11-14):1049–1065, 2007.

[27] F. Cirak and M. Ortiz. Fully c1-conforming subdivision elements for finite deformation thin-shell analysis. Int. J. Numer.
Meth. Engineering, 51:813–833, 2001.

[28] P. Colella and P. Woodward. The piecewise parabolic method (PPM) for gas-dynamical simulations. J. Comput. Phys.,

54:174–201, 1984.
[29] W. Crutchfield and M. L. Welcome. Object-oriented implementation of adaptive mesh refinement algorithms. J. Scientific

Programming, 2:145–156, 1993.
[30] S. F. Davis. Simplified second-order Godunov-type methods. SIAM J. Sci. Stat. Comp., 9:445–473, 1988.

[31] R. Deiterding. AMROC - Blockstructured Adaptive Mesh Refinement in Object-oriented C++. Available at
http://amroc.sourceforge.net.

[32] R. Deiterding. Parallel adaptive simulation of multi-dimensional detonation structures. PhD thesis, Brandenburgische Tech-

nische Universität Cottbus, Sep 2003.

[33] R. Deiterding. Construction and application of an AMR algorithm for distributed memory computers. In T. Plewa, T. Linde,
and V. G. Weirs, editors, Adaptive Mesh Refinement - Theory and Applications, volume 41 of Lecture Notes in Computational

Science and Engineering, pages 361–372. Springer, 2005.

[34] R. Deiterding. Detonation structure simulation with AMROC. In L. T. Yang, editor, High Performance Computing and
Communications 2005, volume 3726 of Lecture Notes in Computer Science, pages 916–927. Springer, 2005.

[35] R. Deiterding. A high-resolution method for realistic detonation structure simulation. In W. Takahashi and T. Tanaka, editors,
Proc. Tenth Int. Conf. Hyperbolic Problems, volume 1, pages 343–350. Yokohama Publishers, 2006.

[36] R. Deiterding. A parallel adaptive method for simulating shock-induced combustion with detailed chemical kinetics in complex

domains. Computers & Structures, 87:769–783, 2009.
[37] R. Deiterding and G. Bader. High-resolution simulation of detonations with detailed chemistry. In G. Warnecke, editor,

Analysis and Numerics for Conservation Laws, pages 69–91. Springer, 2005.

[38] R. Deiterding, F. Cirak, and S. P. Mauch. Efficient fluid-structure interaction simulation of viscoplastic and fracturing thin-
shells subjected to underwater shock loading. In S. Hartmann, A. Meister, M. Schäfer, and S. Turek, editors, Int. Workshop

on Fluid-Structure Interaction. Theory, Numerics and Applications, Herrsching am Ammersee 2008, pages 65–80. kassel

university press GmbH, 2009.
[39] R. Deiterding, F. Cirak, S. P. Mauch, and D. I. Meiron. A virtual test facility for simulating detonation-induced fracture

of thin flexible shells. In V. N. Alexandrov, G. D. van Albada, P. M. Sloot, and J. Dongarra, editors, Proc. 6th Int. Conf.

http://amroc.sourceforge.net

52 ESAIM: PROCEEDINGS

Computational Science, Reading, UK, May 28-31, 2006, volume 3992 of Lecture Notes in Computer Science, pages 122–130.
Springer, 2006.

[40] R. Deiterding, F. Cirak, S. P. Mauch, and D. I. Meiron. A virtual test facility for simulating detonation- and shock-induced

deformation and fracture of thin flexible shells. Int. J. Multiscale Computational Engineering, 5(1):47–63, 2007.
[41] R. Deiterding, R. Radovitzki, S. Mauch, F. Cirak, D. J. Hill, C. Pantano, J. C. Cummings, and D. I. Meiron. Vir-

tual Test Facility: A virtual shock physics facility for simulating the dynamic response of materials. Available at
http://www.cacr.caltech.edu/asc.

[42] R. Deiterding, R. Radovitzky, S. P. Mauch, L. Noels, J. C. Cummings, and D. I. Meiron. A virtual test facility for the efficient

simulation of solid materials under high energy shock-wave loading. Engineering with Computers, 22(3-4):325–347, 2006.
[43] B. Einfeldt, C. D. Munz, P. L. Roe, and B. Sjögreen. On Godunov-type methods near low densities. J. Comput. Phys.,

92:273–295, 1991.

[44] R. P. Fedkiw. Coupling an Eulerian fluid calculation to a Lagrangian solid calculation with the ghost fluid method. J. Comput.
Phys., 175:200–224, 2002.

[45] R. P. Fedkiw, T. Aslam, B. Merriman, and S. Osher. A non-oscillatory Eulerian approach to interfaces in multimaterial flows

(the ghost fluid method). J. Comput. Phys., 152:457–492, 1999.
[46] H. Friedel, R. Grauer, and C. Marliani. Adaptive mesh refinement for singular current sheets in incompressible magnetohy-

drodynamics flows. J. Comput. Phys., 134(1):190–198, 1997.

[47] J. Giordano, G. Jourdan, Y. Burtschell, M. Medale, D. E. Zeitoun, and L. Houas. Shock wave impacts on deforming panel,
an application of fluid-structure interaction. Shock Waves, 14(1-2):103–110, 2005.

[48] M. Gittings, R. Weaver, M. Clover, T. Betlach, N. Byrne, R. Coker, E. Dendy, R. Hueckstaedt, K. New, R. Oakes, D. Rantal,

and R. Stefan. The RAGE radiation-hydrodynamics code. Comput. Sci. Disc., 1, 2008. doi:10.1088/1749-4699/1/1/015005.
[49] E. Godlewski and P.-A. Raviart. Numerical approximation of hyperbolic systems of conservation laws. Springer Verlag, New

York, 1996.
[50] J. A. Greenough, B. R. de Supinski, R. K. Yates, C. A. Rendleman, D. Skinner, V. Beckner, M. Lijewski, J. Bell, and J. C.

Sexton. Performance of a block structured, hierarchical adaptive mesh refinement code on the 64k node IBM BlueGene/L

computer. Technical Report LBNL-57500, Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, 2005.
[51] B. Grossmann and P. Cinella. Flux-split algorithms for flows with non-equilibrium chemistry and vibrational relaxation. J.

Comput. Phys., 88:131–168, 1990.

[52] B. T. Gunney, A. M. Wissink, and D. A. Hysoma. Parallel clustering algorithms for structured AMR. J. Parallel and
Distributed Computing, 66(11):1419–1430, 2007.

[53] W. Hackbusch. Multi-Grid Methods and Applications. Springer Verlag, Berlin, Heidelberg, 1985.

[54] J. Hallquist and J. I. Lin. A nonlinear explicit three-dimensional finite element code for solid and structural mechanics.
Technical Report UCRL-MA-107254, Lawrence Livermore National Laboratory, 2005.

[55] A. Harten. High resolution schemes for hyperbolic conservation laws. J. Comput. Phys., 49:357–393, 1983.

[56] A. Harten and J. M. Hyman. Self-adjusting grid methods for one-dimensional hyperbolic conservation laws. J. Comput. Phys.,
50:235–269, 1983.

[57] A. Harten, J. M. Hyman, and P. D. Lax. On finite-difference approximations and entropy conditions for shocks. Comm. Pure
Appl. Math., 29:297–322, 1976.

[58] W. D. Henshaw and D. W. Schwendeman. An adaptive numerical scheme for high-speed reactive flow on overlapping grids.
J. Comput. Phys., 191:420–447, 2003.

[59] C. Hirsch. Numerical computation of internal and external flows. John Wiley & Sons, Chichester, 1988.

[60] R. D. Hornung, A. M. Wissink, and S. H. Kohn. Managing complex data and geometry in parallel structured AMR applica-

tions. Engineering with Computers, 22:181–195, 2006.
[61] P. Hung. Algorithms for reaction mechanism reduction and numerical simulation of detonations initiated by projectiles. PhD

thesis, California Institute of Technology, 2003.

[62] N. N. Janenko. Die Zwischenschrittmethode zur Lösung mehrdimensionaler Probleme der mathematischen Physik. Springer-
Verlag, Berlin, 1969.

[63] H. Jourdon. HERA: A hydrodynamic AMR platform for multi-physics simulation. In T. Plewa, T. Linde, and V. G. Weirs,
editors, Adaptive Mesh Refinement - Theory and Applications, volume 41 of Lecture Notes in Computational Science and
Engineering, pages 283–294. Springer, 2005.

[64] P. Kaps and P. Rentrop. Generalized Runge-Kutta methods of order four with stepsize control for stiff ordinary differential
equations. Num. Math., 33:55–68, 1979.

[65] R. J. Kee, F. M. Rupley, and J. A. Miller. Chemkin-II: A Fortran chemical kinetics package for the analysis of gas-phase

chemical kinetics. SAND89-8009, Sandia National Laboratories, Livermore, California, Sep 1989.
[66] D. Kröner. Numerical schemes for conservation laws. John Wiley & Sons and B. G. Teubner, New York, Leipzig, 1997.

[67] D. Kröner and M. Ohlberger. A posteriori error estimates for upwind finite volume schemes for nonlinear conservation laws

in multi dimensions. Mathematics of Computation, 69(229):25–39, 1999.
[68] C. B. Laney. Computational gasdynamics. Cambridge University Press, Cambridge, 1998.

http://www.cacr.caltech.edu/asc

ESAIM: PROCEEDINGS 53

[69] J. Langseth and R. LeVeque. A wave propagation method for three dimensional conservation laws. J. Comput. Phys., 165:126–
166, 2000.

[70] B. Larrouturou. How to preserve the mass fractions positivity when computing compressible multi-component flows. J.

Comput. Phys., 95:59–84, 1991.
[71] S. J. Laurence, R. Deiterding, and H. G. Hornung. Proximal bodies in hypersonic flows. J. Fluid Mech., 590:209–237, 2007.

[72] R. J. LeVeque. Numerical methods for conservation laws. Birkhäuser, Basel, 1992.
[73] R. J. LeVeque. Simplified multi-dimensional flux limiter methods. In M. J. Baines and K. W. Morton, editors, Numerical

Methods for Fluid Dynamics 4, pages 175–190, Oxford, 1993. Clarendon Press.

[74] R. J. LeVeque. High-resolution conservative algorithms for advection in incompressible flow. SIAM J. Numer. Anal.,
33(2):627–665, 1996.

[75] R. J. LeVeque. Wave propagation algorithms for multidimensional hyperbolic systems. J. Comput. Phys., 131(2):327–353,

1997.
[76] R. J. LeVeque. Finite volume methods for hyperbolic problems. Cambridge University Press, Cambridge, New York, 2002.

[77] R. Löhner, J. Baum, C. Charman, and D. Pelessone. Fluid-structure interaction simulations using parallel computers. volume

2565 of Lecture Notes in Computer Science, pages 3–23. Springer, 2003.
[78] P. MacNeice, K. M. Olson, C. Mobarry, R. deFainchtein, and C. Packer. PARAMESH: A parallel adaptive mesh refinement

community toolkit. Computer Physics Communications, 126:330–354, 2000.

[79] A. Majda. Compressible fluid flow and systems of conservation laws in several space variables. Applied Mathematical Sciences
Vol. 53. Springer-Verlag, New York, 1984.

[80] D. F. Martin. A cell-centered adaptive projection method for the incompressible Euler equations. PhD thesis, University of

California at Berkeley, 1998.
[81] D. F. Martin and P. Colella. An adaptive cell-centered projection method for the incompressible Euler equations. J. Comput.

Phys., 163(2):271–312, 2000.
[82] S. P. Mauch. Efficient Algorithms for Solving Static Hamilton-Jacobi Equations. PhD thesis, California Institute of Technol-

ogy, 2003.

[83] R. L. Meakin. An efficient means of adaptive refinement within systems of overset grids. In 12th AIAA Computational Fluid
Dynamics Conference, San Diego, AIAA-95-1722-CP, 1995.

[84] R. Mittal and G. Iaccarino. Immersed boundary methods. Annu. Rev. Fluid Mech., 37:239–261, 2005.

[85] S. M. Murman, M. J. Aftosmis, and M. J. Berger. Implicit approaches for moving boundaries in a 3-d Cartesian method. In
41st AIAA Aerospace Science Meeting, AIAA 2003-1119, 2003.

[86] H. J. Neeman. Autonomous hierarchical adaptive mesh refinement. PhD thesis, University of Illinois at Urbana-Champaign,

1996.
[87] R. R. Nourgaliev, T. N. Dinh, and T. G. Theofanus. On capturing of interfaces in multimaterial compressible flows using

a level-set-based Cartesian grid method. Technical Report 05/03-1, Center for Risk Studies and Safety, UC Santa Barbara,

May 2003.
[88] E. S. Oran and J. P. Boris. Numerical simulation of reactive flow. Cambridge Univ. Press, Cambridge, 2nd edition, 2001.

[89] S. Osher and R. Fedkiw. Level set methods and dynamic implicit surfaces. Applied Mathematical Science Volume 153.
Springer, New York, 2003.

[90] C. Pantano, R. Deiterding, D. J. Hill, and D. I. Pullin. A low-numerical dissipation patch-based adaptive mesh refinement
method for large-eddy simulation of compressible flows. J. Comput. Phys., 221(1):63–87, 2007.

[91] M. Parashar and J. C. Browne. On partitioning dynamic adaptive grid hierarchies. In Proc. of the 29th Annual Hawaii Int.

Conf. on System Sciences, Jan 1996.

[92] M. Parashar and J. C. Browne. System engineering for high performance computing software: The HDDA/DAGH infras-
tructure for implementation of parallel structured adaptive mesh refinement. In Structured Adaptive Mesh Refinement Grid

Methods, IMA Volumes in Mathematics and its Applications. Springer, 1997.

[93] R. B. Pember, J. B. Bell, P. Colella, W. Y. Crutchfield, and M. L. Welcome. An adaptive Cartesian grid method for unsteady
compressible flows in irregular regions. J. Comput. Phys., 120:287–304, 1999.

[94] J. J. Quirk. An alternative to unstructured grids for computing gas dynamics flows around arbitrarily complex two-dimensional
bodies. Computers Fluids, 23:125–142, 1994.

[95] J. J. Quirk. Godunov-type schemes applied to detonation flows. In J. Buckmaster, editor, Combustion in high-speed flows:

Proc. Workshop on Combustion, Oct 12-14, 1992, Hampton, pages 575–596, Dordrecht, 1994. Kluwer Acad. Publ.
[96] J. Ray, R. C. Armstrong, C. Safta, B. J. Debusschere, B. A. Allan, and H. N. Najm. Computational frameworks for advanced

combustion simulations. In T. Echekki and E. Mastorakos, editors, Turbulent Combustion Modeling: Advances, Trends and

Perspective. Springer-Verlag, 2011.
[97] C. A. Rendleman, V. E. Beckner, M. Lijewski, W. Crutchfield, and J. B. Bell. Parallelization of structured, hierarchical

adaptive mesh refinement algorithms. Computing and Visualization in Science, 3:147–157, 2000.

[98] P. L. Roe. Approximate Riemann solvers, parameter vectors and difference schemes. J. Comput. Phys., 43:357–372, 1981.
[99] A. M. Roma, C. S. Perskin, and M. J. Berger. An adaptive version of the immersed boundary method. J. Comput. Phys.,

153:509–534, 1999.

54 ESAIM: PROCEEDINGS

[100] H. Sagan. Space-Filling Curves. Springer-Verlag, New-York, 1994.
[101] R. Sanders, E. Morano, and M.-C. Druguett. Multidimensional dissipation for upwind schemes: Stability and applications to

gas dynamics. J. Comput. Phys., 145:511–537, 1998.

[102] H.-Y. Schive, Y.-C. Tsai, and T. Chiueh. GAMER: a GPU-accelerated adaptive mesh refinement code for astrophysics.
Astrophysical J. Supplement Series, 186:457–484, 2010.

[103] L. I. Sedov. Similarity and Dimensional Methods in Mechanics. Academic, New York, 1959.
[104] J. A. Sethian. Level set methods and fast marching methods. Cambridge University Press, Cambridge, New York, 1999.

[105] C.-W. Shu. Essentially non-oscillatory and weigted essentially non-oscillatory schemes for hyperbolic conservation laws. Tech-

nical Report CR-97-206253, NASA, 97.
[106] K.-M. Shyue. An efficient shock-capturing algorithm for compressible multicomponent problems. J. Comput. Phys., 142:208–

242, 1998.

[107] K.-M. Shyue. A volume-fraction based algorithm for hybrid barotropic and non-barotropic two-fluid flow problems. Shock
Waves, 15:407–423, 2006.

[108] T. Sonar. Mehrdimensional ENO-Verfahren. Teubner Verlag, Stuttgart, 1997.

[109] U. Specht. Numerische Simulation mechanischer Wellen an Fluid-Festkörper-Mediengrenzen. Number 398 in VDI Reihe 7.
VDU Verlag, Düsseldorf, 2000.

[110] G. Strang. On the construction and comparison of difference schemes. SIAM J. Num. Anal., 5:506–517, 1968.

[111] E. F. Toro. Riemann solvers and numerical methods for fluid dynamics. Springer-Verlag, Berlin, Heidelberg, 2nd edition,
1999.

[112] E. F. Toro, M. Spruce, and W. Speares. Restoration of the contact surface in the HLL-Riemann solver. Shock Waves, 4:25–34,

1994.
[113] U. Trottenberg, C. Oosterlee, and A. Schüller. Multigrid. Academic Press, San Antonio, 2001.

[114] Y.-H. Tseng and J. H. Ferziger. A ghost-cell immersed boundary method for flow in complex geometry. J. Comput. Phys.,
192:593–623, 2003.

[115] G. D. van Albada, B. van Leer, and W. W. Roberts. A comparative study of computational methods in cosmic gas dynamics.

Astron. Astrophysics, 108:76–84, 1982.
[116] B. van Leer. Towards the ultimate conservative difference scheme V. A second order sequel to Godunov’s method. J. Comput.

Phys., 32:101–136, 1979.

[117] B. van Leer. Flux-vector splitting for the euler equations. In Eighth International Conference on Numerical Methods in Fluid
Dynamics, volume 170 of Lecture Notes in Physics, pages 507–512, 1982.

[118] B. van Leer. On the relation between the upwind-differencing schemes of Godunov, Enguist-Osher and Roe. SIAM J. Sci.

Stat. Comp., 5(1):1–20, 1985.
[119] C. K. Westbrook. Chemical kinetics of hydrocarbon oxidation in gaseous detonations. Combust. Flame, 46:191–210, 1982.

[120] A. Wissink, D. Hysom, and R. Hornung. Enhancing scalability of parallel structured amr calculations. In Proc. 17th Int.

Conf. Supercomputing, pages 336–347, 2003.
[121] N. K. Yamaleev and M. H. Carpenter. On accuracy of adaptive grid methods for captured shocks. J. Comput. Phys., 181:280–

316, 2002.
[122] J. L. Ziegler, R. Deiterding, J. E. Shepherd, and D. I. Pullin. An adaptive high-order hybrid scheme for compressive, viscous

flows with detailed chemistry. J. Comput. Phys., submitted.

	Introduction
	1. Fundamentals
	1.1. Hyperbolic conservation laws
	1.2. Finite volume methods
	1.3. Upwind schemes
	1.4. High-resolution methods
	1.5. Euler equations
	1.6. Meshes and adaptation

	2. SAMR for hyperbolic problems
	2.1. Serial algorithm
	2.2. Parallel algorithm
	2.3. Refinement indicators
	2.4. Design of SAMR software
	2.5. Computational examples

	3. Complex hyperbolic SAMR applications
	3.1. Non-Cartesian boundaries
	3.2. An embedded boundary method
	3.3. Shock-induced combustion
	3.4. Fluid-structure interaction

	Outlook
	References

