Conservation laws	Upwind schemes	Meshes and adaptation	References

Lecture 1

Fundamentals: Used schemes and mesh adaptation

Course Block-structured Adaptive Mesh Refinement Methods for Conservation Laws Theory, Implementation and Application

> Ralf Deiterding Computer Science and Mathematics Division Oak Ridge National Laboratory P.O. Box 2008 MS6367, Oak Ridge, TN 37831, USA

> > E-mail: deiterdingr@ornl.gov

Conservation laws	Finite volume methods	Upwind schemes	Meshes and adaptation	References

Conservation laws

Mathematical background Examples

Conservation laws	Upwind schemes	Meshes and adaptation	References

Conservation laws

Mathematical background Examples

Finite volume methods

Basics of finite difference methods Splitting methods, second derivatives

Conservation laws	Upwind schemes	Meshes and adaptation	References
	· · · · · · · · · · · · · · · · · · ·		

Conservation laws

Mathematical background Examples

Finite volume methods

Basics of finite difference methods Splitting methods, second derivatives

Upwind schemes

Flux-difference splitting Flux-vector splitting High-resolution methods

Conservation laws	Upwind schemes	Meshes and adaptation	References
	· · · · · · · · · · · · · · · · · · ·		

Conservation laws

Mathematical background Examples

Finite volume methods

Basics of finite difference methods Splitting methods, second derivatives

Upwind schemes

Flux-difference splitting Flux-vector splitting High-resolution methods

Meshes and adaptation

Elements of adaptive algorithms Adaptivity on unstructured meshes Structured mesh refinement techniques

Conservation laws	Upwind schemes	Meshes and adaptation	References

Conservation laws Mathematical background Examples

Finite volume methods

Basics of finite difference methods Splitting methods, second derivatives

Upwind schemes

Flux-difference splitting Flux-vector splitting High-resolution methods

Meshes and adaptation

Elements of adaptive algorithms Adaptivity on unstructured meshes Structured mesh refinement techniques

		Upwind schemes	Meshes and adaptation	References
•••••	00			
Mathematical background				

$$\frac{\partial}{\partial t}\mathbf{q}(\mathbf{x},t) + \sum_{n=1}^{d} \frac{\partial}{\partial x_n} \mathbf{f}_n(\mathbf{q}(\mathbf{x},t)) = \mathbf{0}, \ \ D \subset \{(\mathbf{x},t) \in \mathbb{R}^d \times \mathbb{R}^d_0\}$$

Conservation laws	Upwind schemes	Meshes and adaptation	References
00000			
Mathematical background			

$$\frac{\partial}{\partial t}\mathbf{q}(\mathbf{x},t) + \sum_{n=1}^{d} \frac{\partial}{\partial x_n} f_n(\mathbf{q}(\mathbf{x},t)) = 0, \ \ D \subset \{(\mathbf{x},t) \in \mathbb{R}^d \times \mathbb{R}_0^+\}$$

 $\mathbf{q}=\mathbf{q}(\mathbf{x},t)\in \mathcal{S}\subset\mathbb{R}^{M}$ - vector of state, $\mathbf{f}_{n}(\mathbf{q})\in\mathrm{C}^{1}(\mathcal{S},\mathbb{R}^{M})$ - flux functions,

Conservation laws		Upwind schemes	Meshes and adaptation	References
00000				
Mathematical background				
	<u> </u>			

$$\frac{\partial}{\partial t}\mathbf{q}(\mathbf{x},t) + \sum_{n=1}^{d} \frac{\partial}{\partial x_n} \mathbf{f}_n(\mathbf{q}(\mathbf{x},t)) = \mathbf{s}(\mathbf{q}(\mathbf{x},t)), \quad D \subset \{(\mathbf{x},t) \in \mathbb{R}^d \times \mathbb{R}_0^+\}$$

 $\mathbf{q} = \mathbf{q}(\mathbf{x},t) \in S \subset \mathbb{R}^M$ - vector of state, $\mathbf{f}_n(\mathbf{q}) \in \mathrm{C}^1(S, \mathbb{R}^M)$ - flux functions, $\mathbf{s}(\mathbf{q}) \in \mathrm{C}^1(S, \mathbb{R}^M)$ - source term

Conservation laws		Upwind schemes	Meshes and adaptation	References
• 000 00				
Mathematical background				
	· ·			

$$\frac{\partial}{\partial t}\mathbf{q}(\mathbf{x},t) + \sum_{n=1}^{d} \frac{\partial}{\partial x_n} \mathbf{f}_n(\mathbf{q}(\mathbf{x},t)) = \mathbf{s}(\mathbf{q}(\mathbf{x},t)), \quad D \subset \{(\mathbf{x},t) \in \mathbb{R}^d \times \mathbb{R}_0^+\}$$

 $\mathbf{q} = \mathbf{q}(\mathbf{x}, t) \in S \subset \mathbb{R}^M$ - vector of state, $\mathbf{f}_n(\mathbf{q}) \in \mathrm{C}^1(S, \mathbb{R}^M)$ - flux functions, $\mathbf{s}(\mathbf{q}) \in \mathrm{C}^1(S, \mathbb{R}^M)$ - source term

Definition (Hyperbolicity)

 $\mathbf{A}(\mathbf{q},\nu) = \nu_1 \mathbf{A}_1(\mathbf{q}) + \dots + \nu_d \mathbf{A}_d(\mathbf{q})$ with $\mathbf{A}_n(\mathbf{q}) = \partial \mathbf{f}_n(\mathbf{q})/\partial \mathbf{q}$ has M real eigenvalues $\lambda_1(\mathbf{q},\nu) \leq \dots \leq \lambda_M(\mathbf{q},\nu)$ and M linear independent right eigenvectors $\mathbf{r}_m(\mathbf{q},\nu)$.

Conservation laws		Upwind schemes	Meshes and adaptation	References
• 000 00				
Mathematical background				
	-	_		

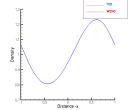
$$\frac{\partial}{\partial t}\mathbf{q}(\mathbf{x},t) + \sum_{n=1}^{d} \frac{\partial}{\partial x_n} \mathbf{f}_n(\mathbf{q}(\mathbf{x},t)) = \mathbf{s}(\mathbf{q}(\mathbf{x},t)), \quad D \subset \{(\mathbf{x},t) \in \mathbb{R}^d \times \mathbb{R}_0^+\}$$

 $\mathbf{q} = \mathbf{q}(\mathbf{x}, t) \in S \subset \mathbb{R}^M$ - vector of state, $\mathbf{f}_n(\mathbf{q}) \in \mathrm{C}^1(S, \mathbb{R}^M)$ - flux functions, $\mathbf{s}(\mathbf{q}) \in \mathrm{C}^1(S, \mathbb{R}^M)$ - source term

Definition (Hyperbolicity)

 $\mathbf{A}(\mathbf{q},\nu) = \nu_1 \mathbf{A}_1(\mathbf{q}) + \dots + \nu_d \mathbf{A}_d(\mathbf{q})$ with $\mathbf{A}_n(\mathbf{q}) = \partial \mathbf{f}_n(\mathbf{q})/\partial \mathbf{q}$ has M real eigenvalues $\lambda_1(\mathbf{q},\nu) \leq \dots \leq \lambda_M(\mathbf{q},\nu)$ and M linear independent right eigenvectors $\mathbf{r}_m(\mathbf{q},\nu)$.

If $\mathbf{f}_n(\mathbf{q})$ is nonlinear, classical solutions $\mathbf{q}(\mathbf{x},t) \in \mathrm{C}^1(D,S)$ do not generally exist, not even for $\mathbf{q}_0(\mathbf{x}) \in \mathrm{C}^1(\mathbb{R}^d,S)$ [Majda, 1984], [Godlewski and Raviart, 1996], [Kröner, 1997]



Example: Euler equations

Maal aal	L'ana			
Mathematical background				
00000				
Conservation laws		Upwind schemes	Meshes and adaptation	References

Weak solutions

Integral form (Gauss's theorem):

$$\int_{\Omega} \mathbf{q}(\mathbf{x}, t + \Delta t) \, d\mathbf{x} - \int_{\Omega} \mathbf{q}(\mathbf{x}, t) \, d\mathbf{x} \\ + \sum_{n=1}^{d} \int_{t}^{t+\Delta t} \int_{\partial\Omega} \mathbf{f}_{n}(\mathbf{q}(\mathbf{o}, t)) \, \sigma_{n}(\mathbf{o}) \, d\mathbf{o} \, dt = \int_{t}^{t+\Delta t} \int_{\Omega} \mathbf{s}(\mathbf{q}(\mathbf{x}, t)) \, d\mathbf{x}$$

Maali aalii						
Mathematical background						
00000						
Conservation laws		Upwind schemes	Meshes and adaptation	References		

Weak solutions

Integral form (Gauss's theorem):

$$\int_{\Omega} \mathbf{q}(\mathbf{x}, t + \Delta t) \, d\mathbf{x} - \int_{\Omega} \mathbf{q}(\mathbf{x}, t) \, d\mathbf{x} \\ + \sum_{n=1}^{d} \int_{t}^{t+\Delta t} \int_{\partial\Omega} \mathbf{f}_{n}(\mathbf{q}(\mathbf{o}, t)) \, \sigma_{n}(\mathbf{o}) \, d\mathbf{o} \, dt = \int_{t}^{t+\Delta t} \int_{\Omega} \mathbf{s}(\mathbf{q}(\mathbf{x}, t)) \, d\mathbf{x}$$

Theorem (Weak solution)

 $q_0 \in L^{\infty}_{loc}(\mathbb{R}^d, S)$. $q \in L^{\infty}_{loc}(D, S)$ is weak solution if q satisfies

Maali aalii						
Mathematical background						
00000						
Conservation laws		Upwind schemes	Meshes and adaptation	References		

Weak solutions

Integral form (Gauss's theorem):

$$\int_{\Omega} \mathbf{q}(\mathbf{x}, t + \Delta t) \, d\mathbf{x} - \int_{\Omega} \mathbf{q}(\mathbf{x}, t) \, d\mathbf{x}$$
$$+ \sum_{n=1}^{d} \int_{t}^{t+\Delta t} \int_{\partial\Omega} \mathbf{f}_{n}(\mathbf{q}(\mathbf{o}, t)) \, \sigma_{n}(\mathbf{o}) \, d\mathbf{o} \, dt = \int_{t}^{t+\Delta t} \int_{\Omega} \mathbf{s}(\mathbf{q}(\mathbf{x}, t)) \, d\mathbf{x}$$

Theorem (Weak solution)

 $q_0 \in L^{\infty}_{loc}(\mathbb{R}^d, S)$. $q \in L^{\infty}_{loc}(D, S)$ is weak solution if q satisfies

$$\int_{0}^{\infty} \int_{\mathbb{R}^d} \left[\frac{\partial \varphi}{\partial t} \cdot \mathbf{q} + \sum_{n=1}^d \frac{\partial \varphi}{\partial x_n} \cdot \mathbf{f}_n(\mathbf{q}) - \varphi \cdot \mathbf{s}(\mathbf{q}) \right] d\mathbf{x} \, dt + \int_{\mathbb{R}^d} \varphi(\mathbf{x}, 0) \cdot \mathbf{q}_0(\mathbf{x}) \, d\mathbf{x} = 0$$

for any test function $\varphi \in \mathrm{C}^1_0(D,S)$

Conservation laws		Upwind schemes	Meshes and adaptation	References
000000				
Mathematical background				
F .	1.1.1			

Select physical weak solution as $\lim_{\varepsilon\to 0} \mathbf{q}_\varepsilon = \mathbf{q}$ almost everywhere in D of

$$\frac{\partial \mathbf{q}_{\varepsilon}}{\partial t} + \sum_{n=1}^{d} \frac{\partial \mathbf{f}_{n}(\mathbf{q}_{\varepsilon})}{\partial x_{n}} - \varepsilon \sum_{n=1}^{d} \frac{\partial^{2} \mathbf{q}_{\varepsilon}}{\partial x_{n}^{2}} = \mathbf{s}(\mathbf{q}_{\varepsilon}), \ \mathbf{x} \in \mathbb{R}^{d}, \ t > 0$$

Conservation laws	Upwind schemes	Meshes and adaptation	References
000000			
Mathematical background			
г .			

Select physical weak solution as $\lim_{\varepsilon\to 0} \mathbf{q}_\varepsilon = \mathbf{q}$ almost everywhere in D of

$$\frac{\partial \mathbf{q}_{\varepsilon}}{\partial t} + \sum_{n=1}^{d} \frac{\partial \mathbf{f}_{n}(\mathbf{q}_{\varepsilon})}{\partial x_{n}} - \varepsilon \sum_{n=1}^{d} \frac{\partial^{2} \mathbf{q}_{\varepsilon}}{\partial x_{n}^{2}} = \mathbf{s}(\mathbf{q}_{\varepsilon}), \ \mathbf{x} \in \mathbb{R}^{d}, \ t > 0$$

Theorem (Entropy condition)

Assume existence of entropy $\eta \in C^2(S, \mathbb{R})$ and entropy fluxes $\psi_n \in C^1(S, \mathbb{R})$ that satisfy

Conservation laws	Upwind schemes	Meshes and adaptation	References
000000			
Mathematical background			
F .			

Select physical weak solution as $\lim_{\varepsilon\to 0} \mathbf{q}_\varepsilon = \mathbf{q}$ almost everywhere in D of

$$\frac{\partial \mathbf{q}_{\varepsilon}}{\partial t} + \sum_{n=1}^{d} \frac{\partial \mathbf{f}_{n}(\mathbf{q}_{\varepsilon})}{\partial x_{n}} - \varepsilon \, \sum_{n=1}^{d} \frac{\partial^{2} \mathbf{q}_{\varepsilon}}{\partial x_{n}^{2}} = \mathbf{s}(\mathbf{q}_{\varepsilon}) \,, \ \mathbf{x} \in \mathbb{R}^{d} \,, \ t > 0$$

Theorem (Entropy condition)

Assume existence of entropy $\eta \in C^2(S, \mathbb{R})$ and entropy fluxes $\psi_n \in C^1(S, \mathbb{R})$ that satisfy

$$\frac{\partial \eta(\mathbf{q})}{\partial \mathbf{q}}^{T} \cdot \frac{\partial \mathbf{f}_{n}(\mathbf{q})}{\partial \mathbf{q}} = \frac{\partial \psi_{n}(\mathbf{q})}{\partial \mathbf{q}}^{T}, \quad n = 1, \dots, d$$

Conservation laws	Upwind schemes	Meshes and adaptation	References
000000			
Mathematical background			
– .			

Select physical weak solution as $\lim_{\varepsilon\to 0} \mathbf{q}_\varepsilon = \mathbf{q}$ almost everywhere in D of

$$\frac{\partial \mathbf{q}_{\varepsilon}}{\partial t} + \sum_{n=1}^{d} \frac{\partial \mathbf{f}_{n}(\mathbf{q}_{\varepsilon})}{\partial x_{n}} - \varepsilon \, \sum_{n=1}^{d} \frac{\partial^{2} \mathbf{q}_{\varepsilon}}{\partial x_{n}^{2}} = \mathbf{s}(\mathbf{q}_{\varepsilon}) \,, \ \mathbf{x} \in \mathbb{R}^{d} \,, \ t > 0$$

Theorem (Entropy condition)

Assume existence of entropy $\eta \in C^2(S, \mathbb{R})$ and entropy fluxes $\psi_n \in C^1(S, \mathbb{R})$ that satisfy

$$rac{\partial \eta(\mathbf{q})}{\partial \mathbf{q}}^{T} \cdot rac{\partial \mathbf{f}_n(\mathbf{q})}{\partial \mathbf{q}} = rac{\partial \psi_n(\mathbf{q})}{\partial \mathbf{q}}^{T}, \quad n = 1, \dots, d$$

then $\lim_{\epsilon\to 0} {\bm q}_{\epsilon} = {\bm q}$ almost everywhere in D is weak solution and satisfies

$$\frac{\partial \eta(\mathbf{q})}{\partial t} + \sum_{n=1}^{d} \frac{\partial \psi_n(\mathbf{q})}{\partial x_n} \leq \frac{\partial \eta(\mathbf{q})}{\partial \mathbf{q}}^T \cdot \mathbf{s}(\mathbf{q})$$

in the sense of distributions. Proof: [Godlewski and Raviart, 1996]

Conservation laws		Upwind schemes	Meshes and adaptation	References
000000				
Mathematical background				
F	lutione II			

Definition (Entropy solution)

Weak solution \boldsymbol{q} is called an entropy solution if \boldsymbol{q} satisfies

Conservation laws		Upwind schemes	Meshes and adaptation	References
000000				
Mathematical background				
F .	1 11			

Definition (Entropy solution)

Weak solution \boldsymbol{q} is called an entropy solution if \boldsymbol{q} satisfies

$$\int_{0}^{\infty} \int_{\mathbb{R}^d} \left[\frac{\partial \varphi}{\partial t} \eta(\mathbf{q}) + \sum_{n=1}^d \frac{\partial \varphi}{\partial x_n} \psi_n(\mathbf{q}) - \varphi \frac{\partial \eta(\mathbf{q})}{\partial \mathbf{q}}^T \cdot \mathbf{s}(\mathbf{q}) \right] d\mathbf{x} \, dt + \int_{\mathbb{R}^d} \varphi(\mathbf{x}, 0) \, \eta(\mathbf{q}_0(\mathbf{x})) \, d\mathbf{x} \ge 0$$

for all entropy functions $\eta(\mathbf{q})$ and all test functions $\varphi \in \mathrm{C}^1_0(D,\mathbb{R}^+_0),\, \varphi \geq 0$

Conservation laws	Upwind schemes	Meshes and adaptation	References
000000			
Mathematical background			
F .			

Definition (Entropy solution)

Weak solution ${\boldsymbol{q}}$ is called an entropy solution if ${\boldsymbol{q}}$ satisfies

$$\int_{0}^{\infty} \int_{\mathbb{R}^d} \left[\frac{\partial \varphi}{\partial t} \eta(\mathbf{q}) + \sum_{n=1}^d \frac{\partial \varphi}{\partial x_n} \psi_n(\mathbf{q}) - \varphi \frac{\partial \eta(\mathbf{q})}{\partial \mathbf{q}}^T \cdot \mathbf{s}(\mathbf{q}) \right] d\mathbf{x} \, dt + \int_{\mathbb{R}^d} \varphi(\mathbf{x}, 0) \, \eta(\mathbf{q}_0(\mathbf{x})) \, d\mathbf{x} \ge 0$$

for all entropy functions $\eta({\bf q})$ and all test functions $\varphi\in {\rm C}_0^1(D,\mathbb{R}^+_0),\,\varphi\geq 0$

Theorem (Jump conditions)

An entropy solution q is a classical solution $q \in C^1(D,S)$ almost everywhere and satisfies the Rankine-Hugoniot (RH) jump condition

$$\left(\mathbf{q}^{+}-\mathbf{q}^{-}\right)\sigma_{t}+\sum_{n=1}^{d}\left(\mathbf{f}_{n}(\mathbf{q}^{+})-\mathbf{f}_{n}(\mathbf{q}^{-})\right)\sigma_{n}=\mathbf{0}$$

Conservation laws	Upwind schemes	Meshes and adaptation	References
000000			
Mathematical background			
– , ,			

Definition (Entropy solution)

Weak solution \mathbf{q} is called an entropy solution if \mathbf{q} satisfies

$$\int_{0}^{\infty} \int_{\mathbb{R}^d} \left[\frac{\partial \varphi}{\partial t} \eta(\mathbf{q}) + \sum_{n=1}^d \frac{\partial \varphi}{\partial x_n} \psi_n(\mathbf{q}) - \varphi \frac{\partial \eta(\mathbf{q})}{\partial \mathbf{q}}^T \cdot \mathbf{s}(\mathbf{q}) \right] d\mathbf{x} \, dt + \int_{\mathbb{R}^d} \varphi(\mathbf{x}, 0) \, \eta(\mathbf{q}_0(\mathbf{x})) \, d\mathbf{x} \ge 0$$

for all entropy functions $\eta(\mathbf{q})$ and all test functions $arphi \in \mathrm{C}_0^1(D,\mathbb{R}^+_0), \, arphi \geq 0$

Theorem (Jump conditions)

An entropy solution q is a classical solution $q \in C^1(D,S)$ almost everywhere and satisfies the Rankine-Hugoniot (RH) jump condition

$$\left(\mathbf{q}^{+}-\mathbf{q}^{-}\right)\sigma_{t}+\sum_{n=1}^{d}\left(\mathbf{f}_{n}(\mathbf{q}^{+})-\mathbf{f}_{n}(\mathbf{q}^{-})\right)\sigma_{n}=\mathbf{0}$$

and the jump inequality

$$\left(\eta(\mathbf{q}^+) - \eta(\mathbf{q}^-)\right)\sigma_t + \sum_{n=1}^d \left(\psi_n(\mathbf{q}^+) - \psi_n(\mathbf{q}^-)\right)\sigma_n \le 0$$

along discontinuities. Proof: [Godlewski and Raviart, 1996]

Conservation laws	Upwind schemes	Meshes and adaptation	References
000000			
Examples			
Examples			

Euler equations

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_n} (\rho u_n) = 0$$
$$\frac{\partial}{\partial t} (\rho u_k) + \frac{\partial}{\partial x_n} (\rho u_k u_n + \delta_{kn} p) = 0, \quad k = 1, \dots, d$$
$$\frac{\partial}{\partial t} (\rho E) + \frac{\partial}{\partial x_n} (u_n (\rho E + p)) = 0$$

Conservation laws	Upwind schemes	Meshes and adaptation	References
000000			
Examples			
Examples			

Euler equations

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_n} (\rho u_n) = 0$$
$$\frac{\partial}{\partial t} (\rho u_k) + \frac{\partial}{\partial x_n} (\rho u_k u_n + \delta_{kn} p) = 0, \quad k = 1, \dots, d$$
$$\frac{\partial}{\partial t} (\rho E) + \frac{\partial}{\partial x_n} (u_n (\rho E + p)) = 0$$

with polytrope gas equation of state

$$p = (\gamma - 1) \left(\rho E - \frac{1}{2} \rho u_n u_n \right)$$

Conservation laws	Upwind schemes	Meshes and adaptation	References
000000			
Examples			
Examples			

Euler equations

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_n} (\rho u_n) = 0$$
$$\frac{\partial}{\partial t} (\rho u_k) + \frac{\partial}{\partial x_n} (\rho u_k u_n + \delta_{kn} p) = 0, \quad k = 1, \dots, d$$
$$\frac{\partial}{\partial t} (\rho E) + \frac{\partial}{\partial x_n} (u_n (\rho E + p)) = 0$$

with polytrope gas equation of state

$$p = (\gamma - 1) \left(\rho E - \frac{1}{2} \rho u_n u_n \right)$$

have structure

$$\partial_t \mathbf{q}(\mathbf{x},t) + \nabla \cdot \mathbf{f}(\mathbf{q}(\mathbf{x},t)) = 0$$

Conservation laws	Upwind schemes	Meshes and adaptation	References
00000			
Examples			
F 1			

Navier-Stokes equations

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_n} (\rho u_n) &= 0\\ \frac{\partial}{\partial t} (\rho u_k) + \frac{\partial}{\partial x_n} (\rho u_k u_n + \delta_{kn} p - \tau_{kn}) &= 0, \quad k = 1, \dots, d\\ \frac{\partial}{\partial t} (\rho E) + \frac{\partial}{\partial x_n} (u_n (\rho E + p) + q_n - \tau_{nj} u_j) &= 0 \end{aligned}$$

Conservation laws	Upwind schemes	Meshes and adaptation	References
00000			
Examples			
– 1			

Navier-Stokes equations

$$\begin{aligned} \frac{\partial \rho}{\partial t} &+ \frac{\partial}{\partial x_n} (\rho u_n) = 0\\ \frac{\partial}{\partial t} (\rho u_k) &+ \frac{\partial}{\partial x_n} (\rho u_k u_n + \delta_{kn} p - \tau_{kn}) = 0, \quad k = 1, \dots, d\\ \frac{\partial}{\partial t} (\rho E) &+ \frac{\partial}{\partial x_n} (u_n (\rho E + \rho) + q_n - \tau_{nj} u_j) = 0 \end{aligned}$$

with stress tensor

$$\tau_{kn} = \mu \left(\frac{\partial u_n}{\partial x_k} + \frac{\partial u_k}{\partial x_n} \right) - \frac{2}{3} \mu \frac{\partial u_j}{\partial x_j} \delta_{kn}$$

and heat conduction

$$q_n = -\lambda \frac{\partial T}{\partial x_n}$$

Conservation laws	Upwind schemes	Meshes and adaptation	References
00000			
Examples			
– 1			

Navier-Stokes equations

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_n} (\rho u_n) = 0$$
$$\frac{\partial}{\partial t} (\rho u_k) + \frac{\partial}{\partial x_n} (\rho u_k u_n + \delta_{kn} p - \tau_{kn}) = 0, \quad k = 1, \dots, d$$
$$\frac{\partial}{\partial t} (\rho E) + \frac{\partial}{\partial x_n} (u_n (\rho E + \rho) + q_n - \tau_{nj} u_j) = 0$$

with stress tensor

$$\tau_{kn} = \mu \left(\frac{\partial u_n}{\partial x_k} + \frac{\partial u_k}{\partial x_n} \right) - \frac{2}{3} \mu \frac{\partial u_j}{\partial x_j} \delta_{kn}$$

and heat conduction

$$q_n = -\lambda \frac{\partial T}{\partial x_n}$$

have structure

$$\partial_t \mathbf{q}(\mathbf{x},t) +
abla \cdot \mathbf{f}(\mathbf{q}(\mathbf{x},t)) +
abla \cdot \mathbf{h}(\mathbf{q}(\mathbf{x},t),
abla \mathbf{q}(\mathbf{x},t)) = 0$$

Conservation laws	Upwind schemes	Meshes and adaptation	References
00000			
Examples			
– 1			

Navier-Stokes equations

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_n} (\rho u_n) = 0$$
$$\frac{\partial}{\partial t} (\rho u_k) + \frac{\partial}{\partial x_n} (\rho u_k u_n + \delta_{kn} p - \tau_{kn}) = 0, \quad k = 1, \dots, d$$
$$\frac{\partial}{\partial t} (\rho E) + \frac{\partial}{\partial x_n} (u_n (\rho E + \rho) + q_n - \tau_{nj} u_j) = 0$$

with stress tensor

$$\tau_{kn} = \mu \left(\frac{\partial u_n}{\partial x_k} + \frac{\partial u_k}{\partial x_n} \right) - \frac{2}{3} \mu \frac{\partial u_j}{\partial x_j} \delta_{kn}$$

and heat conduction

$$q_n = -\lambda \frac{\partial T}{\partial x_n}$$

have structure

$$\partial_t \mathbf{q}(\mathbf{x},t) +
abla \cdot \mathbf{f}(\mathbf{q}(\mathbf{x},t)) +
abla \cdot \mathbf{h}(\mathbf{q}(\mathbf{x},t),
abla \mathbf{q}(\mathbf{x},t)) = 0$$

Type can be either hyperbolic or parabolic

Conservation laws	Finite volume methods	Upwind schemes	Meshes and adaptation	References
		,		

Conservation laws

Mathematical background Examples

Finite volume methods

Basics of finite difference methods Splitting methods, second derivatives

Upwind schemes

Flux-difference splitting Flux-vector splitting High-resolution methods

Meshes and adaptation

Elements of adaptive algorithms Adaptivity on unstructured meshes Structured mesh refinement techniques

Conservation laws	Finite volume methods	Upwind schemes	Meshes and adaptation	References	
	00000				
Basics of finite difference methods					
Derivation	ı				

Assume $\partial_t \mathbf{q} + \partial_x \mathbf{f}(\mathbf{q}) + \partial_x \mathbf{h}(\mathbf{q}(\cdot,\partial_x \mathbf{q})) = \mathbf{s}(\mathbf{q})$

Conservation laws	Finite volume methods	Upwind schemes	Meshes and adaptation	References		
	00000					
Basics of finite difference methods						
Derivation	1					

Assume $\partial_t \mathbf{q} + \partial_x \mathbf{f}(\mathbf{q}) + \partial_x \mathbf{h}(\mathbf{q}(\cdot, \partial_x \mathbf{q})) = \mathbf{s}(\mathbf{q})$

Time discretization $t_n = n\Delta t$, discrete volumes $I_j = [x_j - \frac{1}{2}\Delta x, x_j + \frac{1}{2}\Delta x] =: [x_{j-1/2}, x_{j+1/2}]$

Dest offer						
Basics of finite difference methods						
	00000					
Conservation laws	Finite volume methods	Upwind schemes	Meshes and adaptation	References		

Assume $\partial_t \mathbf{q} + \partial_x \mathbf{f}(\mathbf{q}) + \partial_x \mathbf{h}(\mathbf{q}(\cdot, \partial_x \mathbf{q})) = \mathbf{s}(\mathbf{q})$ Time discretization $t_n = n\Delta t$, discrete volumes $l_j = [x_j - \frac{1}{2}\Delta x, x_j + \frac{1}{2}\Delta x] =: [x_{j-1/2}, x_{j+1/2}]$ Using approximations $\mathbf{Q}_j(t) \approx \frac{1}{|l_j|} \int_{l_j} \mathbf{q}(\mathbf{x}, t) dx$, $\mathbf{s}(\mathbf{Q}_j(t)) \approx \frac{1}{|l_j|} \int_{l_j} \mathbf{s}(\mathbf{q}(\mathbf{x}, t)) dx$

and numerical fluxes

$$\mathsf{F}\left(\mathsf{Q}_{j}(t),\mathsf{Q}_{j+1}(t)\right) \approx \mathsf{f}(\mathsf{q}(x_{j+1/2},t)), \quad \mathsf{H}\left(\mathsf{Q}_{j}(t),\mathsf{Q}_{j+1}(t)\right) \approx \mathsf{h}(\mathsf{q}(x_{j+1/2},t),\nabla\mathsf{q}(x_{j+1/2},t))$$

Conservation laws	Finite volume methods	Upwind schemes	Meshes and adaptation	References
	00000			
Basics of finite difference	methods			
D 1 .1				

Assume
$$\partial_t \mathbf{q} + \partial_x \mathbf{f}(\mathbf{q}) + \partial_x \mathbf{h}(\mathbf{q}(\cdot, \partial_x \mathbf{q})) = \mathbf{s}(\mathbf{q})$$

Time discretization $t_n = n\Delta t$, discrete volumes
 $I_j = [x_j - \frac{1}{2}\Delta x, x_j + \frac{1}{2}\Delta x] =: [x_{j-1/2}, x_{j+1/2}]$
Using approximations $\mathbf{Q}_j(t) \approx \frac{1}{|I_j|} \int_{I_j} \mathbf{q}(\mathbf{x}, t) dx$, $\mathbf{s}(\mathbf{Q}_j(t)) \approx \frac{1}{|I_j|} \int_{I_j} \mathbf{s}(\mathbf{q}(\mathbf{x}, t)) dx$

and numerical fluxes

$$\begin{split} \mathbf{F}\left(\mathbf{Q}_{j}(t),\mathbf{Q}_{j+1}(t)\right) &\approx \mathbf{f}(\mathbf{q}(x_{j+1/2},t)), \quad \mathbf{H}\left(\mathbf{Q}_{j}(t),\mathbf{Q}_{j+1}(t)\right) \approx \mathbf{h}(\mathbf{q}(x_{j+1/2},t),\nabla\mathbf{q}(x_{j+1/2},t)) \\ \text{yields after integration (Gauss theorem)} \end{split}$$

$$\begin{aligned} \mathbf{Q}_{j}(t_{n+1}) &= \mathbf{Q}_{j}(t_{n}) - \frac{1}{\Delta x} \int_{t_{n}}^{t_{n+1}} \left[\mathbf{F} \left(\mathbf{Q}_{j}(t), \mathbf{Q}_{j+1}(t) \right) - \mathbf{F} \left(\mathbf{Q}_{j-1}(t), \mathbf{Q}_{j}(t) \right) \right] dt - \\ & \frac{1}{\Delta x} \int_{t_{n}}^{t_{n+1}} \left[\mathbf{H} \left(\mathbf{Q}_{j}(t), \mathbf{Q}_{j+1}(t) \right) - \mathbf{H} \left(\mathbf{Q}_{j-1}(t), \mathbf{Q}_{j}(t) \right) \right] dt + \int_{t_{n}}^{t_{n+1}} \mathbf{s}(\mathbf{Q}_{j}(t)) dt \end{aligned}$$

Conservation laws	Finite volume methods	Upwind schemes	Meshes and adaptation	References
	00000			
Basics of finite difference	methods			
D 1 .1				

Assume
$$\partial_t \mathbf{q} + \partial_x \mathbf{f}(\mathbf{q}) + \partial_x \mathbf{h}(\mathbf{q}(\cdot, \partial_x \mathbf{q})) = \mathbf{s}(\mathbf{q})$$

Time discretization $t_n = n\Delta t$, discrete volumes
 $I_j = [x_j - \frac{1}{2}\Delta x, x_j + \frac{1}{2}\Delta x] =: [x_{j-1/2}, x_{j+1/2}]$
Using approximations $\mathbf{Q}_j(t) \approx \frac{1}{|I_j|} \int_{I_j} \mathbf{q}(\mathbf{x}, t) dx$, $\mathbf{s}(\mathbf{Q}_j(t)) \approx \frac{1}{|I_j|} \int_{I_j} \mathbf{s}(\mathbf{q}(\mathbf{x}, t)) dx$

and numerical fluxes

$$\begin{split} & \mathsf{F}\left(\mathsf{Q}_{j}(t),\mathsf{Q}_{j+1}(t)\right) \approx \mathsf{f}(\mathsf{q}(x_{j+1/2},t)), \quad \mathsf{H}\left(\mathsf{Q}_{j}(t),\mathsf{Q}_{j+1}(t)\right) \approx \mathsf{h}(\mathsf{q}(x_{j+1/2},t),\nabla\mathsf{q}(x_{j+1/2},t)) \\ & \text{ yields after integration (Gauss theorem)} \end{split}$$

$$\begin{aligned} \mathbf{Q}_{j}(t_{n+1}) &= \mathbf{Q}_{j}(t_{n}) - \frac{1}{\Delta x} \int_{t_{n}}^{t_{n+1}} \left[\mathbf{F} \left(\mathbf{Q}_{j}(t), \mathbf{Q}_{j+1}(t) \right) - \mathbf{F} \left(\mathbf{Q}_{j-1}(t), \mathbf{Q}_{j}(t) \right) \right] dt - \\ & \frac{1}{\Delta x} \int_{t_{n}}^{t_{n+1}} \left[\mathbf{H} \left(\mathbf{Q}_{j}(t), \mathbf{Q}_{j+1}(t) \right) - \mathbf{H} \left(\mathbf{Q}_{j-1}(t), \mathbf{Q}_{j}(t) \right) \right] dt + \int_{t_{n}}^{t_{n+1}} \mathbf{s}(\mathbf{Q}_{j}(t)) dt \end{aligned}$$

For instance:

$$\begin{split} \mathbf{Q}_{j}^{n+1} &= \mathbf{Q}_{j}^{n} - \frac{\Delta t}{\Delta x} \left[\mathbf{F} \left(\mathbf{Q}_{j}^{n}, \mathbf{Q}_{j+1}^{n} \right) - \mathbf{F} \left(\mathbf{Q}_{j-1}^{n}, \mathbf{Q}_{j}^{n} \right) \right] - \\ & \frac{\Delta t}{\Delta x} \left[\mathbf{H} \left(\mathbf{Q}_{j}^{n}, \mathbf{Q}_{j+1}^{n} \right) - \mathbf{H} \left(\mathbf{Q}_{j-1}^{n}, \mathbf{Q}_{j}^{n} \right) \right] + \Delta t \mathbf{s}(\mathbf{Q}_{j}^{n}) dt \end{split}$$

Conservation laws	Finite volume methods	Upwind schemes	Meshes and adaptation	References
	00000			
Basics of finite difference	methods			
<u> </u>				

Some classical definitions

(2s+1)-point difference scheme of the form

$$\mathbf{Q}_{j}^{n+1} = \mathcal{H}^{(\Delta t)}(\mathbf{Q}_{j-s}^{n},\ldots,\mathbf{Q}_{j+s}^{n})$$

Conservation laws	Finite volume methods	Upwind schemes	Meshes and adaptation	References
	00000			
Basics of finite difference r	methods			
C				

Some classical definitions

(2s+1)-point difference scheme of the form

$$\mathbf{Q}_{j}^{n+1} = \mathcal{H}^{(\Delta t)}(\mathbf{Q}_{j-s}^{n},\ldots,\mathbf{Q}_{j+s}^{n})$$

Definition (Stability)

For each time τ there is a constant C_S and a value $n_0 \in \mathbb{N}$ such that $\|\mathcal{H}^{(\Delta t)}(\mathbf{Q}^n)\| \leq C_S$ for all $n\Delta t \leq \tau$, $n < n_0$

Conservation laws	Finite volume methods	Upwind schemes	Meshes and adaptation	References
	00000			
Basics of finite difference	methods			
<u> </u>				

Some classical definitions

(2s + 1)-point difference scheme of the form

$$\mathbf{Q}_{j}^{n+1} = \mathcal{H}^{(\Delta t)}(\mathbf{Q}_{j-s}^{n},\ldots,\mathbf{Q}_{j+s}^{n})$$

Definition (Stability)

For each time τ there is a constant C_S and a value $n_0 \in \mathbb{N}$ such that $\|\mathcal{H}^{(\Delta t)}(\mathbf{Q}^n)\| \leq C_S$ for all $n\Delta t \leq \tau$, $n < n_0$

Definition (Consistency)

If the local truncation error

$$\mathcal{L}^{(\Delta t)}(\mathsf{x},t) := rac{1}{\Delta t} \left[\mathsf{q}(\mathsf{x},t+\Delta t) - \mathcal{H}^{(\Delta t)}(\mathsf{q}(\cdot,t))
ight]$$

satisfies $\|\mathcal{L}^{(\Delta t)}(\cdot,t)\|
ightarrow 0$ as $\Delta t
ightarrow 0$

Conservation laws	Finite volume methods	Upwind schemes	Meshes and adaptation	References
	00000			
Basics of finite difference	methods			
<u> </u>				

Some classical definitions

(2s+1)-point difference scheme of the form

$$\mathbf{Q}_{j}^{n+1} = \mathcal{H}^{(\Delta t)}(\mathbf{Q}_{j-s}^{n},\ldots,\mathbf{Q}_{j+s}^{n})$$

Definition (Stability)

For each time τ there is a constant C_S and a value $n_0 \in \mathbb{N}$ such that $\|\mathcal{H}^{(\Delta t)}(\mathbf{Q}^n)\| \leq C_S$ for all $n\Delta t \leq \tau$, $n < n_0$

Definition (Consistency)

If the local truncation error

$$\mathcal{L}^{(\Delta t)}(\mathsf{x},t) \coloneqq rac{1}{\Delta t} \left[\mathsf{q}(\mathsf{x},t+\Delta t) - \mathcal{H}^{(\Delta t)}(\mathsf{q}(\cdot,t))
ight]$$

satisfies $\|\mathcal{L}^{(\Delta t)}(\cdot,t)\|
ightarrow 0$ as $\Delta t
ightarrow 0$

Definition (Convergence)

If the global error $\mathcal{E}^{(\Delta t)}(\mathbf{x},t) := \mathbf{Q}(\mathbf{x},t) - \mathbf{q}(\mathbf{x},t)$ satisfies $\|\mathcal{E}^{(\Delta t)}(\cdot,t)\| \to 0$ as $\Delta t \to 0$ for all admissible initial data $\mathbf{q}_0(\mathbf{x})$

Some classical definitions II

Definition (Order of accuracy)

 $\mathcal{H}(\cdot)$ is accurate of order o if for all sufficiently smooth initial data $\mathbf{q}_0(\mathbf{x})$, there is a constant C_L , such that the local truncation error satisfies $\|\mathcal{L}^{(\Delta t)}(\cdot, t)\| \leq C_L \Delta t^o$ for all $\Delta t < \Delta t_0$, $t \leq \tau$

 Conservation laws
 Finite volume methods
 Upwind schemes
 Meshes and adaptation
 Reference

 000000
 00●00
 0000000000
 0000
 000

 Basics of finite difference methods
 0000000000
 0000
 000

Some classical definitions II

Definition (Order of accuracy)

 $\mathcal{H}(\cdot)$ is accurate of order o if for all sufficiently smooth initial data $\mathbf{q}_0(\mathbf{x})$, there is a constant C_L , such that the local truncation error satisfies $\|\mathcal{L}^{(\Delta t)}(\cdot, t)\| \leq C_L \Delta t^o$ for all $\Delta t < \Delta t_0$, $t \leq \tau$

Definition (Conservative form)

If $\mathcal{H}(\cdot)$ can be written in the form

$$\mathbf{Q}_{j}^{n+1} = \mathbf{Q}_{j}^{n} - \frac{\Delta t}{\Delta x} \left(\mathbf{F}(\mathbf{Q}_{j-s+1}^{n}, \dots, \mathbf{Q}_{j+s}^{n}) - \mathbf{F}(\mathbf{Q}_{j-s}^{n}, \dots, \mathbf{Q}_{j+s-1}^{n}) \right)$$

 Conservation laws
 Finite volume methods
 Upwind schemes
 Meshes and adaptation
 References

 00000
 00●00
 0000000000
 0000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

Some classical definitions II

Definition (Order of accuracy)

 $\mathcal{H}(\cdot)$ is accurate of order o if for all sufficiently smooth initial data $\mathbf{q}_0(\mathbf{x})$, there is a constant C_L , such that the local truncation error satisfies $\|\mathcal{L}^{(\Delta t)}(\cdot, t)\| \leq C_L \Delta t^o$ for all $\Delta t < \Delta t_0$, $t \leq \tau$

Definition (Conservative form)

If $\mathcal{H}(\cdot)$ can be written in the form

$$\mathbf{Q}_{j}^{n+1} = \mathbf{Q}_{j}^{n} - \frac{\Delta t}{\Delta x} \left(\mathbf{F}(\mathbf{Q}_{j-s+1}^{n}, \dots, \mathbf{Q}_{j+s}^{n}) - \mathbf{F}(\mathbf{Q}_{j-s}^{n}, \dots, \mathbf{Q}_{j+s-1}^{n}) \right)$$

A conservative scheme satisfies

$$\sum_{j \in \mathbb{Z}} \mathbf{Q}_j^{n+1} = \sum_{j \in \mathbb{Z}} \mathbf{Q}_j^n$$

 Conservation laws
 Finite volume methods
 Upwind schemes
 Meshes and adaptation
 Reference

 00000
 00000
 000000000
 0000
 0000

 Basics of finite difference methods
 0000000000
 0000
 0000

Some classical definitions II

Definition (Order of accuracy)

 $\mathcal{H}(\cdot)$ is accurate of order o if for all sufficiently smooth initial data $\mathbf{q}_0(\mathbf{x})$, there is a constant C_L , such that the local truncation error satisfies $\|\mathcal{L}^{(\Delta t)}(\cdot, t)\| \leq C_L \Delta t^o$ for all $\Delta t < \Delta t_0$, $t \leq \tau$

Definition (Conservative form)

If $\mathcal{H}(\cdot)$ can be written in the form

$$\mathbf{Q}_{j}^{n+1} = \mathbf{Q}_{j}^{n} - \frac{\Delta t}{\Delta x} \left(\mathbf{F}(\mathbf{Q}_{j-s+1}^{n}, \dots, \mathbf{Q}_{j+s}^{n}) - \mathbf{F}(\mathbf{Q}_{j-s}^{n}, \dots, \mathbf{Q}_{j+s-1}^{n}) \right)$$

A conservative scheme satisfies

$$\sum_{j\,\in\mathbb{Z}} {f Q}_j^{n+1} = \sum_{j\,\in\mathbb{Z}} {f Q}_j^n$$

Definition (Consistency of a conservative method) If the numerical flux satisfies $F(q,\ldots,q)=f(q)$ for all $q\in S$

Conservation laws	Finite volume methods	Upwind schemes	Meshes and adaptation	References		
	00000					
Splitting methods, second	Splitting methods, second derivatives					
Splitting I	methods					

$$\begin{aligned} \mathcal{H}^{(\Delta t)} : & \partial_t \mathbf{q} + \nabla \cdot \mathbf{f}(\mathbf{q}) = 0 , \quad \text{IC: } \mathbf{Q}(t_m) \stackrel{\Delta t}{\Longrightarrow} \tilde{\mathbf{Q}} \\ \mathcal{S}^{(\Delta t)} : & \partial_t \mathbf{q} = \mathbf{s}(\mathbf{q}) , \quad \text{IC: } \tilde{\mathbf{Q}} \stackrel{\Delta t}{\Longrightarrow} \mathbf{Q}(t_m + \Delta t) \end{aligned}$$

Conservation laws	Finite volume methods	Upwind schemes	Meshes and adaptation	References		
	00000					
Splitting methods, second derivatives						
Splitting r	nethods					

$$\begin{aligned} \mathcal{H}^{(\Delta t)} : & \partial_t \mathbf{q} + \nabla \cdot \mathbf{f}(\mathbf{q}) = 0 , \quad \text{IC: } \mathbf{Q}(t_m) \stackrel{\Delta t}{\Longrightarrow} \tilde{\mathbf{Q}} \\ \mathcal{S}^{(\Delta t)} : & \partial_t \mathbf{q} = \mathbf{s}(\mathbf{q}) , \quad \text{IC: } \tilde{\mathbf{Q}} \stackrel{\Delta t}{\Longrightarrow} \mathbf{Q}(t_m + \Delta t) \end{aligned}$$

1st-order Godunov splitting: $\mathbf{Q}(t_m + \Delta t) = S^{(\Delta t)} \mathcal{H}^{(\Delta t)}(\mathbf{Q}(t_m))$,

Conservation laws	Finite volume methods	Upwind schemes	Meshes and adaptation	References		
	00000					
Splitting methods, second derivatives						
Splitting r	nethods					

$$\begin{aligned} \mathcal{H}^{(\Delta t)} : & \partial_t \mathbf{q} + \nabla \cdot \mathbf{f}(\mathbf{q}) = 0 , \quad \text{IC: } \mathbf{Q}(t_m) \stackrel{\Delta t}{\Longrightarrow} \tilde{\mathbf{Q}} \\ \mathcal{S}^{(\Delta t)} : & \partial_t \mathbf{q} = \mathbf{s}(\mathbf{q}) , \quad \text{IC: } \tilde{\mathbf{Q}} \stackrel{\Delta t}{\Longrightarrow} \mathbf{Q}(t_m + \Delta t) \end{aligned}$$

1st-order Godunov splitting: $\mathbf{Q}(t_m + \Delta t) = S^{(\Delta t)} \mathcal{H}^{(\Delta t)}(\mathbf{Q}(t_m))$, 2nd-order Strang splitting : $\mathbf{Q}(t_m + \Delta t) = S^{(\frac{1}{2}\Delta t)} \mathcal{H}^{(\Delta t)} S^{(\frac{1}{2}\Delta t)}(\mathbf{Q}(t_m))$

Conservation laws	Finite volume methods	Upwind schemes	Meshes and adaptation	References		
	00000					
Splitting methods, second derivatives						
Splitting r	nethods					

$$\begin{aligned} \mathcal{H}^{(\Delta t)} &: \quad \partial_t \mathbf{q} + \nabla \cdot \mathbf{f}(\mathbf{q}) = 0 , \quad \text{IC: } \mathbf{Q}(t_m) \stackrel{\Delta t}{\Longrightarrow} \tilde{\mathbf{Q}} \\ \mathcal{S}^{(\Delta t)} &: \quad \partial_t \mathbf{q} = \mathbf{s}(\mathbf{q}) , \quad \text{IC: } \tilde{\mathbf{Q}} \stackrel{\Delta t}{\Longrightarrow} \mathbf{Q}(t_m + \Delta t) \end{aligned}$$

1st-order Godunov splitting: $\mathbf{Q}(t_m + \Delta t) = S^{(\Delta t)} \mathcal{H}^{(\Delta t)}(\mathbf{Q}(t_m))$, 2nd-order Strang splitting : $\mathbf{Q}(t_m + \Delta t) = S^{(\frac{1}{2}\Delta t)} \mathcal{H}^{(\Delta t)} S^{(\frac{1}{2}\Delta t)}(\mathbf{Q}(t_m))$

1st-order dimensional splitting for
$$\mathcal{H}^{(\cdot)}$$
:
 $\mathcal{X}_{1}^{(\Delta t)}: \quad \partial_{t}\mathbf{q} + \partial_{x_{1}}\mathbf{f}_{1}(\mathbf{q}) = 0 , \quad \text{IC: } \mathbf{Q}(t_{m}) \stackrel{\Delta t}{\Longrightarrow} \quad \tilde{\mathbf{Q}}^{1/2}$
 $\mathcal{X}_{2}^{(\Delta t)}: \quad \partial_{t}\mathbf{q} + \partial_{x_{2}}\mathbf{f}_{2}(\mathbf{q}) = 0 , \quad \text{IC: } \tilde{\mathbf{Q}}^{1/2} \stackrel{\Delta t}{\Longrightarrow} \quad \tilde{\mathbf{Q}}$
[Toro, 1999]

Conservation laws	Finite volume methods	Upwind schemes	Meshes and adaptation	References	
	00000				
Splitting methods, second derivatives					

Conservative scheme for diffusion equation

Consider $\partial_t q - c\Delta q = 0$ with $c \in \mathbb{R}^+$

 Conservation laws
 Finite volume methods
 Upwind schemes
 Meshes and adaptation
 References

 000000
 00000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 00000
 0000
 00000

Conservative scheme for diffusion equation

Consider $\partial_t q - c\Delta q = 0$ with $c \in \mathbb{R}^+$, which is readily discretized as

$$Q_{jk}^{n+1} = Q_{jk}^{n} + c \frac{\Delta t}{\Delta x_1^2} \left(Q_{j+1,k}^n - 2Q_{jk}^n + Q_{j-1,k}^n \right) + c \frac{\Delta t}{\Delta x_2^2} \left(Q_{j,k+1}^n - 2Q_{jk}^n + Q_{j,k-1}^n \right)$$

 Conservation laws
 Finite volume methods
 Upwind schemes
 Meshes and adaptation
 References

 00000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000

Conservative scheme for diffusion equation

Consider $\partial_t q - c\Delta q = 0$ with $c \in \mathbb{R}^+$, which is readily discretized as $Q_{jk}^{n+1} = Q_{jk}^n + c \frac{\Delta t}{\Delta x_1^2} \left(Q_{j+1,k}^n - 2Q_{jk}^n + Q_{j-1,k}^n \right) + c \frac{\Delta t}{\Delta x_2^2} \left(Q_{j,k+1}^n - 2Q_{jk}^n + Q_{j,k-1}^n \right)$

or conservatively

$$Q_{jk}^{n+1} = Q_{jk}^{n} + c \frac{\Delta t}{\Delta x_1} \left(H_{j+\frac{1}{2},k}^1 - H_{j-\frac{1}{2},k}^1 \right) + c \frac{\Delta t}{\Delta x_2} \left(H_{j,k+\frac{1}{2}}^2 - H_{j,k-\frac{1}{2}}^2 \right)$$

 Conservation laws
 Finite volume methods
 Upwind schemes
 Meshes and adaptation
 References

 00000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000

Conservative scheme for diffusion equation

Consider $\partial_t q - c\Delta q = 0$ with $c \in \mathbb{R}^+$, which is readily discretized as $Q_{jk}^{n+1} = Q_{jk}^n + c \frac{\Delta t}{\Delta x_1^2} \left(Q_{j+1,k}^n - 2Q_{jk}^n + Q_{j-1,k}^n \right) + c \frac{\Delta t}{\Delta x_2^2} \left(Q_{j,k+1}^n - 2Q_{jk}^n + Q_{j,k-1}^n \right)$

or conservatively

$$Q_{jk}^{n+1} = Q_{jk}^{n} + c \frac{\Delta t}{\Delta x_1} \left(H_{j+\frac{1}{2},k}^1 - H_{j-\frac{1}{2},k}^1 \right) + c \frac{\Delta t}{\Delta x_2} \left(H_{j,k+\frac{1}{2}}^2 - H_{j,k-\frac{1}{2}}^2 \right)$$

Von Neumann stability analysis: Insert single eigenmode $\hat{Q}(t)e^{ik_1x_1}e^{ik_2x_2}$ into discretization

$$\begin{split} \hat{Q}^{n+1} &= \hat{Q}^n + C_1 \left(\hat{Q}^n e^{ik_1 \Delta x_1} - 2\hat{Q}^n + \hat{Q}^n e^{-ik_1 \Delta x_1} \right) + C_2 \left(\hat{Q}^n e^{ik_2 \Delta x_2} - 2\hat{Q}^n + \hat{Q}^n e^{-ik_2 \Delta x_2} \right) \\ \text{with } C_{\iota} &= c \frac{\Delta t}{\Delta x_{\iota}^2}, \ \iota = 1, 2, \end{split}$$

 Conservation laws
 Finite volume methods
 Upwind schemes
 Meshes and adaptation
 References

 000000
 00000
 0000
 0000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 <

Conservative scheme for diffusion equation

Consider $\partial_t q - c\Delta q = 0$ with $c \in \mathbb{R}^+$, which is readily discretized as $Q_{jk}^{n+1} = Q_{jk}^n + c \frac{\Delta t}{\Delta x_1^2} \left(Q_{j+1,k}^n - 2Q_{jk}^n + Q_{j-1,k}^n \right) + c \frac{\Delta t}{\Delta x_2^2} \left(Q_{j,k+1}^n - 2Q_{jk}^n + Q_{j,k-1}^n \right)$

or conservatively

$$Q_{jk}^{n+1} = Q_{jk}^{n} + c \frac{\Delta t}{\Delta x_1} \left(H_{j+\frac{1}{2},k}^1 - H_{j-\frac{1}{2},k}^1 \right) + c \frac{\Delta t}{\Delta x_2} \left(H_{j,k+\frac{1}{2}}^2 - H_{j,k-\frac{1}{2}}^2 \right)$$

Von Neumann stability analysis: Insert single eigenmode $\hat{Q}(t)e^{ik_1x_1}e^{ik_2x_2}$ into discretization

$$\begin{split} \hat{Q}^{n+1} &= \hat{Q}^n + C_1 \left(\hat{Q}^n e^{ik_1 \Delta x_1} - 2\hat{Q}^n + \hat{Q}^n e^{-ik_1 \Delta x_1} \right) + C_2 \left(\hat{Q}^n e^{ik_2 \Delta x_2} - 2\hat{Q}^n + \hat{Q}^n e^{-ik_2 \Delta x_2} \right) \\ \text{with } C_{\iota} &= c \frac{\Delta t}{\Delta x_{\iota}^2}, \ \iota = 1, 2, \text{ which gives after inserting } e^{ik_{\iota} x_{\iota}} = \cos(k_{\iota} x_{\iota}) + i \sin(k_{\iota} x_{\iota}) \\ \hat{Q}^{n+1} &= \hat{Q}^n \left(1 + 2C_1 (\cos(k_1 \Delta x_1) - 1) + 2C_2 (\cos(k_2 \Delta x_2) - 1) \right) \end{split}$$

 Conservation laws
 Finite volume methods
 Upwind schemes
 Meshes and adaptation
 References

 000000
 00000
 0000
 0000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 <

Conservative scheme for diffusion equation

Consider $\partial_t q - c\Delta q = 0$ with $c \in \mathbb{R}^+$, which is readily discretized as $Q_{jk}^{n+1} = Q_{jk}^n + c \frac{\Delta t}{\Delta x_1^2} \left(Q_{j+1,k}^n - 2Q_{jk}^n + Q_{j-1,k}^n \right) + c \frac{\Delta t}{\Delta x_2^2} \left(Q_{j,k+1}^n - 2Q_{jk}^n + Q_{j,k-1}^n \right)$

or conservatively

$$Q_{jk}^{n+1} = Q_{jk}^{n} + c \frac{\Delta t}{\Delta x_1} \left(H_{j+\frac{1}{2},k}^1 - H_{j-\frac{1}{2},k}^1 \right) + c \frac{\Delta t}{\Delta x_2} \left(H_{j,k+\frac{1}{2}}^2 - H_{j,k-\frac{1}{2}}^2 \right)$$

Von Neumann stability analysis: Insert single eigenmode $\hat{Q}(t)e^{ik_1x_1}e^{ik_2x_2}$ into discretization

$$\begin{split} \hat{Q}^{n+1} &= \hat{Q}^n + C_1 \left(\hat{Q}^n e^{ik_1 \Delta x_1} - 2\hat{Q}^n + \hat{Q}^n e^{-ik_1 \Delta x_1} \right) + C_2 \left(\hat{Q}^n e^{ik_2 \Delta x_2} - 2\hat{Q}^n + \hat{Q}^n e^{-ik_2 \Delta x_2} \right) \\ \text{with } C_{\iota} &= c \frac{\Delta t}{\Delta x_{\iota}^2}, \ \iota = 1, 2, \text{ which gives after inserting } e^{ik_{\iota} x_{\iota}} = \cos(k_{\iota} x_{\iota}) + i \sin(k_{\iota} x_{\iota}) \\ \hat{Q}^{n+1} &= \hat{Q}^n \left(1 + 2C_1 (\cos(k_1 \Delta x_1) - 1) + 2C_2 (\cos(k_2 \Delta x_2) - 1) \right) \end{split}$$

Stability requires

$$|1 + 2C_1(\cos(k_1\Delta x_1) - 1) + 2C_2(\cos(k_2\Delta x_2) - 1)| \le 1$$

 Conservation laws
 Finite volume methods
 Upwind schemes
 Meshes and adaptation
 References

 000000
 00000
 00000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 00000
 0000
 00000
 <td

Conservative scheme for diffusion equation

Consider $\partial_t q - c\Delta q = 0$ with $c \in \mathbb{R}^+$, which is readily discretized as $Q_{jk}^{n+1} = Q_{jk}^n + c \frac{\Delta t}{\Delta x_1^2} \left(Q_{j+1,k}^n - 2Q_{jk}^n + Q_{j-1,k}^n \right) + c \frac{\Delta t}{\Delta x_2^2} \left(Q_{j,k+1}^n - 2Q_{jk}^n + Q_{j,k-1}^n \right)$

or conservatively

$$Q_{jk}^{n+1} = Q_{jk}^{n} + c \frac{\Delta t}{\Delta x_1} \left(H_{j+\frac{1}{2},k}^1 - H_{j-\frac{1}{2},k}^1 \right) + c \frac{\Delta t}{\Delta x_2} \left(H_{j,k+\frac{1}{2}}^2 - H_{j,k-\frac{1}{2}}^2 \right)$$

Von Neumann stability analysis: Insert single eigenmode $\hat{Q}(t)e^{ik_1x_1}e^{ik_2x_2}$ into discretization

$$\begin{split} \hat{Q}^{n+1} &= \hat{Q}^n + C_1 \left(\hat{Q}^n e^{ik_1 \Delta x_1} - 2\hat{Q}^n + \hat{Q}^n e^{-ik_1 \Delta x_1} \right) + C_2 \left(\hat{Q}^n e^{ik_2 \Delta x_2} - 2\hat{Q}^n + \hat{Q}^n e^{-ik_2 \Delta x_2} \right) \\ \text{with } C_{\iota} &= c \frac{\Delta t}{\Delta x_{\iota}^2}, \ \iota = 1, 2, \text{ which gives after inserting } e^{ik_{\iota} x_{\iota}} = \cos(k_{\iota} x_{\iota}) + i \sin(k_{\iota} x_{\iota}) \\ \hat{Q}^{n+1} &= \hat{Q}^n \left(1 + 2C_1 (\cos(k_1 \Delta x_1) - 1) + 2C_2 (\cos(k_2 \Delta x_2) - 1) \right) \end{split}$$

Stability requires

$$|1 + 2C_1(\cos(k_1\Delta x_1) - 1) + 2C_2(\cos(k_2\Delta x_2) - 1)| \le 1$$

i.e.

$$|1 - 4C_1 - 4C_2| \le 1$$

from which we derive the stability condition

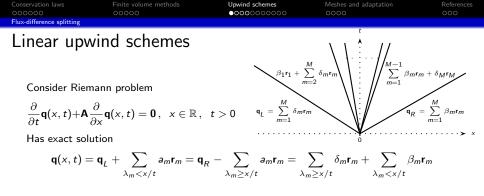
$$0 \leq c \left(rac{\Delta t}{\Delta x_1^2} + rac{\Delta t}{\Delta x_2^2}
ight) \leq rac{1}{2}$$

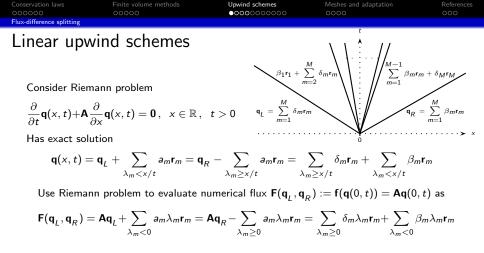
Conservation laws	Upwind schemes	Meshes and adaptation	References
	• 000 0000000		
Flux-difference splitting			

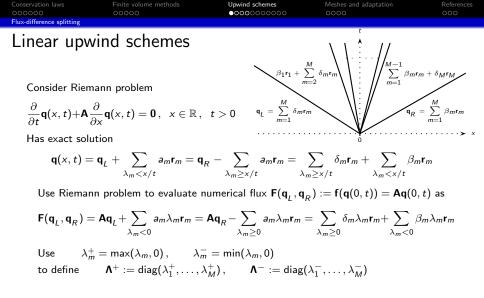
Linear upwind schemes

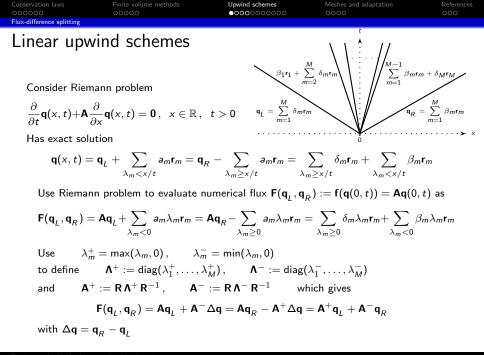
Consider Riemann problem

$$rac{\partial}{\partial t}\mathbf{q}(x,t) + \mathbf{A}rac{\partial}{\partial x}\mathbf{q}(x,t) = \mathbf{0}, \ x \in \mathbb{R}, \ t > 0$$









Conservation laws Finite volume method		Upwind schemes	nes Meshes and adaptation	References
		000000000		
Flux-difference splitting				
	12			

Flux difference splitting

Godunov-type scheme with $\Delta \mathbf{Q}_{j+1/2}^n = \mathbf{Q}_{j+1}^n - \mathbf{Q}_j^n$

$$\mathbf{Q}_{j}^{n+1} = \mathbf{Q}_{j}^{n} - \frac{\Delta t}{\Delta x} \left(\mathbf{A}^{-} \Delta \mathbf{Q}_{j+1/2}^{n} + \mathbf{A}^{+} \Delta \mathbf{Q}_{j-1/2}^{n} \right)$$

Flux-difference splitting			
	0000000000		
Conservation laws	Upwind schemes	Meshes and adaptation	References

Flux difference splitting

Godunov-type scheme with $\Delta \mathbf{Q}_{j+1/2}^n = \mathbf{Q}_{j+1}^n - \mathbf{Q}_{j}^n$

$$\mathbf{Q}_{j}^{n+1} = \mathbf{Q}_{j}^{n} - \frac{\Delta t}{\Delta x} \left(\mathbf{A}^{-} \Delta \mathbf{Q}_{j+1/2}^{n} + \mathbf{A}^{+} \Delta \mathbf{Q}_{j-1/2}^{n} \right)$$

Use linearization $\bar{f}(\bar{q}) = \hat{A}(q_L, q_R)\bar{q}$ and construct scheme for nonlinear problem as

$$\mathbf{Q}_{j}^{n+1} = \mathbf{Q}_{j}^{n} - \frac{\Delta t}{\Delta x} \left(\hat{\mathbf{A}}^{-}(\mathbf{Q}_{j}^{n},\mathbf{Q}_{j+1}^{n}) \Delta \mathbf{Q}_{j+\frac{1}{2}}^{n} + \hat{\mathbf{A}}^{+}(\mathbf{Q}_{j-1}^{n},\mathbf{Q}_{j}^{n}) \Delta \mathbf{Q}_{j-\frac{1}{2}}^{n} \right)$$

Flux-difference splitting				
		0000000000		
Conservation laws	Finite volume methods	Upwind schemes	Meshes and adaptation	References

Flux difference splitting

Godunov-type scheme with $\Delta \mathbf{Q}_{j+1/2}^n = \mathbf{Q}_{j+1}^n - \mathbf{Q}_{j}^n$

$$\mathbf{Q}_{j}^{n+1} = \mathbf{Q}_{j}^{n} - \frac{\Delta t}{\Delta x} \left(\mathbf{A}^{-} \Delta \mathbf{Q}_{j+1/2}^{n} + \mathbf{A}^{+} \Delta \mathbf{Q}_{j-1/2}^{n} \right)$$

Use linearization $\bar{f}(\bar{q}) = \hat{A}(q_L, q_R)\bar{q}$ and construct scheme for nonlinear problem as

$$\mathbf{Q}_{j}^{n+1} = \mathbf{Q}_{j}^{n} - \frac{\Delta t}{\Delta x} \left(\hat{\mathbf{A}}^{-}(\mathbf{Q}_{j}^{n},\mathbf{Q}_{j+1}^{n}) \Delta \mathbf{Q}_{j+\frac{1}{2}}^{n} + \hat{\mathbf{A}}^{+}(\mathbf{Q}_{j-1}^{n},\mathbf{Q}_{j}^{n}) \Delta \mathbf{Q}_{j-\frac{1}{2}}^{n} \right)$$

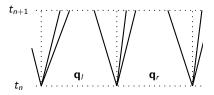
stability condition

$$\max_{j \in \mathbb{Z}} |\hat{\lambda}_{m,j+\frac{1}{2}}| \frac{\Delta t}{\Delta x} \leq 1 \;, \quad \text{for all } m = 1, \dots, M$$

[LeVeque, 1992]

Conservation laws	Upwind schemes	Meshes and adaptation	References
	0000000000		
Flux-difference splitting			

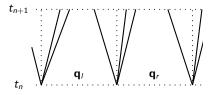
Choosing $\hat{\mathbf{A}}(\mathbf{q}_L, \mathbf{q}_R)$ [Roe, 1981]:



Conservation laws	Upwind schemes	Meshes and adaptation	References
	0000000000		
Flux-difference splitting			
– .			

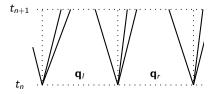
Choosing $\hat{\mathbf{A}}(\mathbf{q}_L, \mathbf{q}_R)$ [Roe, 1981]:

(i) $\hat{\mathbf{A}}(\mathbf{q}_L, \mathbf{q}_R)$ has real eigenvalues



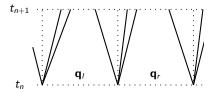
Desia engravinante Diana en achuer						
Flux-difference splitting						
		0000000000				
Conservation laws		Upwind schemes	Meshes and adaptation	References		

Choosing
$$\hat{\mathbf{A}}(\mathbf{q}_{L}, \mathbf{q}_{R})$$
 [Roe, 1981]:
(i) $\hat{\mathbf{A}}(\mathbf{q}_{L}, \mathbf{q}_{R})$ has real eigenvalues
(ii) $\hat{\mathbf{A}}(\mathbf{q}_{L}, \mathbf{q}_{R}) \rightarrow \frac{\partial \mathbf{f}(\mathbf{q})}{\partial \mathbf{q}}$ as $\mathbf{q}_{L}, \mathbf{q}_{R} \rightarrow \mathbf{q}$



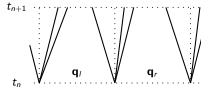
De s'e en un vincete Bienne un estrum							
Flux-difference splitting							
		0000000000					
Conservation laws	Finite volume methods	Upwind schemes	Meshes and adaptation	References			

Choosing
$$\hat{\mathbf{A}}(\mathbf{q}_{L}, \mathbf{q}_{R})$$
 [Roe, 1981]:
(i) $\hat{\mathbf{A}}(\mathbf{q}_{L}, \mathbf{q}_{R})$ has real eigenvalues
(ii) $\hat{\mathbf{A}}(\mathbf{q}_{L}, \mathbf{q}_{R}) \rightarrow \frac{\partial \mathbf{f}(\mathbf{q})}{\partial \mathbf{q}}$ as $\mathbf{q}_{L}, \mathbf{q}_{R} \rightarrow \mathbf{q}$
(iii) $\hat{\mathbf{A}}(\mathbf{q}_{L}, \mathbf{q}_{R})\Delta \mathbf{q} = \mathbf{f}(\mathbf{q}_{R}) - \mathbf{f}(\mathbf{q}_{L})$



De s'e en un vincete Bienne un estrum							
Flux-difference splitting							
		0000000000					
Conservation laws	Finite volume methods	Upwind schemes	Meshes and adaptation	References			

$$\begin{array}{ll} \text{Choosing } \hat{\mathbf{A}}(\mathbf{q}_{L},\mathbf{q}_{R}) \; [\text{Roe, 1981}]: \\ (\text{i)} & \hat{\mathbf{A}}(\mathbf{q}_{L},\mathbf{q}_{R}) \; \text{has real eigenvalues} \\ (\text{ii)} & \hat{\mathbf{A}}(\mathbf{q}_{L},\mathbf{q}_{R}) \rightarrow \frac{\partial \mathbf{f}(\mathbf{q})}{\partial \mathbf{q}} \; \text{as } \mathbf{q}_{L},\mathbf{q}_{R} \rightarrow \mathbf{q} \\ (\text{iii)} & \hat{\mathbf{A}}(\mathbf{q}_{L},\mathbf{q}_{R})\Delta \mathbf{q} = \mathbf{f}(\mathbf{q}_{R}) - \mathbf{f}(\mathbf{q}_{L}) \end{array}$$

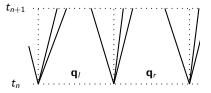


For Euler equations:

$$\hat{\rho} = \frac{\sqrt{\rho_L}\rho_R + \sqrt{\rho_R}\rho_L}{\sqrt{\rho_L} + \sqrt{\rho_R}} = \sqrt{\rho_L\rho_R} \quad \text{and} \quad \hat{\nu} = \frac{\sqrt{\rho_L}\nu_L + \sqrt{\rho_R}\nu_R}{\sqrt{\rho_L} + \sqrt{\rho_R}} \quad \text{for } \nu = u_n, H$$

De s'e en annuine de Bienne an estruit						
Flux-difference splitting						
		0000000000				
Conservation laws	Finite volume methods	Upwind schemes	Meshes and adaptation	References		

Choosing
$$\hat{A}(q_L, q_R)$$
 [Roe, 1981]:
(i) $\hat{A}(q_L, q_R)$ has real eigenvalues
(ii) $\hat{A}(q_L, q_R) \rightarrow \frac{\partial f(q)}{\partial q}$ as $q_L, q_R \rightarrow q$
(iii) $\hat{A}(q_L, q_R)\Delta q = f(q_R) - f(q_L)$



For Euler equations:

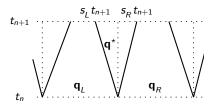
$$\hat{\rho} = \frac{\sqrt{\rho_L}\rho_R + \sqrt{\rho_R}\rho_L}{\sqrt{\rho_L} + \sqrt{\rho_R}} = \sqrt{\rho_L\rho_R} \quad \text{and} \quad \hat{\nu} = \frac{\sqrt{\rho_L}\nu_L + \sqrt{\rho_R}\nu_R}{\sqrt{\rho_L} + \sqrt{\rho_R}} \quad \text{for } \nu = u_n, H$$

Wave decomposition: $\Delta \mathbf{q} = \mathbf{q}_r - \mathbf{q}_l = \sum_m a_m \, \hat{\mathbf{r}}_m$

$$\begin{aligned} \mathbf{F}(\mathbf{q}_{L},\mathbf{q}_{R}) &= \mathbf{f}(\mathbf{q}_{L}) + \sum_{\hat{\lambda}_{m} < 0} \hat{\lambda}_{m} \ \mathbf{a}_{m} \ \hat{\mathbf{r}}_{m} = \mathbf{f}(\mathbf{q}_{R}) - \sum_{\hat{\lambda}_{m} \geq 0} \hat{\lambda}_{m} \ \mathbf{a}_{m} \ \hat{\mathbf{r}}_{m} \\ &= \frac{1}{2} \left(\mathbf{f}(\mathbf{q}_{L}) + \mathbf{f}(\mathbf{q}_{R}) - \sum_{m} |\hat{\lambda}_{m}| \ \mathbf{a}_{m} \ \hat{\mathbf{r}}_{m} \right) \end{aligned}$$

Fundamentals: Used schemes and mesh adaptation

Harten-Lax-Van Leer (HLL) approximate Riemann solver



$$\bar{\mathbf{q}}(x,t) = \begin{cases} \mathbf{q}_L, & x < \mathbf{s}_L t \\ \mathbf{q}^*, & s_L t \le x \le s_R t \\ \mathbf{q}_R, & x > \mathbf{s}_R t \end{cases}$$

$$\mathbf{\bar{r}}_{n+1} \xrightarrow{\mathbf{s}_{L} t_{n+1} \quad \mathbf{s}_{R} t_{n+1}} \mathbf{\bar{q}}_{R} \xrightarrow{\mathbf{\bar{q}}_{L}} \mathbf{\bar{q}}_{R} \xrightarrow{\mathbf{\bar{q}}_{L}} \mathbf{\bar{q}}_{L} \mathbf{\bar{q$$

$$\mathbf{F}_{HLL}(\mathbf{q}_L, \mathbf{q}_R) = \begin{cases} \frac{s_R \mathbf{f}(\mathbf{q}_L) - s_L \mathbf{f}(\mathbf{q}_R) + s_L s_R(\mathbf{q}_R - \mathbf{q}_L)}{s_R - s_L}, & s_L \leq 0 \leq s_R, \\ \mathbf{f}(\mathbf{q}_R), & 0 > s_R, \end{cases}$$

$$\mathbf{F}_{HLL}(\mathbf{q}_{L},\mathbf{q}_{R}) = \begin{cases} \mathbf{q}_{L}, & x < s_{L} t \\ \mathbf{q}_{R}^{\star}, & s_{L} t \leq x \leq s_{R} t \\ \mathbf{q}_{R}, & x > s_{R} t \end{cases}$$

$$\mathbf{F}_{HLL}(\mathbf{q}_{L},\mathbf{q}_{R}) = \begin{cases} \mathbf{f}(\mathbf{q}_{L}), & 0 < s_{L}, \\ \frac{s_{R}\mathbf{f}(\mathbf{q}_{L}) - s_{L}\mathbf{f}(\mathbf{q}_{R}) + s_{L}s_{R}(\mathbf{q}_{R} - \mathbf{q}_{L})}{s_{R} - s_{L}}, & s_{L} \leq 0 \leq s_{R}, \\ \mathbf{f}(\mathbf{q}_{R}), & 0 > s_{R}, \end{cases}$$

Euler equations:

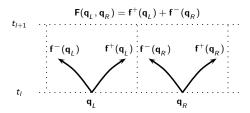
$$s_L = \min(u_{1,L} - c_L, u_{1,R} - c_R), \quad s_R = \max(u_{1,L} + c_I, u_{1,R} + c_R)$$

[Toro, 1999], HLLC: [Toro et al., 1994]

Conservation laws	Finite volume methods 00000	Upwind schemes	Meshes and adaptation	References 000
Flux-vector splitting				
Flux vecto	or splitting			

Splitting

$$\mathbf{f}(\mathbf{q}) = \mathbf{f}^+(\mathbf{q}) + \mathbf{f}^-(\mathbf{q})$$



Conservation laws		Upwind schemes	Meshes and adaptation	References	
		0000000000			
Flux-vector splitting					
Flux vector colitting					

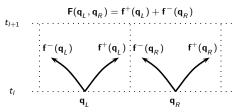
Flux vector splitting

Splitting

$$\mathbf{f}(\mathbf{q}) = \mathbf{f}^+(\mathbf{q}) + \mathbf{f}^-(\mathbf{q})$$

derived under restriction $\hat{\lambda}_m^+ \geq 0$ and $\hat{\lambda}_m^- \leq 0$ for all $m = 1, \dots, M$ for

$$\hat{A}^+(q) = \frac{\partial f^+(q)}{\partial q} \,, \quad \hat{A}^-(q) = \frac{\partial f^-(q)}{\partial q} \,.$$



Conservation laws		Upwind schemes	Meshes and adaptation	References
		0000000000		
Flux-vector splitting				
Elux	r colitting			

Flux vector splitting

Splitting

plus reproduction of regular upwinding

$$\begin{array}{rcl} \mathbf{f}^+(\mathbf{q}) &=& \mathbf{f}(\mathbf{q})\,, & \mathbf{f}^-(\mathbf{q}) &=& \mathbf{0} & \text{if} & \lambda_m \geq \mathbf{0} & \text{for all} & m=1,\ldots,M \\ \mathbf{f}^+(\mathbf{q}) &=& \mathbf{0}\,, & \mathbf{f}^-(\mathbf{q}) &=& \mathbf{f}(\mathbf{q}) & \text{if} & \lambda_m \leq \mathbf{0} & \text{for all} & m=1,\ldots,M \end{array}$$

Then use

$$\mathbf{F}(\mathbf{q}_L,\mathbf{q}_R) = \mathbf{f}^+(\mathbf{q}_L) + \mathbf{f}^-(\mathbf{q}_R)$$

Conservation laws	Finite volume methods 00000	Upwind schemes ○○○○○○○○○○○○	Meshes and adaptation	References 000
Flux-vector splitting				
Steger-Wa	arming			

Required $\mathbf{f}(\mathbf{q}) = \mathbf{A}(\mathbf{q}) \mathbf{q}$

Conservation laws	Finite volume methods	Upwind schemes	Meshes and adaptation	References 000		
Flux-vector splitting						
Storor M/	Stoger Warming					

Steger-Warming

Required $\mathbf{f}(\mathbf{q}) = \mathbf{A}(\mathbf{q}) \mathbf{q}$

$$\lambda_m^+ = rac{1}{2} \left(\lambda_m + |\lambda_m|
ight) \qquad \lambda_m^- = rac{1}{2} \left(\lambda_m - |\lambda_m|
ight)$$

$$\mathbf{A}^+(\mathbf{q}) := \mathbf{R}(\mathbf{q}) \, \mathbf{\Lambda}^+(\mathbf{q}) \, \mathbf{R}^{-1}(\mathbf{q}) , \qquad \mathbf{A}^-(\mathbf{q}) := \mathbf{R}(\mathbf{q}) \, \mathbf{\Lambda}^-(\mathbf{q}) \, \mathbf{R}^{-1}(\mathbf{q})$$

Stagar Warming				
Flux-vector splitting				
		0000000000		
Conservation laws		Upwind schemes	Meshes and adaptation	References

Steger-Warming

Required $\mathbf{f}(\mathbf{q}) = \mathbf{A}(\mathbf{q}) \, \mathbf{q}$

$$\lambda_m^+ = \frac{1}{2} \left(\lambda_m + |\lambda_m| \right) \qquad \lambda_m^- = \frac{1}{2} \left(\lambda_m - |\lambda_m| \right)$$
$$\mathbf{A}^+(\mathbf{q}) := \mathbf{R}(\mathbf{q}) \, \mathbf{\Lambda}^+(\mathbf{q}) \, \mathbf{R}^{-1}(\mathbf{q}) , \qquad \mathbf{A}^-(\mathbf{q}) := \mathbf{R}(\mathbf{q}) \, \mathbf{\Lambda}^-(\mathbf{q}) \, \mathbf{R}^{-1}(\mathbf{q})$$

Gives

$$\mathsf{f}(\mathsf{q}) = \mathsf{A}^+(\mathsf{q})\,\mathsf{q} + \mathsf{A}^-(\mathsf{q})\,\mathsf{q}$$

and the numerical flux

$$\mathsf{F}(\mathsf{q}_L,\mathsf{q}_R) = \mathsf{A}^+(\mathsf{q}_L)\,\mathsf{q}_L + \mathsf{A}^-(\mathsf{q}_R)\,\mathsf{q}_R$$

Starar Marming				
Flux-vector splitting				
		0000000000		
Conservation laws		Upwind schemes	Meshes and adaptation	References

Steger-Warming

Required $\mathbf{f}(\mathbf{q}) = \mathbf{A}(\mathbf{q}) \, \mathbf{q}$

$$\lambda_m^+ = rac{1}{2} \left(\lambda_m + |\lambda_m|
ight) \qquad \lambda_m^- = rac{1}{2} \left(\lambda_m - |\lambda_m|
ight)$$

$$\mathbf{A}^+(\mathbf{q}) := \mathbf{R}(\mathbf{q}) \, \mathbf{\Lambda}^+(\mathbf{q}) \, \mathbf{R}^{-1}(\mathbf{q}) , \qquad \mathbf{A}^-(\mathbf{q}) := \mathbf{R}(\mathbf{q}) \, \mathbf{\Lambda}^-(\mathbf{q}) \, \mathbf{R}^{-1}(\mathbf{q})$$

Gives

$$\mathsf{f}(\mathsf{q})=\mathsf{A}^+(\mathsf{q})\,\mathsf{q}+\mathsf{A}^-(\mathsf{q})\,\mathsf{q}$$

and the numerical flux

$$\mathbf{F}(\mathbf{q}_L,\mathbf{q}_R) = \mathbf{A}^+(\mathbf{q}_L)\,\mathbf{q}_L + \mathbf{A}^-(\mathbf{q}_R)\,\mathbf{q}_R$$

Jacobians of the split fluxes are identical to $\mathbf{A}^{\pm}(\mathbf{q})$ only in linear case

$$rac{\partial \mathsf{f}^{\pm}(\mathsf{q})}{\partial \mathsf{q}} = rac{\partial \left(\mathsf{A}^{\pm}(\mathsf{q})\,\mathsf{q}
ight)}{\partial \mathsf{q}} = \mathsf{A}^{\pm}(\mathsf{q}) + rac{\partial \mathsf{A}^{\pm}(\mathsf{q})}{\partial \mathsf{q}}\,\mathsf{q}$$

Further methods: Van Leer FVS [Toro, 1999], AUSM [Wada and Liou, 1997]

Conservation laws	Upwind schemes	Meshes and adaptation	References
	00000000000		
High-resolution methods			

Objective: Higher-order accuracy in smooth solution regions but no spurious oscillations near large gradients

Consistent monotone methods converge toward the entropy solution, but

Conservation laws	Finite volume methods	Upwind schemes	Meshes and adaptation	References
		00000000000		
High-resolution methods				

Objective: Higher-order accuracy in smooth solution regions but no spurious oscillations near large gradients Consistent monotone methods converge toward the entropy solution, but

Theorem

A monotone method is at most first order accurate.

Proof: [Harten et al., 1976]

Conservation laws	Upwind schemes	Meshes and adaptation	References
	000000000000		
High-resolution methods			

Objective: Higher-order accuracy in smooth solution regions but no spurious oscillations near large gradients

Consistent monotone methods converge toward the entropy solution, but

Theorem

A monotone method is at most first order accurate.

Proof: [Harten et al., 1976]

Definition (TVD property)

Scheme $\mathcal{H}^{(\Delta t)}(\mathbf{Q}^n; j)$ TVD if $TV(\mathbf{Q}^{l+1}) \leq TV(\mathbf{Q}^l)$ is satisfied for all discrete sequences \mathbf{Q}^n . Herein, $TV(\mathbf{Q}^l) := \sum_{j \in \mathbb{Z}} |\mathbf{Q}_{j+1}^l - \mathbf{Q}_j^l|$.

TVD schemes: no new extrema, local minima are non-decreasing, local maxima are non-increasing (termed *monotonicity-preserving*). *Monotonicity-preserving* higher-order schemes are at least 5-point methods. Proofs: [Harten, 1983]

Conservation laws	Upwind schemes	Meshes and adaptation	References
	000000000000		
High-resolution methods			

Objective: Higher-order accuracy in smooth solution regions but no spurious oscillations near large gradients

Consistent monotone methods converge toward the entropy solution, but

Theorem

A monotone method is at most first order accurate.

Proof: [Harten et al., 1976]

Definition (TVD property)

Scheme $\mathcal{H}^{(\Delta t)}(\mathbf{Q}^n;j)$ TVD if $\mathcal{TV}(\mathbf{Q}^{l+1}) \leq \mathcal{TV}(\mathbf{Q}^l)$ is satisfied for all discrete sequences \mathbf{Q}^n . Herein, $\mathcal{TV}(\mathbf{Q}^l) := \sum_{j \in \mathbb{Z}} |\mathbf{Q}_{j+1}^l - \mathbf{Q}_j^l|$.

TVD schemes: no new extrema, local minima are non-decreasing, local maxima are non-increasing (termed *monotonicity-preserving*). *Monotonicity-preserving* higher-order schemes are at least 5-point methods. Proofs: [Harten, 1983]

TVD concept is proven [Godlewski and Raviart, 1996] for scalar schemes only but nevertheless used to construct *high resolution* schemes. *Monotonicity-preserving scheme can converge toward non-physical weak solutions.*

Conservation laws	Upwind schemes	Meshes and adaptation	References
	00000000000		
High-resolution methods			

MUSCL slope limiting

Monotone Upwind Schemes for Conservation Laws [van Leer, 1979]

$$\begin{split} \tilde{Q}_{j+\frac{1}{2}}^{L} &= Q_{j}^{n} + \frac{1}{4} \left[\left(1 - \omega \right) \Phi_{j-\frac{1}{2}}^{+} \Delta_{j-\frac{1}{2}} + \left(1 + \omega \right) \Phi_{j+\frac{1}{2}}^{-} \Delta_{j+\frac{1}{2}} \right] \\ \tilde{Q}_{j-\frac{1}{2}}^{R} &= Q_{j}^{n} - \frac{1}{4} \left[\left(1 - \omega \right) \Phi_{j+\frac{1}{2}}^{-} \Delta_{j+\frac{1}{2}} + \left(1 + \omega \right) \Phi_{j-\frac{1}{2}}^{+} \Delta_{j-\frac{1}{2}} \right] \\ \text{with } \Delta_{j-1/2} &= Q_{j}^{n} - Q_{j-1}^{n}, \ \Delta_{j+1/2} = Q_{j+1}^{n} - Q_{j}^{n}. \end{split}$$

Conservation laws	Upwind schemes	Meshes and adaptation	References
	000000000000		
High-resolution methods			

MUSCL slope limiting

Monotone Upwind Schemes for Conservation Laws [van Leer, 1979]

$$\begin{split} \tilde{Q}_{j+\frac{1}{2}}^{L} &= Q_{j}^{n} + \frac{1}{4} \left[(1-\omega) \, \Phi_{j-\frac{1}{2}}^{+} \Delta_{j-\frac{1}{2}} + (1+\omega) \, \Phi_{j+\frac{1}{2}}^{-} \Delta_{j+\frac{1}{2}} \right] , \\ \tilde{Q}_{j-\frac{1}{2}}^{R} &= Q_{j}^{n} - \frac{1}{4} \left[(1-\omega) \, \Phi_{j+\frac{1}{2}}^{-} \Delta_{j+\frac{1}{2}} + (1+\omega) \, \Phi_{j-\frac{1}{2}}^{+} \Delta_{j-\frac{1}{2}} \right] \\ \text{with } \Delta_{j-1/2} &= Q_{j}^{n} - Q_{j-1}^{n}, \, \Delta_{j+1/2} = Q_{j+1}^{n} - Q_{j}^{n}. \\ \Phi^{+} &= \Phi \left(r^{+} , r^{+} \right) , \quad \Phi^{-} &:= \Phi \left(r^{-} , r^{-} \right) \quad \text{with} \quad r^{+} , \, := \frac{\Delta_{j+\frac{1}{2}}}{2} , \quad r^{-} , \, := \frac{\Delta_{j-\frac{1}{2}}}{2} \end{split}$$

$$\Phi_{j-\frac{1}{2}}^{+} := \Phi\left(r_{j-\frac{1}{2}}^{+}\right) \ , \quad \Phi_{j+\frac{1}{2}}^{-} := \Phi\left(r_{j+\frac{1}{2}}^{-}\right) \quad \text{with} \quad r_{j-\frac{1}{2}}^{+} := \frac{J+\frac{1}{2}}{\Delta_{j-\frac{1}{2}}} \ , \quad r_{j+\frac{1}{2}}^{-} := \frac{J-\frac{1}{2}}{\Delta_{j+\frac{1}{2}}}$$

and slope limiters, e.g., Minmod

 $\Phi(r) = \max(0,\min(r,1))$

MUSCL slope limiting

Monotone Upwind Schemes for Conservation Laws [van Leer, 1979]

$$\begin{split} \tilde{Q}_{j+\frac{1}{2}}^{L} &= Q_{j}^{n} + \frac{1}{4} \left[(1-\omega) \, \Phi_{j-\frac{1}{2}}^{+} \Delta_{j-\frac{1}{2}} + (1+\omega) \, \Phi_{j+\frac{1}{2}}^{-} \Delta_{j+\frac{1}{2}} \right] , \\ \tilde{Q}_{j-\frac{1}{2}}^{R} &= Q_{j}^{n} - \frac{1}{4} \left[(1-\omega) \, \Phi_{j+\frac{1}{2}}^{-} \Delta_{j+\frac{1}{2}} + (1+\omega) \, \Phi_{j-\frac{1}{2}}^{+} \Delta_{j-\frac{1}{2}} \right] \\ \text{with } \Delta_{j-1/2} &= Q_{j}^{n} - Q_{j-1}^{n}, \, \Delta_{j+1/2} = Q_{j+1}^{n} - Q_{j}^{n}. \\ \Phi^{+} &:= \Phi \left(r^{+} , \cdot \right) , \quad \Phi^{-} &:= \Phi \left(r^{-} , \cdot \right) \quad \text{with} \quad r^{+} , := \frac{\Delta_{j+\frac{1}{2}}}{2} , \quad r^{-} , := \frac{\Delta_{j-\frac{1}{2}}}{2} \end{split}$$

$$\Phi_{j-\frac{1}{2}}^{+} := \Phi\left(r_{j-\frac{1}{2}}^{+}\right) , \quad \Phi_{j+\frac{1}{2}}^{-} := \Phi\left(r_{j+\frac{1}{2}}^{-}\right) \quad \text{with} \quad r_{j-\frac{1}{2}}^{+} := \frac{J+2}{\Delta_{j-\frac{1}{2}}} , \quad r_{j+\frac{1}{2}}^{-} := \frac{J-2}{\Delta_{j+\frac{1}{2}}}$$

and slope limiters, e.g., Minmod

$$\Phi(r) = \max(0,\min(r,1))$$

Using a midpoint rule for temporal integration, e.g.,

$$Q_j^{\star} = Q_j^n - \frac{1}{2} \frac{\Delta t}{\Delta x} \left(F(Q_{j+1}^n, Q_j^n) - F(Q_j^n, Q_{j-1}^n) \right)$$

and constructing limited values from Q^* to be used in FV scheme gives a TVD method if

$$\frac{1}{2}\left[(1-\omega)\Phi(r)+(1+\omega)\,r\,\Phi\left(\frac{1}{r}\right)\right]<\min(2,2r)$$

is satisfied for r > 0. Proof: [Hirsch, 1988]

 Conservation laws
 Finite volume methods
 Upwind schemes
 Meshes and adaptation
 References

 00000
 00000
 00000
 0000
 0000
 000

 High-resolution methods
 V
 V
 V

Wave Propagation with flux limiting

Wave Propagation Method [LeVeque, 1997] is built on the flux differencing approach $\mathcal{A}^{\pm}\Delta := \hat{\mathbf{A}}^{\pm}(\mathbf{q}_{I}, \mathbf{q}_{R})\Delta \mathbf{q}$ and the waves $\mathcal{W}_{m} := a_{m}\hat{\mathbf{r}}_{m}$, i.e.

$$\mathcal{A}^{-} \Delta \mathbf{q} = \sum_{\hat{\lambda}_m < 0} \hat{\lambda}_m \, \mathcal{W}_m \, , \quad \mathcal{A}^{+} \Delta \mathbf{q} = \sum_{\hat{\lambda}_m \geq 0} \hat{\lambda}_m \, \mathcal{W}_m$$

 Conservation laws
 Finite volume methods
 Upwind schemes
 Meshes and adaptation
 References

 00000
 0000
 0000000000
 0000
 0000
 000

 High-resolution methods
 V
 V
 V
 V

Wave Propagation with flux limiting

Wave Propagation Method [LeVeque, 1997] is built on the flux differencing approach $\mathcal{A}^{\pm}\Delta := \hat{\mathbf{A}}^{\pm}(\mathbf{q}_{l}, \mathbf{q}_{R})\Delta \mathbf{q}$ and the waves $\mathcal{W}_{m} := a_{m}\hat{\mathbf{r}}_{m}$, i.e.

$$\mathcal{A}^{-} \Delta \mathbf{q} = \sum_{\hat{\lambda}_{m} < 0} \hat{\lambda}_{m} \mathcal{W}_{m} , \quad \mathcal{A}^{+} \Delta \mathbf{q} = \sum_{\hat{\lambda}_{m} \geq 0} \hat{\lambda}_{m} \mathcal{W}_{m}$$

Wave Propagation 1D:

$$\mathbf{Q}^{n+1} = \mathbf{Q}_{j}^{n} - \frac{\Delta t}{\Delta x} \left(\mathcal{A}^{-} \Delta_{j+\frac{1}{2}} + \mathcal{A}^{+} \Delta_{j-\frac{1}{2}} \right) - \frac{\Delta t}{\Delta x} \left(\tilde{\mathbf{F}}_{j+\frac{1}{2}} - \tilde{\mathbf{F}}_{j-\frac{1}{2}} \right)$$

with

$$\tilde{\mathsf{F}}_{j+\frac{1}{2}} = \frac{1}{2} \left| \mathcal{A} \right| \left(1 - \frac{\Delta t}{\Delta x} \left| \mathcal{A} \right| \right) \Delta_{j+\frac{1}{2}} = \frac{1}{2} \sum_{m=1}^{M} \left| \hat{\lambda}_{j+\frac{1}{2}}^{m} \right| \left(1 - \frac{\Delta t}{\Delta x} \right) \left| \hat{\lambda}_{j+\frac{1}{2}}^{m} \right| \tilde{\mathcal{W}}_{j+\frac{1}{2}}^{m}$$

 Conservation laws
 Finite volume methods
 Upwind schemes
 Meshes and adaptation
 References

 00000
 0000
 0000000000
 0000
 0000
 000

 High-resolution methods
 V
 V
 V
 V

Wave Propagation with flux limiting

Wave Propagation Method [LeVeque, 1997] is built on the flux differencing approach $\mathcal{A}^{\pm}\Delta := \hat{\mathbf{A}}^{\pm}(\mathbf{q}_{l}, \mathbf{q}_{R})\Delta \mathbf{q}$ and the waves $\mathcal{W}_{m} := a_{m}\hat{\mathbf{r}}_{m}$, i.e.

$$\mathcal{A}^{-} \Delta \mathbf{q} = \sum_{\hat{\lambda}_{m} < 0} \hat{\lambda}_{m} \mathcal{W}_{m} , \quad \mathcal{A}^{+} \Delta \mathbf{q} = \sum_{\hat{\lambda}_{m} \geq 0} \hat{\lambda}_{m} \mathcal{W}_{m}$$

Wave Propagation 1D:

$$\mathbf{Q}^{n+1} = \mathbf{Q}_{j}^{n} - \frac{\Delta t}{\Delta x} \left(\mathcal{A}^{-} \Delta_{j+\frac{1}{2}} + \mathcal{A}^{+} \Delta_{j-\frac{1}{2}} \right) - \frac{\Delta t}{\Delta x} \left(\tilde{\mathbf{F}}_{j+\frac{1}{2}} - \tilde{\mathbf{F}}_{j-\frac{1}{2}} \right)$$

with

$$\tilde{\mathsf{F}}_{j+\frac{1}{2}} = \frac{1}{2} \left| \mathcal{A} \right| \left(1 - \frac{\Delta t}{\Delta x} \left| \mathcal{A} \right| \right) \Delta_{j+\frac{1}{2}} = \frac{1}{2} \sum_{m=1}^{M} \left| \hat{\lambda}_{j+\frac{1}{2}}^{m} \right| \left(1 - \frac{\Delta t}{\Delta x} \right) \left| \hat{\lambda}_{j+\frac{1}{2}}^{m} \right| \tilde{\mathcal{W}}_{j+\frac{1}{2}}^{m}$$

and wave limiter

$$\tilde{\mathcal{W}}_{j+\frac{1}{2}}^{m} = \Phi(\Theta_{j+\frac{1}{2}}^{m}) \, \mathcal{W}_{j+\frac{1}{2}}^{m}$$

with

$$\Theta_{j+\frac{1}{2}}^{m} = \begin{cases} a_{j-\frac{1}{2}}^{m}/a_{j+\frac{1}{2}}^{m}, & \hat{\lambda}_{j+\frac{1}{2}}^{m} \ge 0, \\ a_{j+\frac{1}{2}}^{m}/a_{j+\frac{1}{2}}^{m}, & \hat{\lambda}_{j+\frac{1}{2}}^{m} < 0 \end{cases}$$

 Conservation laws
 Finite volume methods
 Upwind schemes
 Meshes and adaptation
 References

 00000
 00000
 0000
 0000
 0000
 000

 High-resolution methods

Wave Propagation Method in 2D

Writing $\tilde{\mathcal{A}}^{\pm}\Delta_{j\pm 1/2} := \mathcal{A}^{+}\Delta_{j\pm 1/2} + \tilde{\mathbf{F}}_{j\pm 1/2}$ one can develop a truly two-dimensional one-step method [Langseth and LeVeque, 2000]

$$\begin{split} \mathbf{Q}_{jk}^{n+1} &= \mathbf{Q}_{jk}^{n} - \frac{\Delta t}{\Delta x_{1}} \left(\tilde{\mathcal{A}}^{-} \Delta_{j+\frac{1}{2},k} - \frac{1}{2} \frac{\Delta t}{\Delta x_{2}} \left[\mathcal{A}^{-} \tilde{\mathcal{B}}^{-} \Delta_{j+1,k+\frac{1}{2}} + \mathcal{A}^{-} \tilde{\mathcal{B}}^{+} \Delta_{j+1,k-\frac{1}{2}} \right] + \\ & \tilde{\mathcal{A}}^{+} \Delta_{j-\frac{1}{2},k} - \frac{1}{2} \frac{\Delta t}{\Delta x_{2}} \left[\mathcal{A}^{+} \tilde{\mathcal{B}}^{-} \Delta_{j-1,k+\frac{1}{2}} + \mathcal{A}^{+} \tilde{\mathcal{B}}^{+} \Delta_{j-1,k-\frac{1}{2}} \right] \right) \\ & - \frac{\Delta t}{\Delta x_{2}} \left(\tilde{\mathcal{B}}^{-} \Delta_{j,k+\frac{1}{2}} - \frac{1}{2} \frac{\Delta t}{\Delta x_{1}} \left[\mathcal{B}^{-} \tilde{\mathcal{A}}^{-} \Delta_{j+\frac{1}{2},k+1} + \mathcal{B}^{-} \tilde{\mathcal{A}}^{+} \Delta_{j-\frac{1}{2},k+1} \right] + \\ & \tilde{\mathcal{B}}^{+} \Delta_{j,k-\frac{1}{2}} - \frac{1}{2} \frac{\Delta t}{\Delta x_{1}} \left[\mathcal{B}^{+} \tilde{\mathcal{A}}^{-} \Delta_{j+\frac{1}{2},k-1} + \mathcal{B}^{+} \tilde{\mathcal{A}}^{+} \Delta_{j-\frac{1}{2},k-1} \right] \right) \end{split}$$

that is stable for

$$\left\{\max_{j\in\mathbb{Z}}|\hat{\lambda}_{m,j+\frac{1}{2}}|\frac{\Delta t}{\Delta x_1},\max_{k\in\mathbb{Z}}|\hat{\lambda}_{m,k+\frac{1}{2}}|\frac{\Delta t}{\Delta x_2}\right\}\leq 1\;,\quad\text{for all }m=1,\ldots,M$$

Conservation laws	Finite volume methods	Upwind schemes	Meshes and adaptation	References
		0000000000		
High-resolution methods				

Some further high-resolution methods (good overview in [Laney, 1998]):

FCT: 2nd order [Oran and Boris, 2001]

0000 00000 00000 00000 0000 0000 000	Conservation laws	Finite volume methods	Upwind schemes	Meshes and adaptation	References
			0000000000		
High-resolution methods	High-resolution methods				

Some further high-resolution methods (good overview in [Laney, 1998]):

- FCT: 2nd order [Oran and Boris, 2001]
- ENO/WENO: 3rd order [Shu, 97]

Conservation laws	Finite volume methods	Upwind schemes	Meshes and adaptation	References
		0000000000		
High-resolution methods				

Some further high-resolution methods (good overview in [Laney, 1998]):

- FCT: 2nd order [Oran and Boris, 2001]
- ENO/WENO: 3rd order [Shu, 97]
- PPM: 3rd order [Colella and Woodward, 1984]

Conservation laws	Finite volume methods	Upwind schemes	Meshes and adaptation	References
		0000000000		
High-resolution methods				

Some further high-resolution methods (good overview in [Laney, 1998]):

- FCT: 2nd order [Oran and Boris, 2001]
- ENO/WENO: 3rd order [Shu, 97]
- PPM: 3rd order [Colella and Woodward, 1984]

Conservation laws	Finite volume methods	Upwind schemes	Meshes and adaptation	References
		0000000000		
High-resolution methods				

Some further high-resolution methods (good overview in [Laney, 1998]):

- FCT: 2nd order [Oran and Boris, 2001]
- ENO/WENO: 3rd order [Shu, 97]
- PPM: 3rd order [Colella and Woodward, 1984]

3rd order methods must make use of strong-stability preserving Runge-Kutta methods [Gottlieb et al., 2001] for time integration that use a multi-step update

$$\begin{split} \tilde{\mathbf{Q}}_{j}^{\upsilon} &= \alpha_{\upsilon} \mathbf{Q}_{j}^{n} + \beta_{\upsilon} \tilde{\mathbf{Q}}_{j}^{\upsilon-1} + \gamma_{\upsilon} \frac{\Delta t}{\Delta x} \left(\mathbf{F}_{j+\frac{1}{2}}(\tilde{\mathbf{Q}}^{\upsilon-1}) - \mathbf{F}_{j-\frac{1}{2}}(\tilde{\mathbf{Q}}^{\upsilon-1}) \right) \\ \text{with } \tilde{\mathbf{Q}}^{0} &:= \mathbf{Q}^{n}, \ \alpha_{1} = 1, \ \beta_{1} = 0; \text{ and } \mathbf{Q}^{n+1} := \tilde{\mathbf{Q}}^{\Upsilon} \text{ after final stage } \Upsilon \end{split}$$

0000 00000 00000 00000 0000 0000 000	Conservation laws	Finite volume methods	Upwind schemes	Meshes and adaptation	References
			0000000000		
High-resolution methods	High-resolution methods				

Some further high-resolution methods (good overview in [Laney, 1998]):

- FCT: 2nd order [Oran and Boris, 2001]
- ENO/WENO: 3rd order [Shu, 97]
- PPM: 3rd order [Colella and Woodward, 1984]

3rd order methods must make use of strong-stability preserving Runge-Kutta methods [Gottlieb et al., 2001] for time integration that use a multi-step update

$$\tilde{\mathbf{Q}}_{j}^{\upsilon} = \alpha_{\upsilon} \mathbf{Q}_{j}^{n} + \beta_{\upsilon} \tilde{\mathbf{Q}}_{j}^{\upsilon-1} + \gamma_{\upsilon} \frac{\Delta t}{\Delta x} \left(\mathbf{F}_{j+\frac{1}{2}}(\tilde{\mathbf{Q}}^{\upsilon-1}) - \mathbf{F}_{j-\frac{1}{2}}(\tilde{\mathbf{Q}}^{\upsilon-1}) \right)$$

with $\tilde{\mathbf{Q}}^0 := \mathbf{Q}^n$, $\alpha_1 = 1$, $\beta_1 = 0$; and $\mathbf{Q}^{n+1} := \tilde{\mathbf{Q}}^{\Upsilon}$ after final stage Υ Typical storage-efficient SSPRK(3,3):

$$\begin{split} \tilde{\mathbf{Q}}^1 &= \mathbf{Q}^n + \Delta t \mathcal{F}(\mathbf{Q}^n), \quad \tilde{\mathbf{Q}}^2 = \frac{3}{4} \mathbf{Q}^n + \frac{1}{4} \tilde{\mathbf{Q}}^1 + \frac{1}{4} \Delta t \mathcal{F}(\tilde{\mathbf{Q}}^1), \\ \mathbf{Q}^{n+1} &= \frac{1}{3} \mathbf{Q}^n + \frac{2}{3} \tilde{\mathbf{Q}}^2 + \frac{2}{3} \Delta t \mathcal{F}(\tilde{\mathbf{Q}}^2) \end{split}$$

Conservation laws	Upwind schemes	Meshes and adaptation	References

Outline

Conservation laws

Mathematical background Examples

Finite volume methods

Basics of finite difference methods Splitting methods, second derivatives

Upwind schemes

Flux-difference splitting Flux-vector splitting High-resolution methods

Meshes and adaptation

Elements of adaptive algorithms Adaptivity on unstructured meshes Structured mesh refinement techniques

Conservation laws	Finite volume methods	Upwind schemes	Meshes and adaptation	References
			0000	
Elements of adaptive algorithms				

Conservation laws	Finite volume methods	Upwind schemes	Meshes and adaptation	References	
			0000		
Elements of adaptive algorithms					

- Base grid
- Solver

Conservation laws	Finite volume methods	Upwind schemes	Meshes and adaptation	References
			0000	
Elements of adaptive algorithms				

- Base grid
- Solver
- Error indicators

Conservation laws	Finite volume methods	Upwind schemes	Meshes and adaptation	References
			0000	
Elements of adaptive algorithms				

- Base grid
- Solver
- Error indicators
- Grid manipulation

Conservation laws	Finite volume methods	Upwind schemes	Meshes and adaptation	References
			0000	
Elements of adaptive algorithms				

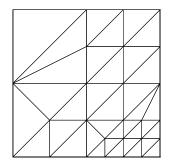
- Base grid
- Solver
- Error indicators
- Grid manipulation
- Interpolation (restriction and prolongation)

Conservation laws	Finite volume methods	Upwind schemes	Meshes and adaptation	References	
			0000		
Elements of adaptive algorithms					

- Base grid
- Solver
- Error indicators
- Grid manipulation
- Interpolation (restriction and prolongation)
- Load-balancing

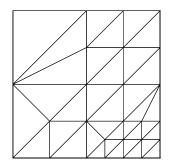
Conservation laws		Upwind schemes	Meshes and adaptation	References	
			0000		
Adaptivity on unstructured meshes					

Coarse cells replaced by finer ones



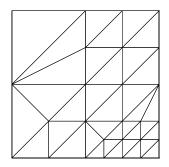
Conservation laws	Finite volume methods	Upwind schemes	Meshes and adaptation	References	
			0000		
Adaptivity on unstructured meshes					

- Coarse cells replaced by finer ones
- Global time-step



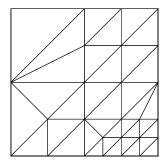
Conservation laws		Upwind schemes	Meshes and adaptation	References
			0000	
Adaptivity on unstructured meshes				

- Coarse cells replaced by finer ones
- Global time-step
- Cell-based data structures



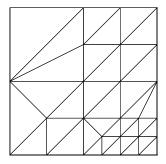
Conservation laws		Upwind schemes	Meshes and adaptation	References
			0000	
Adaptivity on unstructured meshes				

- Coarse cells replaced by finer ones
- Global time-step
- Cell-based data structures
- Neighborhoods have to stored



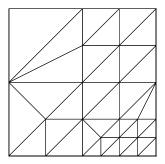
Conservation laws		Upwind schemes	Meshes and adaptation	References
			0000	
Adaptivity on unstructured meshes				

- Coarse cells replaced by finer ones
- Global time-step
- Cell-based data structures
- Neighborhoods have to stored
- + Geometric flexible



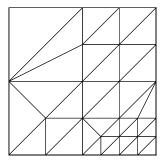
Conservation laws		Upwind schemes	Meshes and adaptation	References
			0000	
Adaptivity on unstructured meshes				

- Coarse cells replaced by finer ones
- Global time-step
- Cell-based data structures
- Neighborhoods have to stored
- + Geometric flexible
- + No hanging nodes



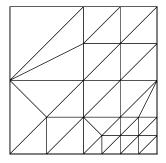
Conservation laws		Upwind schemes	Meshes and adaptation	References
			0000	
Adaptivity on unstructured meshe	25			

- Coarse cells replaced by finer ones
- Global time-step
- Cell-based data structures
- Neighborhoods have to stored
- + Geometric flexible
- + No hanging nodes
- + Easy to implement



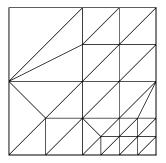
Conservation laws		Upwind schemes	Meshes and adaptation	References
			0000	
Adaptivity on unstructured meshe	25			

- Coarse cells replaced by finer ones
- Global time-step
- Cell-based data structures
- Neighborhoods have to stored
- + Geometric flexible
- + No hanging nodes
- + Easy to implement
 - Higher order difficult to achieve



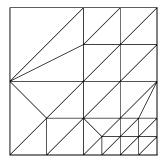
Conservation laws		Upwind schemes	Meshes and adaptation	References
			0000	
Adaptivity on unstructured meshe	25			

- Coarse cells replaced by finer ones
- Global time-step
- Cell-based data structures
- Neighborhoods have to stored
- + Geometric flexible
- + No hanging nodes
- + Easy to implement
 - Higher order difficult to achieve
 - Cell aspect ratio must be considered



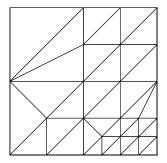
Conservation laws		Upwind schemes	Meshes and adaptation	References
			0000	
Adaptivity on unstructured meshe	25			

- Coarse cells replaced by finer ones
- Global time-step
- Cell-based data structures
- Neighborhoods have to stored
- + Geometric flexible
- + No hanging nodes
- + Easy to implement
 - Higher order difficult to achieve
 - Cell aspect ratio must be considered
 - Fragmented data



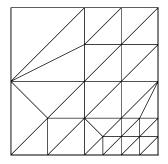
Conservation laws		Upwind schemes	Meshes and adaptation	References
			0000	
Adaptivity on unstructured meshe	25			

- Coarse cells replaced by finer ones
- Global time-step
- Cell-based data structures
- Neighborhoods have to stored
- + Geometric flexible
- + No hanging nodes
- + Easy to implement
 - Higher order difficult to achieve
 - Cell aspect ratio must be considered
 - Fragmented data
 - Cache-reuse / vectorizaton nearly impossible



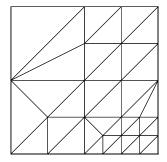
Conservation laws		Upwind schemes	Meshes and adaptation	References
			0000	
Adaptivity on unstructured meshe	25			

- Coarse cells replaced by finer ones
- Global time-step
- Cell-based data structures
- Neighborhoods have to stored
- + Geometric flexible
- + No hanging nodes
- + Easy to implement
 - Higher order difficult to achieve
 - Cell aspect ratio must be considered
 - Fragmented data
 - Cache-reuse / vectorizaton nearly impossible
 - Complex load-balancing



Conservation laws		Upwind schemes	Meshes and adaptation	References
			0000	
Adaptivity on unstructured meshe	25			

- Coarse cells replaced by finer ones
- Global time-step
- Cell-based data structures
- Neighborhoods have to stored
- + Geometric flexible
- + No hanging nodes
- + Easy to implement
 - Higher order difficult to achieve
 - Cell aspect ratio must be considered
 - Fragmented data
 - Cache-reuse / vectorizaton nearly impossible
 - Complex load-balancing
 - Complex synchronization



Conservation laws	Finite volume methods	Upwind schemes	Meshes and adaptation	References
			0000	
Structured mesh refinement	t techniques			

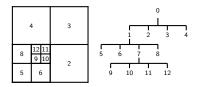
Block-based data of equal size

Conservation laws	Finite volume methods	Upwind schemes	Meshes and adaptation	References		
			0000			
Structured mesh refinement	Structured mesh refinement techniques					

- Block-based data of equal size
- Block stored in a quad-tree

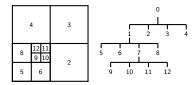
Conservation laws	Finite volume methods	Upwind schemes	Meshes and adaptation	References		
			0000			
Structured mesh refinement	Structured mesh refinement techniques					

- Block-based data of equal size
- Block stored in a quad-tree



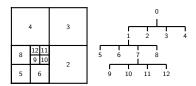
Conservation laws	Finite volume methods	Upwind schemes	Meshes and adaptation	References		
			0000			
Structured mesh refinement	Structured mesh refinement techniques					

- Block-based data of equal size
- Block stored in a quad-tree
- Time-step refinement



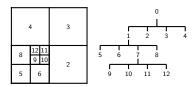
Conservation laws	Finite volume methods	Upwind schemes	Meshes and adaptation	References		
			0000			
Structured mesh refinemen	Structured mesh refinement techniques					

- Block-based data of equal size
- Block stored in a quad-tree
- Time-step refinement
- Global index coordinate system



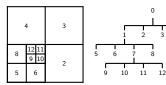
Conservation laws	Finite volume methods	Upwind schemes	Meshes and adaptation	References
			0000	
Structured mesh refinement	techniques			

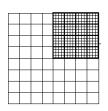
- Block-based data of equal size
- Block stored in a quad-tree
- Time-step refinement
- Global index coordinate system
- Neighborhoods need not be stored

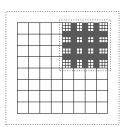


Conservation laws	Finite volume methods	Upwind schemes	Meshes and adaptation	References
			0000	
Structured mesh refinement	nt techniques			

- Block-based data of equal size
- Block stored in a quad-tree
- Time-step refinement
- Global index coordinate system
- Neighborhoods need not be stored

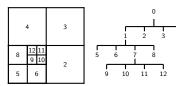


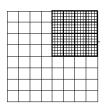


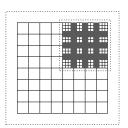


Conservation laws		Upwind schemes	Meshes and adaptation	References
			0000	
Structured mesh refinement	techniques			

- Block-based data of equal size
- Block stored in a quad-tree
- Time-step refinement
- Global index coordinate system
- Neighborhoods need not be stored
- + Numerical scheme only for single regular block necessary

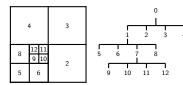


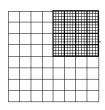


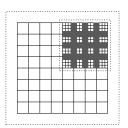


Conservation laws		Upwind schemes	Meshes and adaptation	References
			0000	
Structured mesh refinement	techniques			

- Block-based data of equal size
- Block stored in a quad-tree
- Time-step refinement
- Global index coordinate system
- Neighborhoods need not be stored
- + Numerical scheme only for single regular block necessary
- + Easy to implement

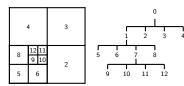


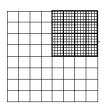


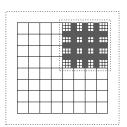


Conservation laws		Upwind schemes	Meshes and adaptation	References
			0000	
Structured mesh refinement	techniques			

- Block-based data of equal size
- Block stored in a quad-tree
- Time-step refinement
- Global index coordinate system
- Neighborhoods need not be stored
- + Numerical scheme only for single regular block necessary
- + Easy to implement
- + Simple load-balancing

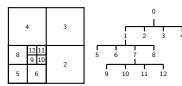


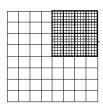


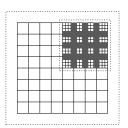


Conservation laws		Upwind schemes	Meshes and adaptation	References
			0000	
Structured mesh refinement	t techniques			

- Block-based data of equal size
- Block stored in a quad-tree
- Time-step refinement
- Global index coordinate system
- Neighborhoods need not be stored
- + Numerical scheme only for single regular block necessary
- + Easy to implement
- + Simple load-balancing
- + Parent/Child relations according to tree

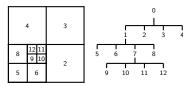


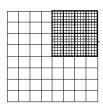


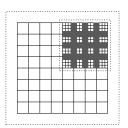


Conservation laws		Upwind schemes	Meshes and adaptation	References
			0000	
Structured mesh refinement	t techniques			

- Block-based data of equal size
- Block stored in a quad-tree
- Time-step refinement
- Global index coordinate system
- Neighborhoods need not be stored
- + Numerical scheme only for single regular block necessary
- + Easy to implement
- + Simple load-balancing
- + Parent/Child relations according to tree
- +/- Cache-reuse / vectorization only in data block

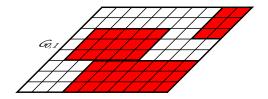






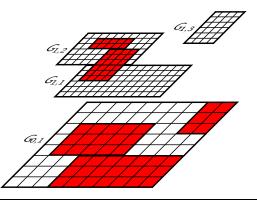
Conservation laws		Upwind schemes	Meshes and adaptation	References
			0000	
Structured mesh refinement	nt techniques			

Refined block overlay coarser ones



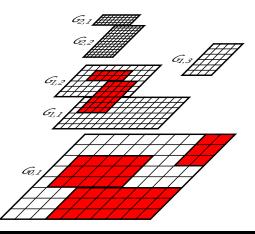
Conservation laws		Upwind schemes	Meshes and adaptation	References
			0000	
Structured mesh refinement	nt techniques			
			(

Refined block overlay coarser ones



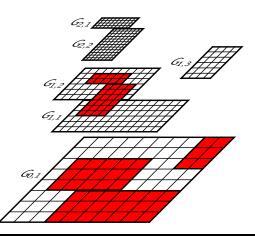
Conservation laws		Upwind schemes	Meshes and adaptation	References
			0000	
Structured mesh refineme	nt techniques			
B 1 1				

Refined block overlay coarser ones



<u>.</u>			(2.1.1.2)	
Structured mesh refinemen	t techniques			
			0000	
Conservation laws		Upwind schemes	Meshes and adaptation	References

- Refined block overlay coarser ones
- Time-step refinement

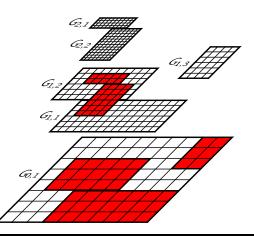


 Conservation laws
 Finite volume methods
 Upwind schemes
 Meshes and adaptation
 References

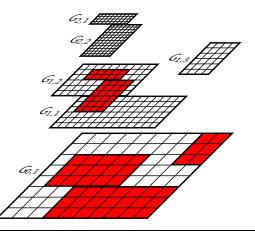
 00000
 00000
 00000
 0000
 0000
 000

 Structured mesh refinement techniques

- Refined block overlay coarser ones
- Time-step refinement
- Block (aka patch) based data structures



- Refined block overlay coarser ones
- Time-step refinement
- Block (aka patch) based data structures
- Global index coordinate system

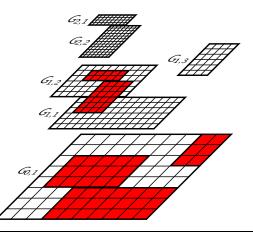


 Conservation laws
 Finite volume methods
 Upwind schemes
 Meshes and adaptation
 References

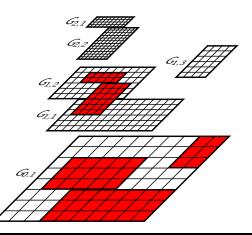
 000000
 00000
 0000
 0000
 0000
 0000

 Structured mesh refinement techniques

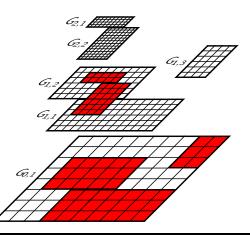
- Refined block overlay coarser ones
- Time-step refinement
- Block (aka patch) based data structures
- Global index coordinate system
- + Numerical scheme only for single patch necessary



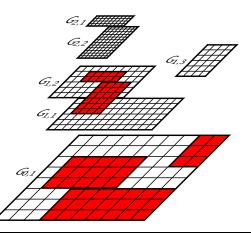
- Refined block overlay coarser ones
- Time-step refinement
- Block (aka patch) based data structures
- Global index coordinate system
- + Numerical scheme only for single patch necessary
- + Efficient cache-reuse / vectorization possible



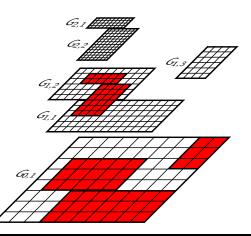
- Refined block overlay coarser ones
- Time-step refinement
- Block (aka patch) based data structures
- Global index coordinate system
- + Numerical scheme only for single patch necessary
- + Efficient cache-reuse / vectorization possible
- + Simple load-balancing



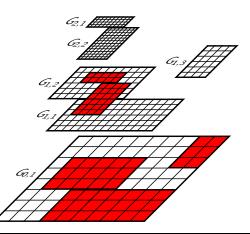
- Refined block overlay coarser ones
- Time-step refinement
- Block (aka patch) based data structures
- Global index coordinate system
- + Numerical scheme only for single patch necessary
- + Efficient cache-reuse / vectorization possible
- + Simple load-balancing
- + Minimal synchronization overhead



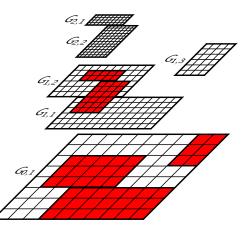
- Refined block overlay coarser ones
- Time-step refinement
- Block (aka patch) based data structures
- Global index coordinate system
- + Numerical scheme only for single patch necessary
- + Efficient cache-reuse / vectorization possible
- + Simple load-balancing
- + Minimal synchronization overhead
- Cells without mark are refined



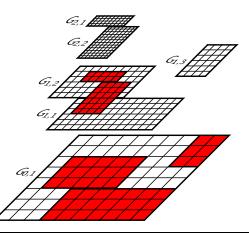
- Refined block overlay coarser ones
- Time-step refinement
- Block (aka patch) based data structures
- Global index coordinate system
- + Numerical scheme only for single patch necessary
- + Efficient cache-reuse / vectorization possible
- + Simple load-balancing
- + Minimal synchronization overhead
- Cells without mark are refined
- Hanging nodes unavoidable



- Refined block overlay coarser ones
- Time-step refinement
- Block (aka patch) based data structures
- Global index coordinate system
- + Numerical scheme only for single patch necessary
- + Efficient cache-reuse / vectorization possible
- + Simple load-balancing
- + Minimal synchronization overhead
- Cells without mark are refined
- Hanging nodes unavoidable
- Cluster-algorithm necessary



- Refined block overlay coarser ones
- Time-step refinement
- Block (aka patch) based data structures
- Global index coordinate system
- + Numerical scheme only for single patch necessary
- + Efficient cache-reuse / vectorization possible
- + Simple load-balancing
- + Minimal synchronization overhead
- Cells without mark are refined
- Hanging nodes unavoidable
- Cluster-algorithm necessary
- Difficult to implement



Conservation laws 000000 References	Finite volume methods 00000	Upwind schemes 00000000000	Meshes and adaptation 0000	References ●●●
References				

- [Colella and Woodward, 1984] Colella, P. and Woodward, P. (1984). The piecewise parabolic method (PPM) for gas-dynamical simulations. *J. Comput. Phys.*, 54:174–201.
- [Godlewski and Raviart, 1996] Godlewski, E. and Raviart, P.-A. (1996). *Numerical approximation of hyperbolic systems of conservation laws.* Springer Verlag, New York.
- [Gottlieb et al., 2001] Gottlieb, S., Shu, C.-W., and Tadmor, E. (2001). Strong stability-preserving high-order time discretization methods. *SIAM Review*, 43(1):89–112.
- [Harten, 1983] Harten, A. (1983). High resolution schemes for hyperbolic conservation laws. J. Comput. Phys., 49:357–393.
- [Harten et al., 1976] Harten, A., Hyman, J. M., and Lax, P. D. (1976). On finite-difference approximations and entropy conditions for shocks. *Comm. Pure Appl. Math.*, 29:297–322.
- [Hirsch, 1988] Hirsch, C. (1988). Numerical computation of internal and external flows. John Wiley & Sons, Chichester.

Conservation laws		Upwind schemes	Meshes and adaptation	References			
				•••			
References							
References II							

- [Kröner, 1997] Kröner, D. (1997). Numerical schemes for conservation laws. John Wiley & Sons and B. G. Teubner, New York, Leipzig.
- [Laney, 1998] Laney, C. B. (1998). Computational gasdynamics. Cambridge University Press, Cambridge.
- [Langseth and LeVeque, 2000] Langseth, J. and LeVeque, R. (2000). A wave propagation method for three dimensional conservation laws. J. Comput. Phys., 165:126–166.
- [LeVeque, 1992] LeVeque, R. J. (1992). Numerical methods for conservation laws. Birkhäuser, Basel.
- [LeVeque, 1997] LeVeque, R. J. (1997). Wave propagation algorithms for multidimensional hyperbolic systems. J. Comput. Phys., 131(2):327–353.
- [Majda, 1984] Majda, A. (1984). Compressible fluid flow and systems of conservation laws in several space variables. Applied Mathematical Sciences Vol. 53. Springer-Verlag, New York.
- [Oran and Boris, 2001] Oran, E. S. and Boris, J. P. (2001). *Numerical simulation of reactive flow*. Cambridge Univ. Press, Cambridge, 2nd edition.

Conservation laws	Finite volume methods 00000	Upwind schemes	Meshes and adaptation	References •••		
References						
References III						

- [Roe, 1981] Roe, P. L. (1981). Approximate Riemann solvers, parameter vectors and difference schemes. J. Comput. Phys., 43:357–372.
- [Shu, 97] Shu, C.-W. (97). Essentially non-oscillatory and weigted essentially non-oscillatory schemes for hyperbolic conservation laws. Technical Report CR-97-206253, NASA.
- [Toro, 1999] Toro, E. F. (1999). *Riemann solvers and numerical methods for fluid dynamics*. Springer-Verlag, Berlin, Heidelberg, 2nd edition.
- [Toro et al., 1994] Toro, E. F., Spruce, M., and Speares, W. (1994). Restoration of the contact surface in the HLL-Riemann solver. *Shock Waves*, 4:25–34.
- [van Leer, 1979] van Leer, B. (1979). Towards the ultimate conservative difference scheme V. A second order sequel to Godunov's method. J. Comput. Phys., 32:101–136.
- [Wada and Liou, 1997] Wada, Y. and Liou, M.-S. (1997). An accurate and robust flux splitting scheme for shock and contact discontinuities. *SIAM J. Sci. Comp.*, 18(3):633–657.