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Block-structured AMR with complex boundaries

Block-structured adaptive mesh refinement (SAMR)

For simplicity ∂tq(x , y , t) + ∂x f(q(x , y , t)) + ∂yg(q(x , y , t)) = 0

I Refined blocks overlay coarser ones

I Refinement in space and time by factor rl

[Berger and Colella, 1988]

I Block (aka patch) based data structures

+ Numerical scheme

Qn+1
jk = Qn

jk −
∆t

∆x

[
Fj+ 1

2
,k − Fj− 1

2
,k

]
−

∆t

∆y

[
Gj,k+ 1

2
− Gj,k− 1

2

]
only for single patch necessary

+ Efficient cache-reuse / vectorization
possible

- Cluster-algorithm necessary

I Papers: [Deiterding, 2011a,
Deiterding et al., 2009b,
Deiterding et al., 2007]
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Block-structured AMR with complex boundaries

Level transfer / setting of ghost cells

Conservative averaging
(restriction):

Q̂l
jk :=

1

(rl+1)2

rl+1−1∑
κ=0

rl+1−1∑
ι=0

Ql+1
v+κ,w+ι

Bilinear interpolation
(prolongation):

Q̌l+1
vw := (1− f1)(1− f2)Ql

j−1,k−1

+ f1(1− f2)Ql
j,k−1+

(1− f1)f2 Q
l
j−1,k + f1f2 Q

l
jk

For boundary conditions: linear time interpolation

Q̃l+1(t+κ∆tl+1) :=

(
1− κ

rl+1

)
Q̌l+1(t)+

κ

rl+1
Q̌l+1(t+∆tl ) for κ = 0, . . . rl+1
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Block-structured AMR with complex boundaries

Recursive integration order

I Space-time interpolation of coarse data to set I s
l , l > 0

I Regridding:

I Creation of new grids, copy existing cells on level l > 0
I Spatial interpolation to initialize new cells on level l > 0

1

2

3 4

5

6 7

8

9 10

11

12 13

Root Level
r0 = 1

Level 1
r1 = 4

Level 2
r2 = 2

Time

Regridding of finer levels.
Base level ( ) stays fixed.
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Block-structured AMR with complex boundaries

Conservative flux correction

Example: Cell j , k

Q̌l
jk (t + ∆tl ) = Ql

jk (t)− ∆tl

∆x1,l

Fl
j+ 1

2
,k −

1

r 2
l+1

rl+1−1∑
κ=0

rl+1−1∑
ι=0

Fl+1

v+ 1
2
,w+ι

(t + κ∆tl+1)


− ∆tl

∆x2,l

(
Gl

j,k+ 1
2
− Gl

j,k− 1
2

)

Correction pass:

1. δFl+1

j− 1
2
,k

:= −Fl
j− 1

2
,k

2. δFl+1

j− 1
2
,k

:= δFl+1

j− 1
2
,k

+
1

r 2
l+1

rl+1−1∑
ι=0

Fl+1

v+ 1
2
,w+ι

(t + κ∆tl+1)

3. Q̌l
jk (t + ∆tl ) := Ql

jk (t + ∆tl ) +
∆tl

∆x1,l
δFl+1

j− 1
2
,k

j − 1

v v+1

j

w
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Block-structured AMR with complex boundaries

Level-set method for boundary embedding
I Implicit boundary representation via distance

function ϕ, normal n = ∇ϕ/|∇ϕ|
I Complex boundary moving with local velocity w,

treat interface as moving rigid wall
[Deiterding et al., 2007]

I Construction of values in embedded boundary
cells by interpolation / extrapolation
[Deiterding, 2009, Deiterding, 2011a]

I Creation of level set from triangulated surface
data with closest-point-transform (CPT)
algorithm [Mauch, 2003, Deiterding et al., 2006]

Interpolate / constant value extrap-
olate values at

x̃ = x + 2ϕn

Velocity in ghost cells (slip):

u′ = (2w · n− u · n)n + (u · t)t
= 2 ((w − u) · n) n + u

ρj−1 ρj ρj ρj−1

uj−1 uj 2w − uj 2w − uj−1

pj−1 pj pj pj−1

ut

ut

ut

w

uj

2w − uj
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Parallelization approach

Parallelization

Rigorous domain decomposition

I Data of all levels resides on same node

I Grid hierarchy defines unique ”floor-plan”

I Workload estimation

W(Ω) =

lmax∑
l=0

[
Nl (Gl ∩ Ω)

l∏
κ=0

rκ

]

I Parallel operations

I Synchronization of ghost cells
I Redistribution of data blocks within

regridding operation
I Flux correction of coarse grid cells

I Dynamic partitioning with space-filling
curve

[Deiterding, 2005, Deiterding, 2011a]
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Parallelization approach

AMROC framework and most important patch solvers

I Implements described algorithms and facilitates easy exchange of the
block-based numerical scheme

I Shock-induced combustion with detailed chemistry:
[Deiterding, 2003, Deiterding and Bader, 2005, Deiterding, 2011b,
Cai et al., 2016, Cai et al., 2018]

I Hybrid WENO methods for LES and DNS: [Pantano et al., 2007,
Lombardini and Deiterding, 2010, Ziegler et al., 2011, Cerminara et al., 2018]

I Lattice Boltzmann method for LES: [Fragner and Deiterding, 2016,
Feldhusen et al., 2016, Deiterding and Wood, 2016]

I FSI deformation from water hammer: [Cirak et al., 2007,
Deiterding et al., 2009a, Perotti et al., 2013, Wan et al., 2017]

I Level-set method for Eulerian solid mechanics: [Barton et al., 2013]

I Ideal magneto-hydrodynamics: [Gomes et al., 2015, Souza Lopes et al., 2018]

I ∼ 500, 000 LOC in C++, C, Fortran-77, Fortran-90

I V2.0 plus FSI coupling routines as open source at http://www.vtf.website

I Used here V3.0 with significantly enhanced parallelization (V2.1 not released)
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Parallelization approach

AMROC strong scalability tests

3D wave propagation method with Roe scheme:
spherical blast wave

I Tests run IBM BG/P (mode VN)
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64 × 32 × 32 base grid, 2 additional levels with
factors 2, 4; uniform 512× 256× 256 = 33.6 · 106

cells
Level Grids Cells

0 1709 65,536
1 1735 271,048
2 2210 7,190,208

3D SRT-lattice Boltzmann scheme: flow over
rough surface of 19× 13× 2 spheres

I Tests run Cray XC30m (Archer)
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cells
Level Grids Cells
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1 21367 24,844,504
2 1728 10,838,016

R. Deiterding – Detonation and hypersonics simulation with AMROC – Part I 11



Adaptive Cartesian methods Combustion modeling Detonation simulation Summary

Parallelization approach

AMROC strong scalability tests

3D wave propagation method with Roe scheme:
spherical blast wave

I Tests run IBM BG/P (mode VN)

16 32 64 128 256 512 1024

101

102

CPUs

se
c

Time per higest level step

SAMR

Uniform

64 × 32 × 32 base grid, 2 additional levels with
factors 2, 4; uniform 512× 256× 256 = 33.6 · 106

cells
Level Grids Cells

0 1709 65,536
1 1735 271,048
2 2210 7,190,208

3D SRT-lattice Boltzmann scheme: flow over
rough surface of 19× 13× 2 spheres

I Tests run Cray XC30m (Archer)

24 48 96 19
2

38
4

76
8

15
36

30
72

61
44

12
28

8

10−1

100

101

CPUs

se
c

Time per higest level step

SAMR

Uniform

360× 240× 108 base grid, 2 additional levels with
factors 2, 4; uniform 1440×1920×432 = 1.19·109

cells
Level Grids Cells

0 788 9,331,200
1 21367 24,844,504
2 1728 10,838,016

R. Deiterding – Detonation and hypersonics simulation with AMROC – Part I 11



Adaptive Cartesian methods Combustion modeling Detonation simulation Summary

Governing equations

Axisymmetric Navier-Stokes equations with chemical reaction

∂q

∂t
+
∂(f − fv )

∂x
+
∂(g − gv )

∂y
=
α

y
(c− g + gv ) + s

q =


ρi

ρu
ρv
ρE

 , f =


ρi u

ρu2 + p
ρuv

u(ρE + p)

 , g =


ρi v
ρuv

ρv2 + p
v(ρE + p)

 , c =


0
0

p − τθθ
0

 , s =


ω̇i

0
0
0



fv =


ρDi

∂Yi

∂x
τxx

τxy

k
∂T

∂x
+ ρ

∑
hj Dj

∂Yj

∂x
+ uτxx + vτxy



gv =


ρDi

∂Yi

∂y
τxy

τyy

k
∂T

∂y
+ ρ

∑
hj Dj

∂Yj

∂y
+ uτxy + vτyy



τxx = −
2

3
µ(∇ · v) + 2µ

∂u

∂x

τyy = −
2

3
µ(∇ · v) + 2µ

∂v

∂y

τθθ = −
2

3
µ(∇ · v) + 2µ

v

y

τxy = µ

(
∂u

∂y
+
∂v

∂x

)
∇ · v =

(
∂u

∂x
+
∂v

∂y
+ α

v

y

)
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Governing equations

Equation of state

Ideal gas law and Dalton’s law for gas-mixtures

p(ρ1, . . . , ρK ,T ) =
K∑

i=1

pi =
K∑

i=1

ρi
R
Wi

T = ρ
R
W

T with
K∑

i=1

ρi = ρ ,Yi =
ρi

ρ

Caloric equation

h(Y1, . . . ,YK ,T ) =
K∑

i=1

Yihi (T ) with hi (T ) = h0
i +

∫ T

0

cpi (s)ds

Computation of T = T (ρ1, . . . , ρK , e) from implicit equation

K∑
i=1

ρi hi (T )−RT
K∑

i=1

ρi

Wi
− ρe = 0

for thermally perfect gases with γi (T ) = cpi (T )/cvi (T ) using an iterative
Newton or bisection method
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Governing equations

Chemistry and transport properties

Arrhenius-kinetics:

ω̇i =
M∑

j=1

(νr
ji − ν

f
ji )

[
k f

j

K∏
n=1

( ρn

Wn

)νf
jn − k r

j

K∏
n=1

( ρn

Wn

)νr
jn

]
i = 1, . . . ,K

I Parsing of mechanisms and evaluation of ω̇i with Chemkin-II

I cpi (T ) and hi (T ) tabulated, linear interpolation between values

Mixture viscosity µ = µ(T ,Yi ) with Wilke formula

µ =
K∑

i=1

Yiµi

Wi
∑K

m=1 YmΦim/Wm

with Φim =
1
√

8

(
1 +

Wi

Wm

)− 1
2

(
1 +

(
µi

µm

) 1
2
(

Wm

Wj

) 1
4

)2

Mixture thermal conductivity k = k(T ,Yi ) following Mathur

k =
1

2

(
W

K∑
i=1

Yi ki

Wi
+

1

W
∑K

i=1 Yi/(Wi ki )

)
Mixture diffusion coefficients Di = Di (T , p,Yi ) from binary diffusion Dmi (T , p) as

Di =
1− Yi

W
∑

m 6=i Ym/(WmDmi )

I Evaluation with Chemkin-II Transport library
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Finite volume schemes

Splitting methods

∂tq + ∂x (f − fv ) + ∂y (g − gv ) =
α

y
(c− g + gv ) + s

Dimensional splitting for PDE

X (∆t) : ∂tq + ∂x (f(q)− fv (q)) = 0 , IC: Q(tm)
∆t
=⇒ Q̃1/2

Y(∆t) : ∂tq + ∂y (g(q)− gv (q)) = 0 , IC: Q̃1/2 ∆t
=⇒ Q̃

Treat right-hand side as source term

C(∆t) : ∂tq = α
y (c(q)− g(q) + gv (q)) , IC: Q̃

∆t
=⇒ Q̄

Chemical source term

S(∆t) : ∂tq = s(q) , IC: Q̄
∆t
=⇒ Q(tm + ∆t)

Formally 1st-order algorithm

Q(tm + ∆t) = S(∆t)C(∆t)Y(∆t)X (∆t)(Q(tm))

but all sub-operators 2nd-order accurate or higher.
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Finite volume schemes

Finite volume discretization

Time discretization tn = n∆t, discrete volumes Ijk =

[xj − 1
2

∆x , xj + 1
2

∆x[×[yk − 1
2

∆y , yk + 1
2

∆y [× =: [xj−1/2, xj+1/2[×[yk−1/2, yk+1/2[

Approximation Qjk (t) ≈ 1
|Ijk |

∫
Ijk

q(x, t) dx and numerical fluxes

F
(
Qjk (t),Qj+1,k (t)

)
≈ f(q(xj+1/2, yk , t)),

Fv
(
Qjk (t),Qj+1,k (t)

)
≈ fv (q(xj+1/2, yk , t),∇q(xj+1/2, yk , t))

yield (for simplicity)

Qn+1
jk = Qn

kj−
∆t

∆x

[
F
(
Qn

jk ,Q
n
j+1,k

)
− F

(
Qn

j−1,k ,Q
n
jk

)]
+

∆t

∆x

[
Fv

(
Qn

jk ,Q
n
j+1,k

)
− Fv

(
Qn

j−1,k ,Q
n
jk

)]
(∗)

I Riemann solver to approximate F
(
Qn

jk ,Q
n
j+1,k

)
I 1st-order finite differences for Fv

(
Qn

jk ,Q
n
j+1,k

)
yield 2nd-order accurate central

differences in (∗)
Stability condition used:

max
i,j,k

{
∆t

∆x
(|ujk | + cjk ) +

8

3

µjk ∆t

ρjk ∆x2
,

∆t

∆x
(|ujk | + cjk ) +

2kj ∆t

cv,jkρj ∆x2
,

∆t

∆x
(|ujk | + cjk ) + Di,jk

∆t

∆x2

}
≤ 1
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Finite volume schemes

Finite volume discretization – cont.

Symmetry source term C(∆t): Use

Qn+1
jk = Qn

jk +∆t

(
α

y
(c(Qn

jk )− g(Qn
jk ) +

1

2

(
Gv

(
Qn

jk ,Q
n
j,k+1

)
+ Gv

(
Qn

j,k−1,Q
n
jk

)))
within explicit 2nd-order accurate Runge-Kutta method

I Gives 2nd-order central difference approximation of Gv

I Transport properties µ, k, Di are stored in vector of state Q and
kept constant throughout entire time step

Chemical source term S(·):

I 4th-order accurate semi-implicit ODE-solver subcycles within each
cell

I ρ, e, u, v remain unchanged!

∂t ρi = Wi ω̇i (ρ1, . . . , ρK ,T ) i = 1, . . . ,K
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Adaptive Cartesian methods Combustion modeling Detonation simulation Summary

Finite volume schemes

Riemann solver for combustion

(S1) Calculate standard Roe-averages ρ̂ =
√
ρLρR +

√
ρRρL√

ρL+
√
ρR

=
√
ρLρR and ŵ =

√
ρLwL+

√
ρR wR√

ρL+
√
ρR

for û, v̂ , Ĥ, Ŷi , T̂ .

(S2) Compute γ̂ := ĉp/ĉv with ĉ{p/v}i =
1

T
R
− T

L

∫ T
R

T
L

c{p,v}i (τ) dτ .

(S3) Calculate φ̂i := (γ̂ − 1)
(

û2

2 − ĥi

)
+ γ̂ Ri T̂ with standard Roe-averages êi or ĥi .

(S4) Calculate ĉ :=
(∑K

i=1 Ŷi φ̂i − (γ̂ − 1)û2 + (γ̂ − 1)Ĥ
)1/2

.

(S5) Use ∆q = q
R
− q

L
and ∆p to compute the wave strengths am.

(S6) Calculate W
1

= a
1
r̂

1
, W

2
=

K+d∑
ι=2

aι r̂ι , W
3

= a
K+d+1

r̂
K+d+1

.

(S7) Evaluate s1 = û − ĉ, s2 = û, s3 = û + ĉ.

(S8) Evaluate ρ?L/R , u?L/R , e?L/R , c?L/R from q?
L

= q
L

+W
1

and q?
R

= q
R
−W

3
.

(S9) If ρ?L/R ≤ 0 or e?L/R ≤ 0 use FHLL(q
L
, q

R
) and go to (S12).

(S10) Entropy correction: Evaluate |s̃ι|.
FRoe (q

L
, q

R
) = 1

2

(
f(q

L
) + f(q

R
)−∑3

ι=1 |s̃ι|Wι

)
(S11) Positivity correction: Replace Fi by

F?i = Fρ ·
{

Y l
i , Fρ ≥ 0 ,

Y r
i , Fρ < 0 .

(S12) Evaluate maximal signal speed by S = max(|s1|, |s3|).
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Adaptive Cartesian methods Combustion modeling Detonation simulation Summary

Shock induced combustion from projectile flight

Shock-induced combustion around a sphere

I Spherical projectile of radius 1.5mm travels with constant velocity
vI = 2170.6m/s through H2 : O2 : Ar mixture (molar ratios 2:1:7) at 6.67 kPa
and T = 298K

I Mechanism by [Westbrook, 1982]: 34 forward reactions, 9 species

I Axisymmetric Euler simulation on AMR base mesh of 70× 40 cells

I Comparison of 3-level computation with refinement factors 2,2 (∼ 5Pts/lig ) and
a 4-level computation with refinement factors 2,2,4 (∼ 19Pts/lig ) at t = 350µs

I Higher resolved computation captures combustion zone visibly better and at
slightly different position (see below)

Iso-contours of p (black) and YH2
(white) on refinement domains for 3-level (left) and 4-level

computation (right)
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Shock induced combustion from projectile flight

Lehr’s ballistic range experiments

I Spherical-nosed projectile of radius 1.5mm travels with constant velocity
through stoichiometric H2 : O2 : N2 mixture (molar ratios 2:1:3.76) at
42.663 kPa and T = 293K [Lehr, 1972]

I Mechanism by [Jachimowski, 1988]: 19 equilibrium reactions, 9 species.
Chapman Jouguet velocity ∼ 1957m/s.

I Axisymmetric Navier-Stokes and Eulers simulations on AMR base mesh of
400× 200 cells, physical domain size 6 cm× 3 cm

I 4-level computations with refinement factors 2,2,4 to final time
t = 170µs. Refinement downstream removed.

I Main configurations

I Velocity vI = 1931m/s (M = 4.79), ∼ 40Pts/lig
I Velocity vI = 1806m/s (M = 4.48), ∼ 60Pts/lig

I Various previous studies with not entirely consistent results. E.g.
[Yungster and Radhakrishnan, 1996], [Axdahl et al., 2011]

I Stagnation point location and pressure tracked in every time step
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Shock induced combustion from projectile flight

Viscous case – M = 4.79

I 5619 iterations with CFL=0.9 to t = 170µs

I Oscillation frequency in last 20µs: ∼ 722 kHz (viscous), ∼ 737 kHz (inviscid)

I Experimental value: ∼ 720 kHz

Schlieren plot of density
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Shock induced combustion from projectile flight

Viscous case – M = 4.79 – mesh adaptation
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Shock induced combustion from projectile flight

Comparison of temperature field

Viscous
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Shock induced combustion from projectile flight

Comparison of temperature field

Inviscid

R. Deiterding – Detonation and hypersonics simulation with AMROC – Part I 23



Adaptive Cartesian methods Combustion modeling Detonation simulation Summary

Shock induced combustion from projectile flight

Viscous case – M = 4.48

I 5432 iterations with CFL=0.9 to t = 170µs

I Oscillation frequency in last 20µs: ∼ 417 kHz

I Experimental value: ∼ 425 kHz

Schlieren plot of density
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Shock induced combustion from projectile flight

Oscillation mechanism

Schlieren of density Temperature Mass fraction OH Pressure

I Oscillation created by accelerated reaction due to slip line from previous triple
point
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Shock induced combustion from projectile flight

Inviscid case – M = 4.48

I 4048 iterations with CFL=0.9 to t = 170µs

I Oscillation frequency in last 20µs: ∼ 395 kHz

I Experimental value: ∼ 425 kHz

Schlieren plot of density
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Thermal ignition

Deflagration to detonation transition in 2d
Hot sphere of 2500 K in stoichiometric H2/O2 in closed-end chamber of 2 cm diameter

T

p

YOH

Levels

Dist.
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Propagation of regular detonations in 2d

Simulation of regular structures

I CJ detonation for H2 : O2 : Ar
(2:1:7) at T0 = 298K and
p0 = 10 kPa, cell width 1.6 cm

I Perturb 1d solution with
unreacted high-pressure pocket
behind front

I Triple point trajectories by
tracking max |ω| on auxiliary mesh
shifted through grid with CJ

velocity. ω =
∂v

∂x
−
∂u

∂y

I SAMR simulation with 4
additional levels (2,2,2,4),
67.6Pts/lig

I Configuration similar to Oran et
al., J. Combustion and Flame
113, 1998.
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Propagation of regular detonations in 2d

Triple point analysis

Double Mach reflection structure shortly before the next collision

p/p0 ρ/ρ0 T [K] u[m/s] M
A 1.00 1.00 298 1775 5.078
B 31.45 4.17 2248 447 0.477
C 31.69 5.32 1775 965 1.153
D 19.17 3.84 1487 1178 1.533
E 35.61 5.72 1856 901 1.053
F 40.61 6.09 1987 777 0.880
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Propagation of regular detonations in 2d

Detonation propagation through pipe bends

I 2D Simulation of CJ detonation
for H2 : O2 : Ar/2 : 1 : 7 at
T0 = 298K and p0 = 10 kPa.
Tube width of 5 detonation cells

I AMR base grid 1200× 992. 4
additional refinement levels
(2,2,2,4). 67.6Pts/lig

I Adaptive computations use up to
7.1 · 106 cells (4.8 · 106 on highest
level) instead of 1.22 · 109 cells
(uniform grid)

I ∼ 70, 000h CPU on 128 CPUs
Pentium-4 2.2GHz
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Propagation of regular detonations in 2d

Triple point tracks

ϕ = 15o (left, top), ϕ = 30o (left, bottom), and ϕ = 60o (right)
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Propagation of regular detonations in 2d

The effect of resolution - ϕ = 15o

14.05Pts/lig 28.1Pts/lig

56.2Pts/lig

I On coarse meshes, the high energy release in triple points cannot be captured

I Under sufficient resolution, the oscillation frequency is recovered after the bend

R. Deiterding – Detonation and hypersonics simulation with AMROC – Part I 32



Adaptive Cartesian methods Combustion modeling Detonation simulation Summary

Propagation of regular detonations in 2d

The effect of resolution - ϕ = 15o

14.05Pts/lig 28.1Pts/lig

56.2Pts/lig

I On coarse meshes, the high energy release in triple points cannot be captured

I Under sufficient resolution, the oscillation frequency is recovered after the bend

R. Deiterding – Detonation and hypersonics simulation with AMROC – Part I 32



Adaptive Cartesian methods Combustion modeling Detonation simulation Summary

Propagation of regular detonations in 2d

Triple point structures – ϕ = 15o

I Triple point re-initiation after
bend with change from
transitional to Double Mach
reflection
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Propagation of regular detonations in 2d

Triple point structures – ϕ = 30o

I Triple point quenching and
failure as single Mach
reflection
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Cellular structures in 3d and their ignition

Detonation cell structure in 3D

I 44.8 Pts/lig for H2 : O2 : Ar CJ
detonation

I SAMR base grid 400x24x24 for one
quadrant, 2 additional refinement
levels (2, 4)

I Simulation uses ∼ 18 M cells instead
of ∼ 118 M (unigrid)

I ∼ 51, 000 h CPU on 128 CPU Compaq
Alpha. H: 37.6 %, S: 25.1 %

Schlieren plots of YOH

Schlieren plots of density, mirrored for visual-
ization
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Schematic front view of the periodic triple
point line structure right plot at the same time.
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Cellular structures in 3d and their ignition

Temporal Development of Detonation Velocity

Point-wise reinitiation along L1 (left) and L1’ (right)
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Cellular structures in 3d and their ignition

Triple point analysis
Tracks of triple point lines

Weakest TMR structure in
Incident-Incident region imme-
diately before collision

Schlieren plots perpendicu-
lar to y - and z-plane (right)
and on triple point line
tracks (below)
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Cellular structures in 3d and their ignition

Triple point analysis
Tracks of triple point lines

TMR structure in Mach-Incident
region immediately before colli-
sion

Schlieren plots perpendicu-
lar to y - and z-plane (right)
and on triple point line
tracks (below)
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Cellular structures in 3d and their ignition

Triple point analysis
Tracks of triple point lines

DMR structure in Mach-Incident
region after re-initation

Schlieren plots perpendicu-
lar to y - and z-plane (right)
and on triple point line
tracks (below)
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Cellular structures in 3d and their ignition

Triple point analysis
Tracks of triple point lines

Strongest DMR structure in
Mach-Mach region after re-
initation

Schlieren plots perpendicu-
lar to y - and z-plane (right)
and on triple point line
tracks (below)
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Cellular structures in 3d and their ignition

Detonation ignition by a hot jet in 3d

I 3d Euler simulation on AMR base mesh of 64× 32× 16 cells

I Domain size 3.2 cm× 1.6 cm× 0.8 cm

I Inflow of H2 : O2 : Ar mixture (molar ratios 2:1:7) at 10 kPa and T = 298K at
CJ velocity VCJ = 1627m/s

I Hot jet inflow with fully reacted CJ conditions, i.e., T = 3296K, p = 172.7 kPa
and ρ = 0.0893 kg/m3

I Mechanism by [Westbrook, 1982]: 34 forward reactions, 9 species

I Computations on 1024 cores Intel E5-2692 2.20 GHz (Tianhe-2)

I X. Cai, J. Liang, RD, Y. Che, Z. Lin, Int. J. Hydrogen Energy 41(4): 3222–3239, 2016
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Cellular structures in 3d and their ignition

Detonation ignition process - Front view

Isosurfaces of ρ at t = 18.85µs
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Cellular structures in 3d and their ignition

Detonation ignition process - Front view

Isosurfaces of ρ at t = 224.34µs
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Cellular structures in 3d and their ignition

Detonation ignition process - Front view

Isosurfaces of ρ at t = 323.07µs
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Cellular structures in 3d and their ignition

Detonation ignition process - Front view

Isosurfaces of ρ at t = 334.10µs
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Cellular structures in 3d and their ignition

Detonation propagation

I Continuous jet injection overdrives the detonation to f ≈ 1.07

I Number of triple point lines is increased compared to CJ case

I Rectangular domain straightens triple point lines

I Primarily TMR triple point line structures visible as in previous case
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Detonation propagation
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Cellular structures in 3d and their ignition

Dynamic mesh refinement

I Mesh adaptation with 4 additional levels refined by factors 2, 2, 2, 2 −→
∼ 30.85Pts/lig

I Adaptation indicators similar as before

t = 234.10µs

Contours of temperature Refinement levels
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Cellular structures in 3d and their ignition

Dynamic mesh refinement

I Mesh adaptation with 4 additional levels refined by factors 2, 2, 2, 2 −→
∼ 30.85Pts/lig

I Adaptation indicators similar as before

t = 253.32µs

Contours of temperature Refinement levels
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Cellular structures in 3d and their ignition

Dynamic mesh refinement

I Mesh adaptation with 4 additional levels refined by factors 2, 2, 2, 2 −→
∼ 30.85Pts/lig

I Adaptation indicators similar as before

t = 272.78µs

Contours of temperature Refinement levels
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Cellular structures in 3d and their ignition

Dynamic mesh refinement

I Mesh adaptation with 4 additional levels refined by factors 2, 2, 2, 2 −→
∼ 30.85Pts/lig

I Adaptation indicators similar as before

t = 292.46µs

Contours of temperature Refinement levels
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Detonation-boundary layer interaction

Shock-boundary layer interaction
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Detonation-boundary layer interaction

Non-reactive case

M. Ihme, Y. Sun, RD, 51st AIAA Aerospace Sciences Meeting, AIAA-2013-0538 ,2013
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Detonation-boundary layer interaction

Reactive case: H2 : O2 : Ar− 15 : 17.85 : 67.15
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Detonation-boundary layer interaction

Detonation establishment in a scramjet combustor

C. Cai, RD, J. Liang, M. Sun, Y. Mahmoudi, Combust. Flame 190: 201–215, 2018
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Detonation-boundary layer interaction

Setup 1 – Experiment φ = 0.28

H2 : O2 : N2 − 0.56 : 1.0 : 2.9, p0 = 36.1 kPa, T0 = 581K, inflow VI = 1532m/s,
VCJ = 1431m/s
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Detonation-boundary layer interaction

Setup 1 – Numerical simulation φ = 0.28
ρ YOH

T YOH
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Detonation-boundary layer interaction

Setup 1 – Numerical simulation φ = 0.28
ρ YOH

T YOH
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Detonation-boundary layer interaction

Setup 2 – Experiment φ = 0.29

H2 : O2 : N2 − 0.58 : 1.0 : 2.9, p0 = 36.1 kPa, T0 = 581K, inflow VI = 1532m/s
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Detonation-boundary layer interaction

Numerical simulation φ = 0.29

ρ

I SAMR simulation with 4 additional
levels (2,2,2,2), 137.8Pts/lig

T
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Conclusions

Conclusions – Detonations

I For small mechanisms, detailed detonation structure simulations and
accurate DNS are nowadays possible for realistic 2d geometries

I Accurate studies for idealized 3d configurations feasible

I Resolution down to the scale of secondary triple points can be
provided on parallel capacity computing systems

I Enabling components:

I Splitting methods combined with high-resolution FV schemes for
hyrodynamic transport

I SAMR provides a sufficient spatial and temporal resolution. Savings
from SAMR for pipe bend simulations: up to >680x

I Future work will concentrate on non-Cartesian and higher order
schemes with low numerical dissipation geared to DNS.
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Riemann solver for combustion: carbuncle fix

Entropy corrections

[Harten, 1983]
[Harten and Hyman, 1983]

1. |s̃ι| =

{ |sι| if|sι| ≥ 2η

|s2
ι |

4η
+ η otherwise

η = 1
2

maxι
{
|sι(qR

)− sι(qL
)|
}

2. Replace |sι| by |s̃ι| only if
sι(qL

) < 0 < sι(qR
)

2D modification of entropy correction
[Sanders et al., 1998]:

j + 1
2
, j

j, k − 1
2

j, k + 1
2

j + 1, k − 1
2

j + 1, k + 1
2

η̃j+1/2,k = max
{
ηj+1/2,k , ηj,k−1/2, ηj,k+1/2, ηj+1,k−1/2, ηj+1,k+1/2

}

Carbuncle phenomenon

I [Quirk, 1994]

I Test from
[Deiterding, 2003]

Roe + EC 1. Exact Riemann solver

Roe + EC 2. SW FVS, VL FVS, HLL, Roe + EC 2.+2D

R. Deiterding – Detonation and hypersonics simulation with AMROC – Part I 57



References Supplementary material

Riemann solver for combustion: carbuncle fix

Entropy corrections [Harten, 1983]

[Harten and Hyman, 1983]

1. |s̃ι| =

{ |sι| if|sι| ≥ 2η

|s2
ι |

4η
+ η otherwise

η = 1
2

maxι
{
|sι(qR

)− sι(qL
)|
}

2. Replace |sι| by |s̃ι| only if
sι(qL

) < 0 < sι(qR
)

2D modification of entropy correction
[Sanders et al., 1998]:

j + 1
2
, j

j, k − 1
2

j, k + 1
2

j + 1, k − 1
2

j + 1, k + 1
2

η̃j+1/2,k = max
{
ηj+1/2,k , ηj,k−1/2, ηj,k+1/2, ηj+1,k−1/2, ηj+1,k+1/2

}

Carbuncle phenomenon

I [Quirk, 1994]

I Test from
[Deiterding, 2003]

Roe + EC 1. Exact Riemann solver

Roe + EC 2. SW FVS, VL FVS, HLL, Roe + EC 2.+2D

R. Deiterding – Detonation and hypersonics simulation with AMROC – Part I 57



References Supplementary material

Riemann solver for combustion: carbuncle fix

Entropy corrections [Harten, 1983]
[Harten and Hyman, 1983]

1. |s̃ι| =

{ |sι| if|sι| ≥ 2η

|s2
ι |

4η
+ η otherwise

η = 1
2

maxι
{
|sι(qR

)− sι(qL
)|
}

2. Replace |sι| by |s̃ι| only if
sι(qL

) < 0 < sι(qR
)

2D modification of entropy correction
[Sanders et al., 1998]:

j + 1
2
, j

j, k − 1
2

j, k + 1
2

j + 1, k − 1
2

j + 1, k + 1
2

η̃j+1/2,k = max
{
ηj+1/2,k , ηj,k−1/2, ηj,k+1/2, ηj+1,k−1/2, ηj+1,k+1/2

}

Carbuncle phenomenon

I [Quirk, 1994]

I Test from
[Deiterding, 2003]

Roe + EC 1. Exact Riemann solver

Roe + EC 2. SW FVS, VL FVS, HLL, Roe + EC 2.+2D

R. Deiterding – Detonation and hypersonics simulation with AMROC – Part I 57



References Supplementary material

Riemann solver for combustion: carbuncle fix

Entropy corrections [Harten, 1983]
[Harten and Hyman, 1983]

1. |s̃ι| =

{ |sι| if|sι| ≥ 2η

|s2
ι |

4η
+ η otherwise

η = 1
2

maxι
{
|sι(qR

)− sι(qL
)|
}

2. Replace |sι| by |s̃ι| only if
sι(qL

) < 0 < sι(qR
)

2D modification of entropy correction
[Sanders et al., 1998]:

j + 1
2
, j

j, k − 1
2

j, k + 1
2

j + 1, k − 1
2

j + 1, k + 1
2

η̃j+1/2,k = max
{
ηj+1/2,k , ηj,k−1/2, ηj,k+1/2, ηj+1,k−1/2, ηj+1,k+1/2

}

Carbuncle phenomenon

I [Quirk, 1994]

I Test from
[Deiterding, 2003]

Roe + EC 1. Exact Riemann solver

Roe + EC 2. SW FVS, VL FVS, HLL, Roe + EC 2.+2D

R. Deiterding – Detonation and hypersonics simulation with AMROC – Part I 57



References Supplementary material

Riemann solver for combustion: carbuncle fix

Entropy corrections [Harten, 1983]
[Harten and Hyman, 1983]

1. |s̃ι| =

{ |sι| if|sι| ≥ 2η

|s2
ι |

4η
+ η otherwise

η = 1
2

maxι
{
|sι(qR

)− sι(qL
)|
}

2. Replace |sι| by |s̃ι| only if
sι(qL

) < 0 < sι(qR
)

2D modification of entropy correction
[Sanders et al., 1998]:

j + 1
2
, j

j, k − 1
2

j, k + 1
2

j + 1, k − 1
2

j + 1, k + 1
2

η̃j+1/2,k = max
{
ηj+1/2,k , ηj,k−1/2, ηj,k+1/2, ηj+1,k−1/2, ηj+1,k+1/2

}

Carbuncle phenomenon

I [Quirk, 1994]

I Test from
[Deiterding, 2003]

Roe + EC 1. Exact Riemann solver

Roe + EC 2. SW FVS, VL FVS, HLL, Roe + EC 2.+2D

R. Deiterding – Detonation and hypersonics simulation with AMROC – Part I 57



References Supplementary material

Clustering by signatures

x x

x x

x x

x x

x x

x x

x

x

x

x

x

x

x

x

x

x

x

x

x

x x x

2

2

0

2

2

2

3

3

6

6

6 6 2 3 2 2 2 2 2Υ

Υ Flagged cells per row/column
∆ Second derivative of Υ, ∆ = Υν+1 − 2 Υν + Υν−1

Technique from image detection: [Bell et al., 1994], see also

[Berger and Rigoutsos, 1991], [Berger, 1986]
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