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Construction principles

Approximation of Boltzmann equation

Is based on solving the Boltzmann equation with a simplified collision operator

∂t f + u · ∇f = ω(f eq − f )

I Kn = lf /L� 1, where lf is replaced with ∆x

I Weak compressibilty and small Mach number assumed

I Assume a simplified phase space

Equation is approximated with a splitting approach.

1.) Transport step solves ∂t fα + eα · ∇fα = 0

Operator: T : f̃α(x + eα∆t, t + ∆t) = fα(x, t)

ρ(x, t) =
8∑
α=0

fα(x, t), ρ(x, t)ui (x, t) =
8∑
α=0

eαi fα(x, t)
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Discrete velocities:
e0 = (0, 0), e1 = (1, 0)c, e2 = (−1, 0)c, e3 = (0, 1)c, e4 = (1, 1)c, ...

c =
∆x

∆t
, Physical speed of sound: cs =

c√
3
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Operator: T : f̃α(x + eα∆t, t + ∆t) = fα(x, t)

ρ(x, t) =
18∑
α=0

fα(x, t), ρ(x, t)ui (x, t) =
18∑
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eαi fα(x, t)

Discrete velocities:

eα =


0, α = 0,
(±1, 0, 0)c, (0,±1, 0)c, (0, 0,±1)c, α = 1, . . . , 6,
(±1,±1, 0)c, (±1, 0,±1)c, (0,±1,±1)c, α = 7, . . . , 18,

R. Deiterding – Aerodynamics and fluid-structure interaction simulation with AMROC Part II 3



Adaptive lattice Boltzmann method LES Aerodynamics cases Non-Cartesian LBM Summary

Construction principles

Approximation of equilibrium state

2.) Collision step solves ∂t fα = ω(f eq
α − fα)

Operator C:

fα(·, t + ∆t) = f̃α(·, t + ∆t) + ωL∆t
(
f̃ eq
α (·, t + ∆t)− f̃α(·, t + ∆t)

)

with equilibrium function

f eq
α (ρ, u) = ρtα

[
1 +

3eαu

c2
+

9(eαu)2

2c4
− 3u2

2c2

]
with tα = 1

9

{
4, 1, 1, 1, 1

4
, 1

4
, 1, 1

4
, 1

4

}
Pressure δp =

∑
α f eq
α c2

s = ρc2
s .

Dev. stress Σij =
(

1− ωL∆t
2

)∑
α eαieαj (f

eq
α − fα)

Is derived by assuming a Maxwell-Boltzmann distribution of f eq
α and

approximating the involved exp() function with a Taylor series to second-order
accuracy.
Using the third-order equilibrium function

f eq
α (ρ, u) = ρtα

[
1 +

3eαu

c2
+

9(eαu)2

2c4
− 3u2

2c2
+

eαu

3c2

(
9(eαu)2

2c4
− 3u2

2c2

)]
allows higher flow velocities.
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Construction principles

Relation to Navier-Stokes equations

Inserting a Chapman-Enskog expansion, that is,

fα = fα(0) + εfα(1) + ε2fα(2) + ...

and using

∂

∂t
= ε

∂

∂t1
+ ε2 ∂

∂t2
+ ..., ∇ = ε∇1 + ε2∇2 + ...

into the LBM and summing over α one can show that the continuity and
moment equations are recoverd to O(ε2) [Hou et al., 1996]

∂tρ+∇ · (ρu) = 0

∂tu + u · ∇u = −∇p + ν∇2u

Kinematic viscosity and collision time are connected by

ν =
1

3

(
τL

∆t
− 1

2

)
c∆x

from which one gets with
√

3cs = ∆x
∆t

[Hähnel, 2004]

ωL = τ−1
L =

c2
s

ν + ∆tc2
s /2
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Construction principles

Initial and boundary conditions
I Initial conditions are constructed as f eq

α (ρ(t = 0), u(t = 0))

Boundary conditions (applied before streaming step)

No-slip

b

b

b

b

Slip

b

b

b

b

Symmetry

bb

I Outlet basically copies all distributions (zero gradient)

I Inlet and pressure boundary conditions use f eq
α

Complex geometry:

I Use level set method as before to construct macro-values in embedded boundary
cells by interpolation / extrapolation [Deiterding, 2011].

I Distance function ϕ, normal n = ∇ϕ/|∇ϕ|. Triangulated meshes use CPT
algorithm [Mauch, 2003].

I Construct macro-velocity in ghost cells for no-slip BC as u′ = 2w − u

I Then use f eq
α (ρ′, u′) or interpolated bounce-back [Bouzidi et al., 2001] to

construct distributions in embedded ghost cells
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Construction principles

Normalization

The method is implemented on the unit lattice with ∆x̃ = ∆t̃ = 1

∆x

l0
= 1,

∆t

t0
= 1 −→ c = 1

Lattice viscosity ν̃ = 1
3

(
τ − 1

2

)
and lattice sound speed c̃s = 1√

3
yield again

ωL =
c̃2

s

ν′ + c̃2
s /2

=
c2

s

ν + ∆tc2
s /2

Velocity normalization factor: u0 = l0
t0

, density ρ0

Re =
uL

ν
=

u/u0 · l/l0
ν/(u0l0)

=
ũl̃

ν̃

Trick for scheme acceleration: Use ū = Su and ν̄ = Sν which yields

ω̄L =
c2

s

Sν + ∆t/S c2
s /2

For instance, the physical hydrodynamic pressure is then obtained for a caloric
gas as

p = (ρ̃− 1)c̃2
s
u2

0

S2
ρ0 +

c2
s ρ0

γ
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∆x

l0
= 1,

∆t

t0
= 1 −→ c = 1

Lattice viscosity ν̃ = 1
3

(
τ − 1

2

)
and lattice sound speed c̃s = 1√

3
yield again

ωL =
c̃2

s

ν′ + c̃2
s /2

=
c2

s

ν + ∆tc2
s /2

Velocity normalization factor: u0 = l0
t0

, density ρ0

Re =
uL

ν
=

u/u0 · l/l0
ν/(u0l0)

=
ũl̃

ν̃

Trick for scheme acceleration: Use ū = Su and ν̄ = Sν which yields
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c2

s

Sν + ∆t/S c2
s /2
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p = (ρ̃− 1)c̃2
s
u2

0

S2
ρ0 +

c2
s ρ0

γ
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Construction principles

Adaptive LBM

1. Complete update on coarse grid: f C ,n+1
α := CT (f C ,n

α )

2. Interpolate f C ,n
α,in onto f f ,n

α,in to fill fine halos. Set physical boundary
conditions.

3. f̃ f ,n
α := T (f f ,n

α ) on whole fine mesh. f
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α ) in interior.

4. f̃
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α := T (f

f ,n+1/2
α ) on whole fine mesh. f f ,n+1

α := C(f̃
f ,n+1/2
α ) in

interior.
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Algorithm equivalent to [Chen et al., 2006].
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Verification and validation

Flow over 2D cylinder, d = 2 cm

I Air with
ν = 1.61 · 10−5 m2/s,
ρ = 1.205 kg/m3

I Domain size
[−8d , 24d ]× [−8d , 8d ]

I Dynamic refinement based
on velocity. Last level to
refine structure further.

I Inflow from left.
Characteristic boundary
conditions [Schlaffer, 2013]
elsewhere.

I Base lattice 320× 160, 3 additional levels with factors 2, 4, 4.

I Resolution: ∼ 320 points in diameter d

I Computation of CD on 400 equidistant points along circle and averaged
over time. Comparison above with [Henderson, 1995].
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Verification and validation

Oscillating cylinder – Setup

Motion imposed on cylinder
Case At ft = fθ VR U∞ Re

1a D/4 0.6 0.5 0.0606 1322

1b D/2 0.6 1.0 0.0606 1322

2a D/4 3.0 0.5 0.3030 6310

2b D/2 3.0 1.0 0.3030 6310

y(t) = At sin(2πftt), θ(t) = Aθ sin(2πfθt)

I Setup follows [Nazarinia et al., 2012]. Here Aθ = 1 for all cases.

I Natural frequency of cylinder fN ≈ 0.6154 s−1.

I Strouhal number Stt = ftD/U∞ ≈ 0.198 for all cases.

I Chosen here D = 20mm

I Fluid is water with cs = 1482m/s, ν = 9.167 · 10−7 m2/s,
ρ = 1016 kg/m3

I Constant coefficient model deactivated for Case 1, active for Case 2 with
Csm = 0.2

C. Laloglu, RD. Proc. 5th Int. Conf. on Parallel, Distributed, Grid and Cloud Computing for Engineering, Civil-Comp Press, 2017.
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Adaptive lattice Boltzmann method LES Aerodynamics cases Non-Cartesian LBM Summary

Verification and validation

Case 1b, VR = 1, Re = 1322

Mesh refinement Distribution to 4 processors

I Visualization enlargement of cylinder region

I Base mesh is discretized with 320× 160 cells, 3 additional levels with
factor rl = 2, 2, 2

I 80 cells within D on highest level

I Speedup S = 2000

I Basically identical setup in commercial code XFlow for comparison
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Verification and validation

Case 1b, VR = 1, ft = fθ = 0.6, Re = 1322
AMROC XFlow
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I Increase of rotational velocity leads to formation of a vortex pair plus single
vortex. Drag and lift amplitude roughly doubled.

I Laminar results in good agreement with experiments of [Nazarinia et al., 2012].
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Verification and validation

Case 2a, VR = 0.5, ft = fθ = 3, Re = 6310
AMROC XFlow
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I Oscillation period: T = 1/ft = 0.33 s. 10 regular vortices in 1.67 s.

I CPU time on 6 cores for AMROC: 635.8 s, XFlow ∼ 50 % more expensive when
normalized based on number of cells
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Verification and validation

Computational performance

Flow type Case ∆t0 [s]
Total cells

∆te [s] Re y+ CPU time [s]

AMROC XFlow AMROC XFlow

Laminar
1a 0.0015 85982 84778 3.33 1322 0 161.89 176

1b 0.0015 91774 90488 3.33 1322 0 165.97 183

Turbulent
2a 0.00031 232840 216452 1.66 6310 2.4 635.8 887

2b 0.00031 255582 246366 1.66 6310 2.6 933.2 1325

I Intel-Xeon-3.50-GHz desktop workstation with 6 cores, communication through
MPI

I Same base mesh and always three additional refinement levels

I AMROC: single-relaxation time LBM, block-based mesh adaptation

I XFlow: slightly more multi-relaxation time LBM, cell-based mesh adaptation

I AMROC uses ∼ 7.5 % more cells on average more cells

I Normalized on cell number Case 2a is 50 % more expensive for XFlow than for
AMROC-LBM

I Case 2b is 42 % more expensive in CPU time alone

R. Deiterding – Aerodynamics and fluid-structure interaction simulation with AMROC Part II 14



Adaptive lattice Boltzmann method LES Aerodynamics cases Non-Cartesian LBM Summary

Verification and validation

Computational performance

Flow type Case ∆t0 [s]
Total cells

∆te [s] Re y+ CPU time [s]

AMROC XFlow AMROC XFlow

Laminar
1a 0.0015 85982 84778 3.33 1322 0 161.89 176

1b 0.0015 91774 90488 3.33 1322 0 165.97 183

Turbulent
2a 0.00031 232840 216452 1.66 6310 2.4 635.8 887

2b 0.00031 255582 246366 1.66 6310 2.6 933.2 1325

I Intel-Xeon-3.50-GHz desktop workstation with 6 cores, communication through
MPI

I Same base mesh and always three additional refinement levels

I AMROC: single-relaxation time LBM, block-based mesh adaptation

I XFlow: slightly more multi-relaxation time LBM, cell-based mesh adaptation

I AMROC uses ∼ 7.5 % more cells on average more cells

I Normalized on cell number Case 2a is 50 % more expensive for XFlow than for
AMROC-LBM

I Case 2b is 42 % more expensive in CPU time alone

R. Deiterding – Aerodynamics and fluid-structure interaction simulation with AMROC Part II 14



Adaptive lattice Boltzmann method LES Aerodynamics cases Non-Cartesian LBM Summary

Verification and validation

Two-segment hinged wing

Configuration by [Toomey and Eldredge, 2008].
Manufactured bodies in tank filled with water.
Prescribed translation and rotation

Xt(t) =
A0

2

Gt(ft)

max Gt
C(ft), α1(t) = −β Gr (ft)

max Gr

with Gr (t) = tanh[σrcos(2πt + Φ)],

Gt(t) =

∫
t

tanh[σtcos(2πt′)]dt′

I 7 cases constructed by varying σr , σt , Φ

I Rotational Reynolds number
Rer = 2πβσr fc

2/(tanh(σr )ν) varied between
2200 and 7200 in experiments

I [Toomey and Eldredge, 2008] reference
simulations with a viscous particle method are
for Rer = {100, 500}

A0 (cm) 7.1
c (cm) 5.1
d (cm) 0.25
ρb (kg/m3) 5080
f (Hz) 0.15
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Verification and validation

Case 1 - σr = σt = 0.628, Φ = 0, Rer = 100

I Quiescent water
ρf = 997 kg/m3

cs = 1497m/s

I No-slip boundaries
in y , periodic in
x-direction

I Base level:
100× 100 for
[−0.5, 0.5]×
[−0.5, 0.5] domain

I 4 additional levels
with factors 2,2,2,4

I Coupling to rigid
body motion solver
on 4th level

Right: computed vorticity
field (enlarged)
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Verification and validation

Quantitative comparison
I Evaluate normalized force Fx,y = 2F∗x,y/(ρ2

f c3) and moment M = 2M∗/(ρf f 2c4) over 3 periods

I [Wood and Deiterding, 2015] Used finest spatial resolution ∆x/c = 0.0122
[Toomey and Eldredge, 2008]: ∆x/c = 0.013 (Rer = 100), ∆x/c = 0.0032 (Rer = 500)

I Temporal resolution ∼ 113 and ∼ 28 times finer

Relative difference in mean force and moment
Rer = 100 Rer = 500

Case F̄x F̄y M̄ F̄x F̄y M̄
1 -2.59 3.33 -3.85 3.33 5.45 -3.75
2 2.47 0.74 2.55 2.35 3.83 -4.29
3 1.27 0.45 0.72 2.31 4.65 -3.43
4 4.86 4.28 3.54 3.51 2.37 -2.32
5 4.83 0.47 0.25 4.34 4.39 -2.67
6 2.10 3.19 1.52 3.00 1.82 -3.96
7 1.41 0.99 3.28 4.31 2.32 -3.07

Relative difference in peak force and moment
Rer = 100 Rer = 500

Case ||Fx ||∞ ||Fy ||∞ ||M||∞ ||Fx ||∞ ||Fy ||∞ ||M||∞
1 4.40 5.07 -3.66 4.40 3.98 -4.17
2 4.46 2.42 2.62 2.72 4.33 -2.34
3 4.20 3.20 4.80 3.32 2.68 -4.59
4 4.67 2.22 3.71 0.18 2.51 -2.85
5 3.57 3.37 1.26 4.09 4.97 -3.63
6 2.04 3.08 1.52 3.92 2.08 -4.44
7 2.20 1.91 2.26 3.29 3.79 -4.40
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Thermal LBM

An LBM for thermal transport

Consider the Navier-Stokes equations under Boussinesq approximation

∇ · u = 0

∂u

∂t
+∇ · (uu) = −∇p + ν∇2u + F

∂T

∂t
+∇ · (uT ) = D∇2T

with F = gβ (T − Tref ).

An LBM for this system needs to use two distribution functions fα and gα.
1.) Transport step T :

f̃α(x + eα∆t, t + ∆t) = fα(x, t), g̃α(x + eα∆t, t + ∆t) = gα(x, t)

2.) Collision step C:

fα(·, t + ∆t) = f̃α(·, t + ∆t) + ωL,ν∆t
(
f̃ eq
α (·, t + ∆t)− f̃α(·, t + ∆t)

)
+ ∆tFα

gα(·, t + ∆t) = g̃α(·, t + ∆t) + ωL,D∆t (g̃ eq
α (·, t + ∆t)− g̃α(·, t + ∆t))

with collision frequencies

ωL,ν =
c2

s

ν + c2
s ∆t/2

, ωL,D =
3
2
c2

s

D + 3
2
c2

s ∆t/2
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Thermal LBM

Equilibrium operators
This incompressible method uses in 2D [Guo et al., 2002]

f (eq)
α =

{
−4σ0p − sα(u), for α = 0,

σαp + sα(u), for α = 1, . . . , 8,

where

sα (u) = tα

[
3eαu

c2
+

9(eαu)2

2c4
− 3u2

2c2

]
b

b

b

b

b bb

b

b
3

0

4

1

768

2

5

with tα = 1
9

{
4, 1, 1, 1, 1

4
, 1

4
, 1, 1

4
, 1

4

}
and σα = 1

3

{
−5, 1, 1, 1, 1

4
, 1

4
, 1, 1

4
, 1

4

}

g (eq)
α =

T

4
[1 + 2eα · u] for α = 1, . . . , 4

Forces are applied in y -direction only:

Fα =
1

2
(δi3 − δi6) ei · F

Moments: u =
∑
α>0

ei fα, p =
1

4σ

[∑
α>0

fα + s0(u)

]
, T =

4∑
α=1

gα
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Adaptive lattice Boltzmann method LES Aerodynamics cases Non-Cartesian LBM Summary

Thermal LBM

Heated rotating cylinder
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I Re = 2U∞R/ν = 200, U∞ = 0.01

I Peripheral velocity V = ΩR, V /U∞ = 0.5

I Base grid 288× 240 refined by three levels
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Thermal LBM

Natural convection
Characterized by

Ra =
gβ∆TH3

νD

a = AMROC-LBM,
b = [Fusegi et al., 1991] (NS - uniform)

Ref. umax ymax vmax xmax Nuave

Ra = 103 a 0.132 0.195 0.132 0.829 1.099
b 0.131 0.200 0.132 0.833 1.105

Ra = 104 a 0.197 0.194 0.220 0.887 2.270
b 0.201 0.183 0.225 0.883 2.302

Ra = 105 a 0.141 0.152 0.242 0.935 4.583
b 0.147 0.145 0.247 0.935 4.646

TH TC

H

H

H

g

x

y

z

Isosurfaces of temperature and refinement levels

Ra = 104

Ra = 105

K. Feldhusen, RD, C. Wagner. J. Applied Math. Comp. Science 26(4): 735–747, 2016.
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LES models

Turbulence modeling

Pursue a large-eddy simulation approach with f α and f
eq
α , i.e.

1.) f̃ α(x + eα∆t, t + ∆t) = f α(x, t)

2.) f α(·, t + ∆t) = f̃ α(·, t + ∆t) + 1
τ?

∆t
(
f̃

eq

α (·, t + ∆t)− f̃ α(·, t + ∆t)
)

Effective viscosity: ν? = ν + νt =
1

3

(
τ?L
∆t
− 1

2

)
c∆x with τ?L = τL + τt

Use Smagorinsky model to evaluate νt , e.g., νt = (Csm∆x)2|S|, where

|S| =

√
2
∑

i,j

S ijS ij

The filtered strain rate tensor S ij = (∂jui + ∂iuj )/2 can be computed as a
second moment as

S ij =
Σij

2ρc2
s τ?L

(
1− ωL∆t

2

) =
1

2ρc2
s τ?L

∑
α

eαieαj (f
eq
α − f α)

τt can be obtained as [Yu, 2004, Hou et al., 1996]

τt =
1

2

(√
τ 2

L + 18
√

2(ρ0c2)−1C 2
sm∆x |S| − τL

)
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LES models

Further LES models

Dynamic Smagorinsky model (DSMA)

Csm(x, t)2 = −1

2

〈LijMij〉
〈MijMij〉

Lij = Tij − τ̂ij = ûiuj − ûi ûj Mij = ∆̂x
2
|Ŝ|Ŝ ij −∆x2 |̂S|S ij

No van Driest damping implemented yet!

Wall-Adapting Local Eddy-viscosity model (WALE)

νt = (Cw ∆x)2OPWALE , where Cw = 0.5

WALE turbulence time-scale

OPWALE =
(JijJij )

3
2

(S ijS ij )
5
2 + (JijJij )

5
4

Jij = S ikSkj + Ωik Ωkj −
1

3
δij (SmnSmn − ΩmnΩmn)

Effective relaxation time (see previous slide): τ?L =
(ν + νt) + ∆tc2

s /2

c2
s

R. Deiterding – Aerodynamics and fluid-structure interaction simulation with AMROC Part II 23



Adaptive lattice Boltzmann method LES Aerodynamics cases Non-Cartesian LBM Summary

LES models

Further LES models

Dynamic Smagorinsky model (DSMA)

Csm(x, t)2 = −1

2

〈LijMij〉
〈MijMij〉

Lij = Tij − τ̂ij = ûiuj − ûi ûj Mij = ∆̂x
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Verification for homogeneous isotropic turbulence

Forced homogeneous isotropic turbulence

I Fourier representation

I Periodic boundaries, uniform mesh

I Use of external forcing term, i.e.,
result independent of initial
conditions

Forcing:

Fx = 2A
(κyκz

|κ|2
)
G(κx , κy , κz )

Fy = −A
(κxκz

|κ|2
)
G(κx , κy , κz )

Fz = −A
(κxκy

|κ|2
)
G(κx , κy , κz )

Iso-surface ||u||/〈urms〉 = 2

with phase

G(κx , κy , κz ) = sin

(
2πx

L
κx +

2πy

L
κy +

2πz

L
κz + φ

)
for (0 < κi ≤ 2) and φ

being a random phase value.
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Verification for homogeneous isotropic turbulence

Comparison with model spectrum
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Time-averaged energy spectrum (solid line) [N = 1283 cells, ν = 3e−5 m2/s]
against a modelled one (dashed line and the -5/3 power law (dot-dashed line).
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Verification for homogeneous isotropic turbulence

LES model spectra
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Verification for homogeneous isotropic turbulence

Decaying homogeneous isotropic turbulence

I Restart DNS of 5123 resolution without forcing. Volume-averaging to
1283 cells gives DSMA and WALE initial conditions
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Evolution of the turbulent kinetic energy k (left) and energy spectra at
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resolution.
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Verification for homogeneous isotropic turbulence

Flow field comparison

Contours of vorticity magnitude (|ω| = 0.18) at t = 4.91 (left) and t = 68.72
(right) for DNS (thin blue lines) of 5123 against DSMA (dotted black lines)

and WALE (thick red lines) of 1283 cells resolution
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Outline

Adaptive lattice Boltzmann method
Construction principles
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Large-eddy simulation
LES models
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Realistic aerodynamics computations
Vehicle geometries
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Construction principles
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Summary
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Vehicle geometries

Wind tunnel simulation of a prototype car
Fluid velocity and pressure on vehicle

I Inflow 40 m/s. LES model active. Characteristic boundary conditions.
I To t = 0.5 s (∼ 4 characteristic lengths) with 31,416 time steps on finest level in ∼ 37 h on

200 cores (7389 h CPU). Channel: 15 m× 5 m× 3.3 m
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Vehicle geometries

Mesh adaptation
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Vehicle geometries

Mesh adaptation
Used refinement blocks and levels (indicated by color)

I SAMR base grid 600× 200× 132 cells, r1,2,3 = 2 yielding
finest resolution of ∆x = 3.125 mm

I Adaptation based on level set and scaled gradient of
magnitude of vorticity vector

I 236M cells vs. 8.1 billion (uniform) at t = 0.4075 s

Refinement at t = 0.4075 s

Level Grids Cells
0 11,605 15,840,000
1 11,513 23,646,984
2 31,382 144,447,872
3 21,221 52,388,336
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Vehicle geometries

Flow over a motorcycle
I Inflow 40m/s. Bouzidi pressure boundary conditions at outflows. CSMA LES

model active.

I SAMR base grid 200× 80× 80 cells, r1,2,3 = 2 yielding finest resolution of
∆x = 6.25mm. 23560 time steps on finest level

I Forces in AMROC-LBM are time-averaged over interval [0.5s, 1s]

I Unstructured STAR-CCM+ mesh has significantly finer as well as coarser cells

AMROC-LBM LES at t = 1 s STAR-CCM+ steady RANS

Velocity in flow direction

Forces (N) Cores Wall Time CPU Time
Variables Drag Sideforce Lift Total h h

STAR-CCM+ 297 5 9 297 10 4.9 78
AMROC 297 10 23 298 64 10 635
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Wind turbine benchmark

Mexico experimental turbine – 0o inflow

I Setup and measurements by Energy Research Centre of the Netherlands (ECN) and the
Technical University of Denmark (DTU) [Schepers and Boorsma, 2012]

I Inflow velocity 14.93 m/s in wind tunnel of 9.5 m× 9.5 m cross section.
I Rotor diameter D = 4.5 m. Prescribed motion with 424.5 rpm: tip speed 100 m/s,

Rer ≈ 75839 TSR 6.70
I Simulation with three additional levels with factors 2, 2, 4. Resolution of rotor and tower

∆x = 1.6 cm
I 149.5 h on 120 cores Intel-Xeon (17490 h CPU) for 10 s

I Data collected as average during t ∈ [5, 10]. Load on blade 1 as it passes through θ = 0o

(pointing vertically upwards), 35 rotations
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Wind turbine benchmark

Mexico experimental turbine – 30o yaw

I 157.6 h on 120 cores Intel-Xeon for 10 s (70.75 revolutions) −→ ∼ 22.25 h CPU/1M
cells/revolution

I ∼ 12 M cells in total – level 0: 768,000, level 1: ∼ 1.5 M, level 2: ∼ 6.8 M, level 3:
∼ 3.0 M

I For comparison [Schepers and Boorsma, 2012]:

I Wind Multi-Block Liverpool University (34 M cells): 209 h CPU/1M cells/revolution

I EllipSys3D (28.3 M cell mesh): ∼ 40.7 h CPU/1M cells/revolution, but ∼ 15% error in Fx

and Tx already for 0◦ inflow [Sørensen et al., 2014]
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Wind turbine benchmark

Comparison along transects – 30o yaw

 7

 8

 9

 10

 11

 12

 13

 14

 15

-4 -2  0  2  4  6

u
x
 [
m

/s
]

[m]

r=1.38m Experiment
r=1.85m Experiment
r=1.38m Simulation
r=1.85m Simulation

-7

-6

-5

-4

-3

-2

-1

 0

 1

-4 -2  0  2  4  6

u
y
 [
m

/s
]

[m]

r=1.38m Experiment
r=1.85m Experiment
r=1.38m Simulation
r=1.85m Simulation

axial

ux uy

-2

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

-3 -2 -1  0  1  2  3

u
x
 [
m

/s
]

[m]

x=-0.15m Experiment
x=0.15m Experiment
x=-0.15m Simulation
x=0.15m Simulation

-6

-4

-2

 0

 2

 4

 6

 8

 10

-3 -2 -1  0  1  2  3

u
y
 [
m

/s
]

[m]

x=-0.15m Experiment
x=0.15m Experiment
x=-0.15m Simulation
x=0.15m Simulation

radial

ux uy

I Blade loads: Fx : Ref = 13.66 N, cur. = 14.8 N (8.3%)
I Tx : Ref = 7.72 Nm, cur. = 8.36 Nm (8.3%)

RD, S. L. Wood. Proc. of TORQUE 2016. J. Phys. Conference Series 753: 082005, 2016.
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Wake interaction prediction

Single Vestas V27

I Inflow velocity u∞ = 8m/s. Prescribed motion of rotor with nrpm = 33,
r = 14.5m: tip speed 46.7m/s, Rer ≈ 919, 700 TSR 5.84

I Simulation with three additional levels with refinement factors 2, 2, 4.

I Refinement based on vorticity and level set.

I Sampled rotor and circular regions (rc = 1.5r) every 0.034 s over t = [8, 18] s

I Computing 84,806 highest level iterations to te = 18 s.

I ∼ 24 time steps for 1o rotation
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I Sampled rotor and circular regions (rc = 1.5r) every 0.034 s over t = [8, 18] s

I Computing 84,806 highest level iterations to te = 18 s.

I ∼ 24 time steps for 1o rotation
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Wake interaction prediction

Simulation of the SWIFT array
I Three Vestas V27 turbines (geometric details prototypical). 225 kW power

generation at wind speeds 14 to 25m/s (then cut-off)

I Prescribed motion of rotor with 33 and 43 rpm. Inflow velocity 8 and 25m/s

I TSR: 5.84 and 2.43, Rer ≈ 919, 700 and 1,208,000

I Simulation domain 448m×240m×100m

I Base mesh 448× 240× 100 cells with
refinement factors 2, 2,4. Resolution of
rotor and tower ∆x = 6.25 cm

I 94,224 highest level iterations to te = 40 s
computed, then statistics are gathered for
10 s [Deiterding and Wood, 2016]

R. Deiterding – Aerodynamics and fluid-structure interaction simulation with AMROC Part II 37



Adaptive lattice Boltzmann method LES Aerodynamics cases Non-Cartesian LBM Summary

Wake interaction prediction

Vorticity – inflow at 30o, u = 8m/s, 33 rpm

I Top view in plane in z-direction at 30 m (hub height)
I Turbine hub and inflow at 30o yaw leads to off-axis wake impact.
I 160 cores Intel-Xeon E5 2.6 GHz, 33.03 h wall time for interval [50, 60] s (including

gathering of statistical data)
I ∼ 6.01 h per revolution (961 h CPU) −→ ∼ 5.74 h CPU/1M cells/revolution
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Wake interaction prediction

Levels – inflow at 30o, u = 8m/s, 33 rpm

I At 63.8 s approximately 167M cells used vs. 44 billion (factor
264)

I ∼ 6.01 h per revolution (961 h CPU) −→ ∼ 5.74 h CPU/1M
cells/revolution

Level Grids Cells
0 2,463 10,752,000
1 6,464 20,674,760
2 39,473 131,018,832
3 827 4,909,632
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Wake interaction prediction

Vorticity development – inflow at 0o, u = 8m/s, 33 rpm

I Refinement of wake up to level 2 (∆x = 25 cm).
I Vortex break-up before 2nd turbine is reached.
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Wake interaction prediction

Refinement – inflow at 0o, u = 8m/s, 33 rpm
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Wake interaction prediction

Refinement – inflow at 0o, u = 8m/s, 33 rpm
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Wake interaction prediction

Mean point values – inflow at 0o,
I Turbines located at (0, 0, 0),

(135, 0, 0), (−5.65, 80.80, 0)

I Lines of 13 sensors with
∆y = 5m, z = 37m (approx.
center of rotor)

I u and p measured over
[40 s, 50 s] (1472 level-0 time
steps) and averaged

u = 25 m/s, 43 rpm, TSR=2.43
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I Velocity deficits larger for higher TSR.

I Velocity deficit before 2nd turbine more homogenous for small TSR.

RD, S. L. Wood. New Results in Numerical and Experimental Fluid Mechanics X, pages 845-857, Springer, 2016.
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Construction principles

Lattice Boltzmann equation in mapped coordinates

Consider mapping from Cartesian to non-Cartesian coordinates

ξ = ξ(x , y), η = η(x , y)

with
∂

∂x
=

∂

∂ξ

∂ξ

∂x
+

∂

∂η

∂η

∂x
,
∂

∂y
=

∂

∂ξ

∂ξ

∂y
+

∂

∂η

∂η

∂y
.

Under this transformation the convection term reads

eα · ∇fα = eαx
∂fα

∂x
+ eαy

∂fα

∂y

= eαx

(
∂fα

∂ξ

∂ξ

∂x
+
∂fα

∂η

∂η

∂x

)
+ eαy

(
∂fα

∂ξ

∂ξ

∂y
+
∂fα

∂η

∂η

∂y

)
=

(
eαx

∂ξ

∂x
+ eαy

∂ξ

∂y

)
∂fα

∂ξ
+

(
eαx

∂η

∂x
+ eαy

∂η

∂y

)
∂fα

∂η

= ẽαξ
∂fα

∂ξ
+ ẽαη

∂fα

∂η
,

and hence the lattice Boltzmann equation becomes

∂f

∂t
+ ẽαξ

∂fα

∂ξ
+ ẽαη

∂fα

∂η
= −

1

τ
(fα − f eq

α ) .
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Construction principles

Scheme construction

Currently using the explicit 4th-order Runge-Kutta scheme

f 1
α = f t

α, f
2
α = f 1

α +
∆t

4
R1
α,

f 3
α = f 1

α +
∆t

3
R2
α, f

4
α = f 1

α +
∆t

2
R3
α,

f t+∆t
α = f 1

α + ∆tR4
α.

with

Rα(i,j)
= −

(
ẽαξ(i,j)

fα(i+1,j)
− fα(i−1,j)

2∆ξ
+ ẽαη(i,j)

fα(i,j+1)
− fα(i,j−1)

2∆η

)
− 1

τ

(
fα(i,j)

− f eq
α(i,j)

)
for the solution, 2nd-order central differences to approximate derivatives.
A 4th-order dissipation term

D = −ε
(

(∆ξ)4 ∂
4fα
∂ξ4

+ (∆η)4 ∂
4fα
∂η4

)
is added for stabilization [Hejranfar and Hajihassanpour, 2017].
Prototype implementation is presently on finite difference meshes!
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Verification and validation for 2d cylinder

2d cylinder study

Re Author(s) Cd Cp (0) Cp (180) 2L/D

20 [Tritton, 1959] 2.20 - - -
[Henderson, 1995] 2.06 - -0.60 -
[Dennis and Chang, 1970] 2.05 1.27 -0.58 1.88
[Hejranfar and Ezzatneshan, 2014] 2.02 1.25 -0.59 1.84
AMROC-LBM 1.98 1.26 -0.59 1.85
Present 2.02 1.31 -0.55 1.85

40 [Tritton, 1959] 1.65 - - -
[Henderson, 1995] 1.55 - -0.53 -
[Dennis and Chang, 1970] 1.52 1.14 -0.50 4.69
[Hejranfar and Ezzatneshan, 2014] 1.51 1.15 -0.48 4.51
AMROC-LBM 1.45 1.19 -0.49 4.66
Present 1.51 1.19 -0.46 4.60

2L/D is normalized length of wake behind cylinder
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Verification and validation for 2d cylinder

2d cylinder study – unsteady flow case

Re Author(s) St Cd C′l
100 [Chiu et al., 2010] 0.167 1.35 0.30

AMROC-LBM 0.166 1.28 0.32
Present 0.165 1.36 0.35

200 [Chiu et al., 2010] 0.198 1.37 0.71
AMROC-LBM 0.196 1.26 0.70

Present 0.196 1.37 0.73

Re CPU-time Mesh

20 AMROC-LBM 24:55:21 297796
Present 06:08:41 65536

40 AMROC-LBM 27:10:08 317732
Present 05:57:17 65536

100 AMROC-LBM 113:15:37 1026116
Present 05:58:49 65536

200 AMROC-LBM 130:37:18 1130212
Present 06:03:42 65536
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Conclusions

Conclusions – subsonic aerodynamics with LBM
I Cartesian LBM is a very efficient low-dissipation method for subsonic

aerodynamic simulation and especially suitable for DNS and LES

I Cartesian CFD with block-based AMR is faster than cell-cased AMR and
tailored for modern massively parallel computer systems

I Fast dynamic mesh adaptation in AMROC makes FSI problems with
complex motion easily accessible. Time-explicit approach leads to very
tight coupling

I For high Reynolds number flows around complex bodies an LES
turbulence model is vital for stability (so are higher-order in- and outflow
boundary conditions)

I Currently validating and extending (dynamic) Smagorinsky with wall-near
damping and WALE model for realistic problems

I Turbulent wall function boundary condition model under development

I Accurate simulation of thin, wall-resolved boundary layers is dramatically
more efficient with the non-Cartesian LBM approach, despite the
availability of AMR in AMROC

I Develop non-Cartesian version of AMROC-LBM as near-term goal
I Chimera technique within AMROC-LBM might be long-term goal
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Motion solver

Based on the Newton-Euler method solution of dynamics equation of kinetic chains
[Tsai, 1999](
F
τP

)
=

(
m1 −m[c]×

m[c]×Icm −m[c]×[c]×

)(
aP
α

)
+

(
m[ω]×[ω]×c

[ω]×(Icm −m[c]×[c]×)ω

)
.

m = mass of the body, 1 = the 4×4 homogeneous identity matrix,
ap = acceleration of link frame with origin at p in the preceding link’s frame,
Icm = moment of inertia about the center of mass,
ω = angular velocity of the body,
α = angular acceleration of the body,
c is the location of the body’s center of mass,
and [c]× , [ω]× denote skew-symmetric cross product matrices.

Here, we additionally define the total force and torque acting on a body,
F = (FFSI + Fprescribed ) · Cxyz and

τ = (τFSI + τprescribed ) · Cαβγ respectively.

Where Cxyz and Cαβγ are the translational and rotational constraints,
respectively.
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