Detonation simulation	
000000000000000000000000000000000000000	

Combustion with viscous terms

Higher order scheme 0000000

Lecture 4 Detonation simulation

Course Block-structured Adaptive Finite Volume Methods for Shock-Induced Combustion Simulation

Ralf Deiterding German Aerospace Center (DLR) Institute for Aerodynamics and Flow Technology Bunsenstr. 10, Göttingen, Germany

E-mail: ralf.deiterding@dlr.de

Detonation simulation	Combustion with viscous terms	Higher order schemes	References
00000000000000000	00000000000	000000	00

Outline

Detonation simulation Detonation structures

Combustion with viscous terms

Higher order schem 0000000 References 00

Outline

Detonation simulation Detonation structures

Combustion with viscous terms

Combustion induced by projectiles Finite volume scheme

Combustion with viscous terms

Higher order schem 0000000 References 00

Outline

Detonation simulation

Detonation structures

Combustion with viscous terms

Combustion induced by projectiles Finite volume scheme

Higher order schemes

Hybrid methods Large-eddy simulation

Detonation simulation	Combustion with viscous terms	Higher order schemes	References
●000000000000000000			
Determention at a second			

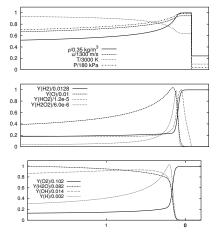
Planar ZND Structure

Steady situation under Galilean transformation:

$$\frac{\partial}{\partial x'}(\rho u') = 0$$
$$\frac{\partial}{\partial x'}(\rho u'^{2} + p) = 0$$
$$\frac{\partial}{\partial x'}(u'\rho H) = 0$$
$$\frac{Y_{i}}{x'} = \frac{W_{i}\dot{\omega}_{i}\left(\rho\frac{Y_{1}}{W_{1}}, \dots, \rho\frac{Y_{K}}{W_{K}}, T\right)}{\rho u'}$$

CJ-detonation of H₂ : O₂ : Ar with molar ratios 2 : 1 : 7 at $T_0 = 298$ K and $p_0 = 6.67$ kPa, $d_{CJ} \approx 1627$ m/s. $t_{ig} \approx 3.55 \,\mu$ s, $u'_{vN} \approx 395.5$ m/s, $l_{ig} \approx 0.14$ cm.

Cf. vtf/amroc/clawpack/applications/euler_chem/1d/ModelDetonation

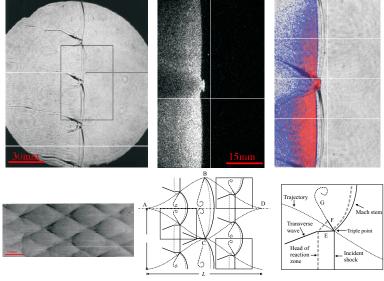

 $\frac{\partial}{\partial t}$

Detonation simulation	Combustion with viscous terms	Higher order schemes	References
•00000000000000000			
Dotonation structures			

Planar ZND Structure

Steady situation under Galilean transformation:

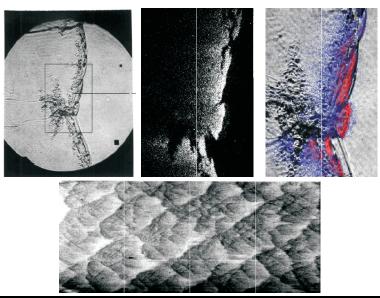
$$\frac{\frac{\partial}{\partial x'}(\rho u') = 0}{\frac{\partial}{\partial x'}(\rho u'^2 + p) = 0}$$
$$\frac{\frac{\partial}{\partial x'}(u'\rho H) = 0}{\frac{\partial}{\partial x'}}$$
$$\frac{\partial Y_i}{\partial x'} = \frac{W_i \dot{\omega}_i \left(\rho \frac{Y_1}{W_1}, \dots, \rho \frac{Y_K}{W_K}, T\right)}{\rho u'}$$



 $Cf. \ vtf/amroc/clawpack/applications/euler_chem/1d/ModelDetonation$

Detonation structures

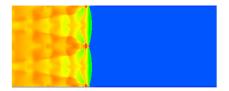
Detonation cell structure in 2D - Regular instability


E: Reflected shock. F: Slip line. G: Diffusive extension of slip line.

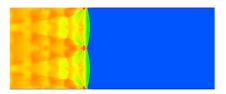
Combustion with viscous terms

Higher order schem 0000000 References 00

Detonation structures

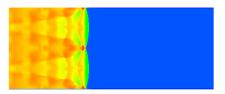

Transverse detonation structure - irregular instability

Detonation simulation	Combustion with viscous terms	Higher order schemes	References
0000000000000000			
Barriel and a second second			


- CJ detonation for H₂ : O₂ : Ar (2:1:7) at T₀ = 298 K and p₀ = 10 kPa, cell width 1.6 cm
- Perturb 1d ZND solution with unreacted high-pressure pocket behind front
- ► Triple point trajectories by tracking max $|\omega|$ on auxiliary mesh shifted through grid with CJ velocity. $\omega = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}$
- SAMR simulation with 4 additional levels (2,2,2,4), 67.6 Pts/*l_{ig}*
- Configuration similar to Oran et al., J. Combustion and Flame 113, 1998.

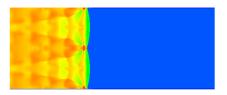
Detonation simulation	Combustion with viscous terms	Higher order schemes	References
000000000000000000000000000000000000000			
Detonation structures			

- CJ detonation for H₂ : O₂ : Ar (2:1:7) at T₀ = 298 K and p₀ = 10 kPa, cell width 1.6 cm
- Perturb 1d ZND solution with unreacted high-pressure pocket behind front
- ► Triple point trajectories by tracking max $|\omega|$ on auxiliary mesh shifted through grid with CJ velocity. $\omega = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}$
- SAMR simulation with 4 additional levels (2,2,2,4), 67.6 Pts/*l_{ig}*
- Configuration similar to Oran et al., J. Combustion and Flame 113, 1998.



Detonation simulation	Combustion with viscous terms	Higher order schemes	References
000000000000000000000000000000000000000			
Detonation structures			

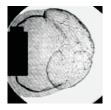
- CJ detonation for H₂ : O₂ : Ar (2:1:7) at T₀ = 298 K and p₀ = 10 kPa, cell width 1.6 cm
- Perturb 1d ZND solution with unreacted high-pressure pocket behind front
- ► Triple point trajectories by tracking max $|\omega|$ on auxiliary mesh shifted through grid with CJ velocity. $\omega = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}$
- SAMR simulation with 4 additional levels (2,2,2,4), 67.6 Pts/*l_{ig}*
- Configuration similar to Oran et al., J. Combustion and Flame 113, 1998.



Detonation simulation	Combustion with viscous terms	Higher order schemes	References
000000000000000000000000000000000000000			
Detonation structures			

- CJ detonation for H₂ : O₂ : Ar (2:1:7) at T₀ = 298 K and p₀ = 10 kPa, cell width 1.6 cm
- Perturb 1d ZND solution with unreacted high-pressure pocket behind front
- ► Triple point trajectories by tracking max $|\omega|$ on auxiliary mesh shifted through grid with CJ velocity. $\omega = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}$
- SAMR simulation with 4 additional levels (2,2,2,4), 67.6 Pts/*l*_{ig}
- Configuration similar to Oran et al., J. Combustion and Flame 113, 1998.

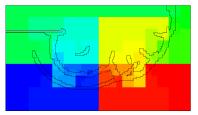
 $vtf/amroc/clawpack/applications/euler_chem/2d/StrehlowH2O2/StatDet$

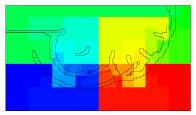

Outflow

Combustion with viscous terms

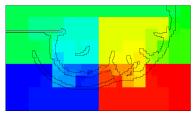
Higher order schem 0000000

Detonation diffraction

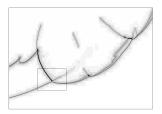

- CJ detonation for $H_2: O_2: Ar/2: 1: 7$ at $T_0 = 298 \text{ K}$ and $p_0 = 10 \text{ kPa}$. Cell width $\lambda_c = 1.6 \text{ cm}$
- Adaption criteria (similar as before):
 - 1. Scaled gradients of ρ and p
 - 2. Error estimation in *Y_i* by Richardson extrapolation
- 25 Pts/*l_{ig}*. 5 refinement levels (2,2,2,4).
- Adaptive computations use up to $\sim 2.2 \,\mathrm{M}$ instead of $\sim 150 \,\mathrm{M}$ cells (uniform grid)
- $\blacktriangleright \sim 3850 \, {\rm h}$ CPU ($\sim 80 \, {\rm h}$ real time) on 48 nodes Athlon 1.4GHz

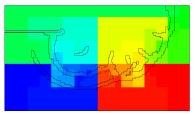

E. Schultz. *Detonation diffraction through an abrupt area expansion*. PhD thesis, California Institute of Technology, Pasadena, California, April 2000.

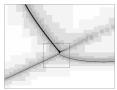
Detonation diffraction - adaptation



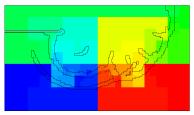
Detonation diffraction - adaptation

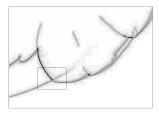



Detonation diffraction - adaptation

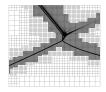


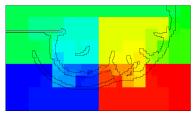
Detonation diffraction - adaptation

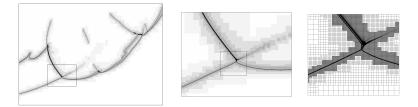




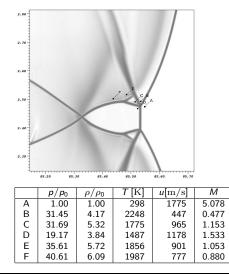



Detonation diffraction - adaptation





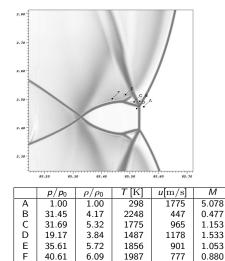
Detonation diffraction - adaptation

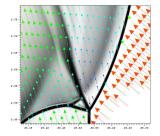


 $vtf/amroc/clawpack/applications/euler_chem/2d/Diffraction$

Detonation simulation	Combustion with viscous terms	Higher order schemes	References
00000000000000000			
Detonation structures			

Triple point analysis

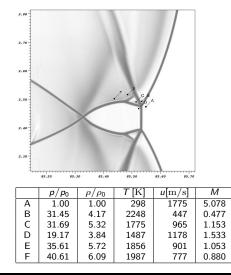

Double Mach reflection structure shortly before the next collision

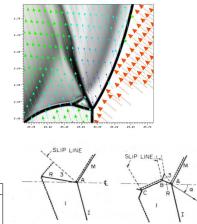


Detonation simulation	Combustion with viscous terms	Higher order schemes	References
000000000000000000000000000000000000000			
Detonation structures			

Triple point analysis

Double Mach reflection structure shortly before the next collision



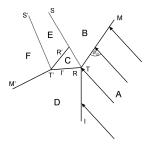


Detonation simulation	Combustion with viscous terms	Higher order schemes	References
000000000000000000000000000000000000000			
Detonation structures			

Triple point analysis

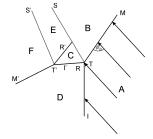
Double Mach reflection structure shortly before the next collision

WEAK


STRONG

TRACK

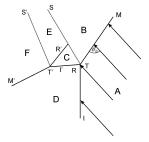
Detonation simulation	Combustion with viscous terms	Higher order schemes	References
000000000000000000			
B I I I I I I			


etonation structures

Shock polar analysis of triple points in detonations

Detonation simulation	Combustion with viscous terms	Higher order schemes	References
000000000000000000			

- Neglect reaction, but consider $c_{pi}(T)$
- Data extracted point-wise from simulation

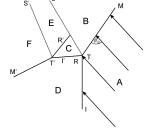

Detonation simulation	Combustion with viscous terms	Higher order schemes	References
000000000000000000000000000000000000000			
Detonation structures			

- Neglect reaction, but consider $c_{pi}(T)$
- Data extracted point-wise from simulation
- Primary triple point *T* travels exactly at tip of Mach stem → use oblique shock relations between *A* and *B*

$$\rho_A u_A \sin(\phi_B) = \rho_B u_B \sin(\phi_B - \theta_B),$$

$$p_A + \rho_A u_A^2 \sin^2(\phi_B) = p_B + \rho_B u_B^2 \sin^2(\phi_B - \theta_B)$$
evaluate inflow velocity as $u_A = \frac{1}{1 - \sqrt{\rho_B(p_B - p_A)}}$

to evaluate inflow velocity as
$$u_A = \frac{1}{\sin \phi_B} \sqrt{\frac{\rho_B (\rho_B - \rho_A)}{\rho_A (\rho_B - \rho_A)}}$$



- Neglect reaction, but consider $c_{pi}(T)$
- Data extracted point-wise from simulation
- Primary triple point *T* travels exactly at tip of Mach stem → use oblique shock relations between *A* and *B*

$$\rho_A u_A \sin(\phi_B) = \rho_B u_B \sin(\phi_B - \theta_B),$$

$$p_A + \rho_A u_A^2 \sin^2(\phi_B) = p_B + \rho_B u_B^2 \sin^2(\phi_B - \theta_B)$$
to evaluate inflow velocity as $u_A = \frac{1}{\sin \phi_B} \sqrt{\frac{\rho_B (p_B - p_A)}{\rho_A (\rho_B - \rho_A)}}$

• Measure inflow angle ϕ_B between Mach stem and triple point trajectory

Detonation simulation	Combustion with viscous terms	Higher order schemes	References
000000000000000000			
Detonation structures			

- Neglect reaction, but consider $c_{pi}(T)$
- Data extracted point-wise from simulation
- Primary triple point *T* travels exactly at tip of Mach stem → use oblique shock relations between *A* and *B*

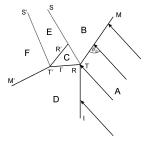
$$\rho_A u_A \sin(\phi_B) = \rho_B u_B \sin(\phi_B - \theta_B),$$

$$p_A + \rho_A u_A^2 \sin^2(\phi_B) = p_B + \rho_B u_B^2 \sin^2(\phi_B - \theta_B)$$

$$1 \sqrt{\rho_B (\rho_B - \rho_A)}$$

to evaluate inflow velocity as $u_A = \frac{1}{\sin \phi_B} \sqrt{\frac{\rho_B(\rho_B - \rho_A)}{\rho_A(\rho_B - \rho_A)}}$

- Measure inflow angle ϕ_B between Mach stem and triple point trajectory
- Velocity a of T' relative to T cannot be derived that easily: Oblique shock relations across C and D hold true both in frame of reference for T and T'


$$\rho_{C} u_{C,n} = \rho_{D} u_{D,n}$$

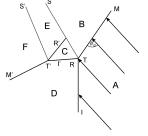
$$p_{C} + \rho_{C} u_{C,n}^{2} = p_{D} + \rho_{D} u_{D,n}^{2}$$

$$u_{C,t} = u_{D,t}$$

$$h_{C} + \frac{1}{2} u_{C,n}^{2} = h_{D} + \frac{1}{2} u_{D,n}^{2}$$

Detonation simulation	Combustion with viscous terms	Higher order schemes	References
000000000000000000000000000000000000000			
Detonation structures			

- Neglect reaction, but consider $c_{pi}(T)$
- Data extracted point-wise from simulation
- Primary triple point *T* travels exactly at tip of Mach stem → use oblique shock relations between *A* and *B*


$$\rho_A u_A \sin(\phi_B) = \rho_B u_B \sin(\phi_B - \theta_B),$$

$$p_A + \rho_A u_A^2 \sin^2(\phi_B) = p_B + \rho_B u_B^2 \sin^2(\phi_B - \theta_B)$$

to evaluate inflow velocity as $u_A = \frac{1}{\sin \phi_B} \sqrt{\frac{\rho_B(\rho_B - \rho_A)}{\rho_A(\rho_B - \rho_A)}}$

- Measure inflow angle ϕ_B between Mach stem and triple point trajectory
- Velocity a of T' relative to T cannot be derived that easily: Oblique shock relations across C and D hold true both in frame of reference for T and T'

$$\begin{aligned} \rho_{C} \left(u_{C,n} - a_{n} \right) &= \rho_{D} \left(u_{D,n} - a_{n} \right) \\ p_{C} + \rho_{C} \left(u_{C,n} - a_{n} \right)^{2} &= p_{D} + \rho_{D} \left(u_{D,n} - a_{n} \right)^{2} \\ u_{C,t} - a_{t} &= u_{D,t} - a_{t} \\ h_{C} + \frac{1}{2} \left(u_{C,n} - a_{n} \right)^{2} &= h_{D} + \frac{1}{2} \left(u_{D,n} - a_{n} \right)^{2} \end{aligned}$$

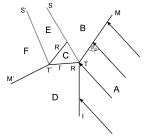
Detonation simulation	Combustion with viscous terms	Higher order schemes	References
000000000000000000000000000000000000000			
Dotopation structures			

- Neglect reaction, but consider $c_{pi}(T)$
- Data extracted point-wise from simulation
- Primary triple point *T* travels exactly at tip of Mach stem → use oblique shock relations between *A* and *B*

$$\rho_A u_A \sin(\phi_B) = \rho_B u_B \sin(\phi_B - \theta_B),$$

$$p_A + \rho_A u_A^2 \sin^2(\phi_B) = p_B + \rho_B u_B^2 \sin^2(\phi_B - \theta_B)$$

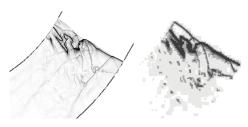
to evaluate inflow velocity as $u_A = \frac{1}{\sin \phi_B} \sqrt{\frac{\rho_B(\rho_B - \rho_A)}{\rho_A(\rho_B - \rho_A)}}$


- Measure inflow angle ϕ_B between Mach stem and triple point trajectory
- Velocity a of T' relative to T cannot be derived that easily: Oblique shock relations across C and D hold true both in frame of reference for T and T'

$$\rho_{C} (u_{C,n} - a_{n}) = \rho_{D} (u_{D,n} - a_{n})$$

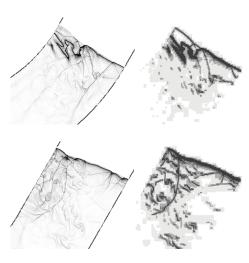
$$p_{C} + \rho_{C} (u_{C,n} - a_{n})^{2} = p_{D} + \rho_{D} (u_{D,n} - a_{n})^{2} \quad \rightarrow a_{n} = 0, a_{t} \text{ arbitrary}$$

$$u_{C,t} - a_{t} = u_{D,t} - a_{t} \qquad \text{Estimate } a_{t} = \frac{L_{R}}{t_{\text{init}}}$$


$$h_{C} + \frac{1}{2} (u_{C,n} - a_{n})^{2} = h_{D} + \frac{1}{2} (u_{D,n} - a_{n})^{2}$$

Detonation simulation	Combustion with viscous terms	Higher order schemes	References
000000000000000000000000000000000000000			
Detenation structures			

Detonation propagation through pipe bends


- 2D Simulation of CJ detonation for H₂: O₂: Ar/2: 1:7 at T₀ = 298 K and p₀ = 10 kPa. Tube width of 5 detonation cells
- AMR base grid 1200 × 992. 4 additional refinement levels (2,2,2,4). 67.6 Pts/lig
- Adaptive computations use up to 7.1 · 10⁶ cells (4.8 · 10⁶ on highest level) instead of 1.22 · 10⁹ cells (uniform grid)
- $\blacktriangleright ~ \sim 70,000 \, h$ CPU on 128 CPUs Pentium-4 2.2GHz

Detonation simulation	Combustion with viscous terms	Higher order schemes	References
000000000000000000000000000000000000000			
Detenation structures			

Detonation propagation through pipe bends

- 2D Simulation of CJ detonation for H₂: O₂: Ar/2: 1:7 at T₀ = 298 K and p₀ = 10 kPa. Tube width of 5 detonation cells
- AMR base grid 1200 × 992. 4 additional refinement levels (2,2,2,4). 67.6 Pts/lig
- Adaptive computations use up to 7.1 · 10⁶ cells (4.8 · 10⁶ on highest level) instead of 1.22 · 10⁹ cells (uniform grid)
- $\blacktriangleright ~ \sim 70,000 \, h$ CPU on 128 CPUs Pentium-4 2.2GHz

Detonation simulation	Combustion with viscous terms	Higher order schemes	References
000000000000000000000000000000000000000			
Detenation structures			

Detonation propagation through pipe bends

- 2D Simulation of CJ detonation for H₂: O₂: Ar/2: 1:7 at T₀ = 298 K and p₀ = 10 kPa. Tube width of 5 detonation cells
- AMR base grid 1200 × 992. 4 additional refinement levels (2,2,2,4). 67.6 Pts/lig
- Adaptive computations use up to 7.1 · 10⁶ cells (4.8 · 10⁶ on highest level) instead of 1.22 · 10⁹ cells (uniform grid)
- $\blacktriangleright~\sim$ 70,000 h CPU on 128 CPUs Pentium-4 2.2GHz

Detonation simulation 0000000000000000000000	Combustion with viscous terms	Higher order schemes	References OO
Triple point tra	cks		
Slight overdrive decreases cell size	e		

Marginal detonation Mach reflection, high

overdrive, structure

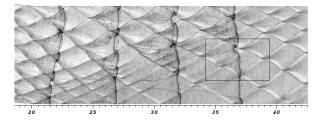
disappears

Re-ignition with transverse detonation

Detonation failure

 $arphi=15^{
m o}$ (left, top), $arphi=30^{
m o}$ (left, bottom), and $arphi=60^{
m o}$ (right)

vtf/amroc/clawpack/applications/euler_chem/2d/PipeBend

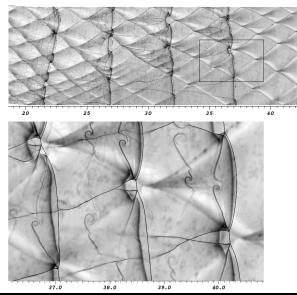

Combustion with viscous terms

Higher order schen

References 00

Detonation structures

Triple point structures – $arphi=15^{ m o}$

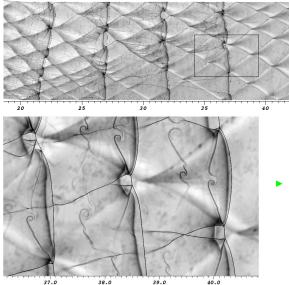

Combustion with viscous terms

Higher order schen

References

Detonation structures

Triple point structures – $arphi=15^{ m o}$

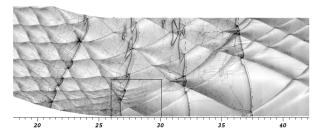

Combustion with viscous terms

Higher order schen

References

Detonation structures

Triple point structures – $arphi=15^{ m o}$

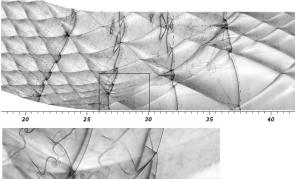

Triple point re-initiation after bend with change from transitional to Double Mach reflection

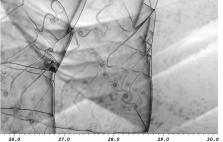
Combustion with viscous terms

Higher order schen 0000000 References 00

Detonation structures

Triple point structures – $\varphi = 30^{\circ}$

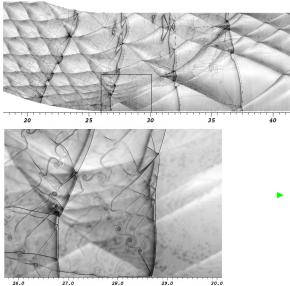



Combustion with viscous terms

Higher order schen 0000000 References

Detonation structures

Triple point structures – $\varphi = 30^{\circ}$



Combustion with viscous terms

Higher order schen 0000000 References

Detonation structures

Triple point structures – $\varphi = 30^{\circ}$

 Triple point quenching and failure as single Mach reflection

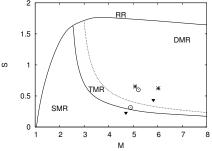
Detonation simulation	Combustion with viscous terms	Higher order schemes	References
000000000000000000			
Detonation structures			

Transition criteria

Solve system of oblique shock relations numerically and determine transition boundaries [Ben-Dor, 2007].

- Regular reflection (RR): $M_B^T < 1$
- Single Mach reflection (SMR): $M_C^T < 1$ and $M_B^T > 1$
- Transitional Mach reflection: $M_C^{T'} < 1$ and $M_C^T > 1$
- Double Mach reflection: M_C^{T'} > 1 and M_C^T > 1

Detonation simulation	Combustion with viscous terms	Higher order schemes	References
000000000000000000000000000000000000000			
Detonation structures			


Transition criteria

Solve system of oblique shock relations numerically and determine transition boundaries [Ben-Dor, 2007].

- Regular reflection (RR): $M_B^T < 1$
- Single Mach reflection (SMR):
 M_C^T < 1 and M_B^T > 1
- Transitional Mach reflection: $M_C^{T'} < 1$ and $M_C^T > 1$
- Double Mach reflection: M_C^{T'} > 1 and M_C^T > 1
- Here: Nonreactive H₂ : O₂ : Ar mixture at initially 298 K and 10 kPa

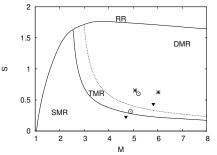
For detonations:

$$S:=\frac{p_C-p_D}{p_D}$$

TMR/DMR transition for $a_t = 100 \,\mathrm{m/s}$

Detonation simulation	Combustion with viscous terms	Higher order schemes	References
000000000000000000000000000000000000000			
Detonation structures			

Transition criteria


Solve system of oblique shock relations numerically and determine transition boundaries [Ben-Dor, 2007].

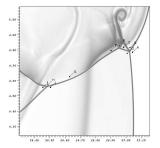
- Regular reflection (RR): $M_B^T < 1$
- Single Mach reflection (SMR):
 M^T_C < 1 and M^T_B > 1
- Transitional Mach reflection: $M_C^{T'} < 1$ and $M_C^T > 1$
- Double Mach reflection: M^{T'}_C > 1 and M^T_C > 1
- Here: Nonreactive H₂ : O₂ : Ar mixture at initially 298 K and 10 kPa

For detonations:

$$S:=\frac{p_C-p_D}{p_D}$$

[Deiterding, 2011]

TMR/DMR transition for $a_t = 100 \text{ m/s}$

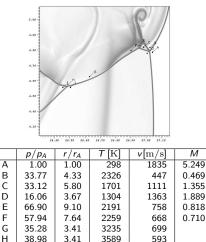

- Non-reactive shock wave reflection theory seems applicable to predict local triple point structure and stability
- Triple point type is determined solely by S and M. Useful to determine type in underresolved situations.

Detonation simulation	Combustion with viscous terms	Higher order schemes	References
000000000000000000000000000000000000000			

Detonation structures

Triple point structures, $\varphi = 15$

Strong DMR structure in diffraction region behind bend, S=1.062



	p/p_A	r/r_A	<i>T</i> [K]	v[m/s]	М
A	1.00	1.00	298	1835	5.249
B	33.77	4.33	2326	447	0.469
C	33.12	5.80	1701	1111	1.355
D	16.06	3.67	1304	1363	1.889
E	66.90	9.10	2191	758	0.818
F	57.94	7.64	2259	668	0.710
G	35.28	3.41	3235	699	
H	38.98	3.41	3589	593	
	23.66	2.37	3149	969	
J	13.58	1.67	2570	1347	

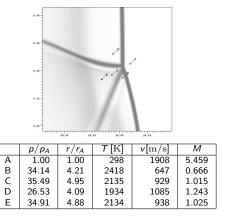
Detonation simulation	Combustion with viscous terms	Higher order schemes	References
000000000000000000000000000000000000000			
Detonation structures			

Triple point structures, $\varphi = 15$

Strong DMR structure in diffraction region behind bend, S = 1.062

3149

2570

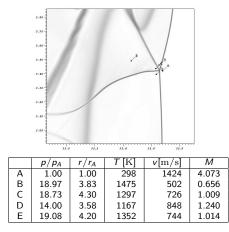

969

1347

2.37

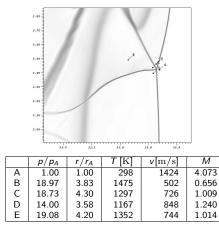
1.67

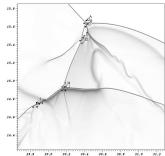
TMR structure in compression region shortly behind bend, S=0.338


23.66

13.58

Detonation simulation	Combustion with viscous terms	Higher order schemes	References
000000000000000000000000000000000000000			
Detenation structures			


Triple point structures


TMR structure in marginal region near limit of detonability, $\varphi = 30, S = 0.338$

Detonation simulation	Combustion with viscous terms	Higher order schemes References 0000000 00
Detonation structures		
Triple point structures		Re-ignition with strong DMR and transverse detonation, $\varphi=$ 45, $S=1.377$
		15.0

TMR structure in marginal region near limit of detonability, $\varphi=$ 30, S=0.338

	p/p_A	r/r _A	<i>T</i> [K]	v[m/s]	М
Α	1.00	1.00	298	1812	5.186
В	32.58	4.27	2272	456	0.483
С	33.23	6.21	1594	1156	1.454
D	13.98	3.58	1162	1446	2.119
Е	31.54	6.30	1492	1208	1.569
F	16.13	4.14	1161	1393	2.042
G	41.63	7.45	1665	1034	1.274
Н	30.57	6.31	1443	1180	1.557
1	14.11	3.85	1092	1431	2.161
J	77.31	9.08	2610	756	
Κ	78.85	8.59	2812	521	

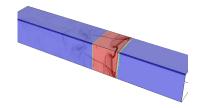
Combustion with viscous terms

Higher order schem 0000000 References 00

Detonation cell structure in 3D

- Simulation of only one quadrant
- ▶ 44.8 Pts/l_{ig} for H₂ : O₂ : Ar CJ detonation
- SAMR base grid 400x24x24, 2 additional refinement levels (2, 4)
- Simulation uses $\sim 18 \,\mathrm{M}$ cells instead of $\sim 118 \,\mathrm{M}$ (unigrid)
- ~ 51,000 h CPU on 128 CPU Compaq Alpha.
 H: 37.6 %, S: 25.1 %

Schlieren and isosurface of $Y_{\rm OH}$



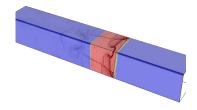
Detonation cell structure in 3D

- Simulation of only one quadrant
- ▶ 44.8 Pts/l_{ig} for H₂ : O₂ : Ar CJ detonation
- SAMR base grid 400x24x24, 2 additional refinement levels (2, 4)
- Simulation uses $\sim 18 \,\mathrm{M}$ cells instead of $\sim 118 \,\mathrm{M}$ (unigrid)
- ~ 51,000 h CPU on 128 CPU Compaq Alpha.
 H: 37.6 %, S: 25.1 %

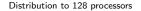
Schlieren and isosurface of $Y_{\rm OH}$

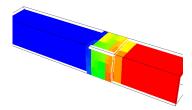
Schlieren on refinement levels

Detonation structures

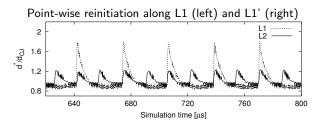

Detonation structures

Detonation cell structure in 3D

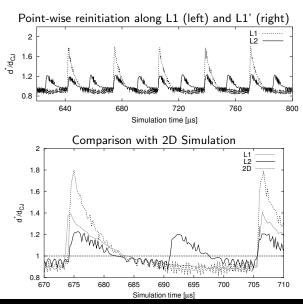

- Simulation of only one quadrant
- ▶ 44.8 Pts/l_{ig} for H₂ : O₂ : Ar CJ detonation
- SAMR base grid 400x24x24, 2 additional refinement levels (2, 4)
- Simulation uses $\sim 18 \,\mathrm{M}$ cells instead of $\sim 118 \,\mathrm{M}$ (unigrid)
- ~ 51,000 h CPU on 128 CPU Compaq Alpha.
 H: 37.6 %, S: 25.1 %


Schlieren and isosurface of $Y_{\rm OH}$

Detonation simulation Detonation structures Detonation cell structure in 3D - II Schlieren plots of density, mirrored for visualization MI Π MI • L1' • L2' П LI мм ММ MI L2 e. MI Π • L1' • L2' Ů. MI Π MI . ů, MM MI MM MI MI П Π Ľľ' Ll' Schlieren plots of Y_{OH}


Schematic front view of the periodic triple point line structure right plot at the same time.

vtf/amroc/clawpack/applications/euler_chem/3d/StrehlowH2O2/StatDet


vtf/amroc/clawpack/applications/euler_chem/3d/StatDetPeriodic

Temporal Development of Detonation Velocity

Detonation simulation	Combustion with viscous terms	Higher order schemes	References
	••••••••		
Combustion induced by projectiles			

Axisymmetric Navier-Stokes equations with chemical reaction

$$\frac{\partial \mathbf{q}}{\partial t} + \frac{\partial (\mathbf{f} - \mathbf{f}_{v})}{\partial x} + \frac{\partial (\mathbf{g} - \mathbf{g}_{v})}{\partial y} = \frac{\alpha}{y} (\mathbf{c} - \mathbf{g} + \mathbf{g}_{v}) + \mathbf{s}$$

$$\mathbf{q} = \begin{bmatrix} \rho_i \\ \rho u \\ \rho v \\ \rho E \end{bmatrix}, \ \mathbf{f} = \begin{bmatrix} \rho_i u \\ \rho u^2 + p \\ \rho uv \\ u(\rho E + p) \end{bmatrix}, \ \mathbf{g} = \begin{bmatrix} \rho_i v \\ \rho uv \\ \rho v^2 + p \\ v(\rho E + p) \end{bmatrix}, \ \mathbf{c} = \begin{bmatrix} 0 \\ 0 \\ p - \tau_{\theta\theta} \\ 0 \end{bmatrix}, \ \mathbf{s} = \begin{bmatrix} \dot{\omega}_i \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

	Combustion with viscous terms	Higher order schemes	References
	• 0 0000000000		
Contraction of the second seco			

Axisymmetric Navier-Stokes equations with chemical reaction

$$\frac{\partial \mathbf{q}}{\partial t} + \frac{\partial (\mathbf{f} - \mathbf{f}_{v})}{\partial x} + \frac{\partial (\mathbf{g} - \mathbf{g}_{v})}{\partial y} = \frac{\alpha}{y} (\mathbf{c} - \mathbf{g} + \mathbf{g}_{v}) + \mathbf{s}$$

$$\mathbf{q} = \begin{bmatrix} \rho_i \\ \rho u \\ \rho v \\ \rho E \end{bmatrix}, \ \mathbf{f} = \begin{bmatrix} \rho_i u \\ \rho u^2 + p \\ \rho uv \\ u(\rho E + p) \end{bmatrix}, \ \mathbf{g} = \begin{bmatrix} \rho_i v \\ \rho uv \\ \rho v^2 + p \\ v(\rho E + p) \end{bmatrix}, \ \mathbf{c} = \begin{bmatrix} 0 \\ 0 \\ p - \tau_{\theta\theta} \\ 0 \end{bmatrix}, \ \mathbf{s} = \begin{bmatrix} \dot{\omega}_i \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\mathbf{f}_{\mathbf{v}} = \begin{bmatrix} \rho D_{i} \frac{\partial Y_{i}}{\partial x} \\ \tau_{xx} \\ \tau_{xy} \\ k \frac{\partial T}{\partial x} + \rho \sum h_{j} D_{j} \frac{\partial Y_{j}}{\partial x} + u\tau_{xx} + v\tau_{xy} \end{bmatrix} \qquad \tau_{xx} = -\frac{2}{3}\mu(\nabla \cdot \mathbf{v}) + 2\mu \frac{\partial u}{\partial x} \\ \tau_{yy} = -\frac{2}{3}\mu(\nabla \cdot \mathbf{v}) + 2\mu \frac{\partial v}{\partial y} \\ \tau_{\theta\theta} = -\frac{2}{3}\mu(\nabla \cdot \mathbf{v}) + 2\mu \frac{v}{y} \\ \mathbf{g}_{\mathbf{v}} = \begin{bmatrix} \rho D_{i} \frac{\partial Y_{i}}{\partial y} \\ \tau_{xy} \\ r_{yy} \\ k \frac{\partial T}{\partial y} + \rho \sum h_{j} D_{j} \frac{\partial Y_{j}}{\partial y} + u\tau_{xy} + v\tau_{yy} \end{bmatrix} \qquad \tau_{xy} = \mu \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \alpha \frac{v}{y} \right)$$

Detonation simulation	Combustion with viscous terms	Higher order schemes	References
	00000000000		
Combustion induced by projectiles			

Arrhenius-kinetics:

$$\dot{\omega}_{i} = \sum_{j=1}^{M} (\nu_{ji}^{r} - \nu_{ji}^{f}) \left[k_{j}^{f} \prod_{n=1}^{K} \left(\frac{\rho_{n}}{W_{n}} \right)^{\nu_{jn}^{f}} - k_{j}^{r} \prod_{n=1}^{K} \left(\frac{\rho_{n}}{W_{n}} \right)^{\nu_{jn}^{r}} \right] \quad i = 1, \dots, K$$

Detonation simulation	Combustion with viscous terms	Higher order schemes	References
	00000000000		
Contraction of the second second second			

Arrhenius-kinetics:

$$\dot{\omega}_i = \sum_{j=1}^{M} (\nu_{ji}^r - \nu_{ji}^f) \left[k_j^f \prod_{n=1}^{K} \left(\frac{\rho_n}{W_n} \right)^{\nu_{jn}^f} - k_j^r \prod_{n=1}^{K} \left(\frac{\rho_n}{W_n} \right)^{\nu_{jn}^r} \right] \quad i = 1, \dots, K$$

> Parsing of mechanisms and evaluation of $\dot{\omega}_i$ with Chemkin-II

• $c_{pi}(T)$ and $h_i(T)$ tabulated, linear interpolation between values

	Combustion with viscous terms	Higher order schemes	References
	00000000000000		
Combustion induced by projectiles			

Arrhenius-kinetics:

$$\dot{\omega}_i = \sum_{j=1}^{M} (\nu_{ji}^r - \nu_{ji}^f) \left[k_j^f \prod_{n=1}^{K} \left(\frac{\rho_n}{W_n} \right)^{\nu_{jn}^f} - k_j^r \prod_{n=1}^{K} \left(\frac{\rho_n}{W_n} \right)^{\nu_{jn}^f} \right] \quad i = 1, \dots, K$$

> Parsing of mechanisms and evaluation of $\dot{\omega}_i$ with Chemkin-II

• $c_{pi}(T)$ and $h_i(T)$ tabulated, linear interpolation between values

Mixture viscosity $\mu = \mu(T, Y_i)$ with Wilke formula

$$\mu = \sum_{i=1}^{K} \frac{Y_{i} \mu_{i}}{W_{i} \sum_{m=1}^{K} Y_{m} \Phi_{im} / W_{m}} \text{ with } \Phi_{im} = \frac{1}{\sqrt{8}} \left(1 + \frac{W_{i}}{W_{m}} \right)^{-\frac{1}{2}} \left(1 + \left(\frac{\mu_{i}}{\mu_{m}} \right)^{\frac{1}{2}} \left(\frac{W_{m}}{W_{j}} \right)^{\frac{1}{4}} \right)^{2}$$

Detonation simulation	Combustion with viscous terms	Higher order schemes	References
	00000000000		

Arrhenius-kinetics:

$$\dot{\omega}_i = \sum_{j=1}^{M} (\nu_{ji}^r - \nu_{ji}^f) \left[k_j^f \prod_{n=1}^{K} \left(\frac{\rho_n}{W_n} \right)^{\nu_{jn}^f} - k_j^r \prod_{n=1}^{K} \left(\frac{\rho_n}{W_n} \right)^{\nu_{jn}^f} \right] \quad i = 1, \dots, K$$

> Parsing of mechanisms and evaluation of $\dot{\omega}_i$ with Chemkin-II

• $c_{pi}(T)$ and $h_i(T)$ tabulated, linear interpolation between values

Mixture viscosity $\mu = \mu(T, Y_i)$ with Wilke formula

$$\mu = \sum_{i=1}^{K} \frac{Y_{i}\mu_{i}}{W_{i} \sum_{m=1}^{K} Y_{m} \Phi_{im}/W_{m}} \text{ with } \Phi_{im} = \frac{1}{\sqrt{8}} \left(1 + \frac{W_{i}}{W_{m}}\right)^{-\frac{1}{2}} \left(1 + \left(\frac{\mu_{i}}{\mu_{m}}\right)^{\frac{1}{2}} \left(\frac{W_{m}}{W_{j}}\right)^{\frac{1}{4}}\right)^{2}$$

Mixture thermal conductivity $k = k(T, Y_i)$ following Mathur

$$k = \frac{1}{2} \left(W \sum_{i=1}^{K} \frac{Y_i k_i}{W_i} + \frac{1}{W \sum_{i=1}^{K} Y_i / (W_i k_i)} \right)$$

Detonation simulation	Combustion with viscous terms	Higher order schemes	References
	000000000000		
Contraction of the second second second			

Arrhenius-kinetics:

$$\dot{\omega}_i = \sum_{j=1}^{M} (\nu_{ji}^r - \nu_{ji}^f) \left[k_j^f \prod_{n=1}^{K} \left(\frac{\rho_n}{W_n} \right)^{\nu_{jn}^f} - k_j^r \prod_{n=1}^{K} \left(\frac{\rho_n}{W_n} \right)^{\nu_{jn}^r} \right] \quad i = 1, \dots, K$$

> Parsing of mechanisms and evaluation of $\dot{\omega}_i$ with Chemkin-II

c_{pi}(T) and h_i(T) tabulated, linear interpolation between values

Mixture viscosity $\mu = \mu(T, Y_i)$ with Wilke formula

$$\mu = \sum_{i=1}^{K} \frac{Y_{i}\mu_{i}}{W_{i} \sum_{m=1}^{K} Y_{m} \Phi_{im}/W_{m}} \text{ with } \Phi_{im} = \frac{1}{\sqrt{8}} \left(1 + \frac{W_{i}}{W_{m}}\right)^{-\frac{1}{2}} \left(1 + \left(\frac{\mu_{i}}{\mu_{m}}\right)^{\frac{1}{2}} \left(\frac{W_{m}}{W_{j}}\right)^{\frac{1}{4}}\right)^{2}$$

Mixture thermal conductivity $k = k(T, Y_i)$ following Mathur

$$k = \frac{1}{2} \left(W \sum_{i=1}^{K} \frac{Y_i k_i}{W_i} + \frac{1}{W \sum_{i=1}^{K} Y_i / (W_i k_i)} \right)$$

Mixture diffusion coefficients $D_i = D_i(T, p, Y_i)$ from binary diffusion $D_{mi}(T, p)$ as

$$D_i = \frac{1 - Y_i}{W \sum_{m \neq i} Y_m / (W_m D_{mi})}$$

Evaluation with Chemkin-II Transport library

Detonation simulation	Combustion with viscous terms	Higher order schemes	References
	00000000000		
Finite volume scheme			

$$\partial_t \mathbf{q} + \partial_x (\mathbf{f} - \mathbf{f}_v) + \partial_y (\mathbf{g} - \mathbf{g}_v) = \frac{lpha}{y} (\mathbf{c} - \mathbf{g} + \mathbf{g}_v) + \mathbf{s}$$

	Combustion with viscous terms	Higher order schemes	References
	00000000000		
Finite volume scheme			

$$\partial_t \mathbf{q} + \partial_x (\mathbf{f} - \mathbf{f}_v) + \partial_y (\mathbf{g} - \mathbf{g}_v) = \frac{\alpha}{y} (\mathbf{c} - \mathbf{g} + \mathbf{g}_v) + \mathbf{s}$$

Dimensional splitting for PDE $\mathcal{X}^{(\Delta t)}: \quad \partial_t \mathbf{q} + \partial_x (\mathbf{f}(\mathbf{q}) - \mathbf{f}_v(\mathbf{q})) = 0, \quad \text{IC: } \mathbf{Q}(t_m) \stackrel{\Delta t}{\Longrightarrow} \quad \tilde{\mathbf{Q}}^{1/2}$ $\mathcal{Y}^{(\Delta t)}: \quad \partial_t \mathbf{q} + \partial_y (\mathbf{g}(\mathbf{q}) - \mathbf{g}_v(\mathbf{q})) = 0, \quad \text{IC: } \tilde{\mathbf{Q}}^{1/2} \stackrel{\Delta t}{\Longrightarrow} \quad \tilde{\mathbf{Q}}$

Combustion with viscous terms	Higher order schemes	References
00000000000		

$$\partial_t \mathbf{q} + \partial_x (\mathbf{f} - \mathbf{f}_v) + \partial_y (\mathbf{g} - \mathbf{g}_v) = \frac{\alpha}{y} (\mathbf{c} - \mathbf{g} + \mathbf{g}_v) + \mathbf{s}$$

Dimensional splitting for PDE

$$\begin{aligned} \mathcal{X}^{(\Delta t)} : & \partial_t \mathbf{q} + \partial_x (\mathbf{f}(\mathbf{q}) - \mathbf{f}_v(\mathbf{q})) = 0 , \quad \text{IC: } \mathbf{Q}(t_m) & \stackrel{\Delta t}{\Longrightarrow} & \tilde{\mathbf{Q}}^{1/2} \\ \mathcal{Y}^{(\Delta t)} : & \partial_t \mathbf{q} + \partial_v (\mathbf{g}(\mathbf{q}) - \mathbf{g}_v(\mathbf{q})) = 0 , \quad \text{IC: } \tilde{\mathbf{Q}}^{1/2} & \stackrel{\Delta t}{\Longrightarrow} & \tilde{\mathbf{Q}} \end{aligned}$$

Treat right-hand side as source term

$$\mathcal{C}^{(\Delta t)}: \ \partial_t \mathbf{q} = \frac{lpha}{y} (\mathbf{c}(\mathbf{q}) - \mathbf{g}(\mathbf{q}) + \mathbf{g}_v(\mathbf{q})) \ , \quad \mathsf{IC}: \ \tilde{\mathbf{Q}} \quad \stackrel{\Delta t}{\Longrightarrow} \quad \bar{\mathbf{Q}}$$

Combustion with viscous terms	Higher order schemes	References
00000000000		

$$\partial_t \mathbf{q} + \partial_x (\mathbf{f} - \mathbf{f}_v) + \partial_y (\mathbf{g} - \mathbf{g}_v) = \frac{\alpha}{y} (\mathbf{c} - \mathbf{g} + \mathbf{g}_v) + \mathbf{s}$$

Dimensional splitting for PDE

$$\begin{aligned} \mathcal{X}^{(\Delta t)} : & \partial_t \mathbf{q} + \partial_x (\mathbf{f}(\mathbf{q}) - \mathbf{f}_v(\mathbf{q})) = 0 , \quad \text{IC: } \mathbf{Q}(t_m) & \stackrel{\Delta t}{\Longrightarrow} \quad \tilde{\mathbf{Q}}^{1/2} \\ \mathcal{Y}^{(\Delta t)} : & \partial_t \mathbf{q} + \partial_y (\mathbf{g}(\mathbf{q}) - \mathbf{g}_v(\mathbf{q})) = 0 , \quad \text{IC: } \tilde{\mathbf{Q}}^{1/2} \quad \stackrel{\Delta t}{\Longrightarrow} \quad \tilde{\mathbf{Q}} \end{aligned}$$

Treat right-hand side as source term

$$\mathcal{C}^{(\Delta t)}: \ \partial_t \mathbf{q} = \frac{lpha}{y} (\mathbf{c}(\mathbf{q}) - \mathbf{g}(\mathbf{q}) + \mathbf{g}_v(\mathbf{q})) \ , \quad \mathsf{IC}: \ \tilde{\mathbf{Q}} \quad \stackrel{\Delta t}{\Longrightarrow} \quad \bar{\mathbf{Q}}$$

Chemical source term

$$\mathcal{S}^{(\Delta t)}: \quad \partial_t \mathbf{q} = \mathbf{s}(\mathbf{q}) , \quad \mathsf{IC}: \ \bar{\mathbf{Q}} \stackrel{\Delta t}{\Longrightarrow} \mathbf{Q}(t_m + \Delta t)$$

Combustion with viscous terms	Higher order schemes	References
00000000000		

$$\partial_t \mathbf{q} + \partial_x (\mathbf{f} - \mathbf{f}_v) + \partial_y (\mathbf{g} - \mathbf{g}_v) = \frac{\alpha}{y} (\mathbf{c} - \mathbf{g} + \mathbf{g}_v) + \mathbf{s}$$

Dimensional splitting for PDE

$$\begin{aligned} \mathcal{X}^{(\Delta t)} : & \partial_t \mathbf{q} + \partial_x (\mathbf{f}(\mathbf{q}) - \mathbf{f}_v(\mathbf{q})) = 0 , \quad \text{IC: } \mathbf{Q}(t_m) & \stackrel{\Delta t}{\Longrightarrow} & \tilde{\mathbf{Q}}^{1/2} \\ \mathcal{Y}^{(\Delta t)} : & \partial_t \mathbf{q} + \partial_v (\mathbf{g}(\mathbf{q}) - \mathbf{g}_v(\mathbf{q})) = 0 , \quad \text{IC: } \tilde{\mathbf{Q}}^{1/2} & \stackrel{\Delta t}{\Longrightarrow} & \tilde{\mathbf{Q}} \end{aligned}$$

Treat right-hand side as source term

$$\mathcal{C}^{(\Delta t)}: \ \partial_t \mathbf{q} = \frac{lpha}{y} (\mathbf{c}(\mathbf{q}) - \mathbf{g}(\mathbf{q}) + \mathbf{g}_v(\mathbf{q})) \ , \quad \mathsf{IC}: \ \tilde{\mathbf{Q}} \quad \stackrel{\Delta t}{\Longrightarrow} \quad \bar{\mathbf{Q}}$$

Chemical source term

$$\mathcal{S}^{(\Delta t)}: \quad \partial_t \mathbf{q} = \mathbf{s}(\mathbf{q}) , \quad \mathsf{IC}: \ \bar{\mathbf{Q}} \stackrel{\Delta t}{\Longrightarrow} \mathbf{Q}(t_m + \Delta t)$$

Formally 1st-order algorithm

$$\mathbf{Q}(t_m + \Delta t) = \mathcal{S}^{(\Delta t)} \mathcal{C}^{(\Delta t)} \mathcal{Y}^{(\Delta t)} \mathcal{X}^{(\Delta t)} (\mathbf{Q}(t_m))$$

but all sub-operators 2nd-order accurate or higher.

Detonation simulation	Combustion with viscous terms	Higher order schemes	References
0000000000000000000	000000000000000000000000000000000000000	0000000	00
Finite volume scheme			

Time discretization $t_n = n\Delta t$, discrete volumes $I_{jk} = [x_j - \frac{1}{2}\Delta x, x_j + \frac{1}{2}\Delta x[\times[y_k - \frac{1}{2}\Delta y, y_k + \frac{1}{2}\Delta y][\times =: [x_{j-1/2}, x_{j+1/2}[\times[y_{k-1/2}, y_{k+1/2}[$ Approximation $\mathbf{Q}_{jk}(t) \approx \frac{1}{|I_{jk}|} \int_{I_{jk}} \mathbf{q}(\mathbf{x}, t) d\mathbf{x}$ and numerical fluxes $\mathbf{F}(\mathbf{Q}_{jk}(t), \mathbf{Q}_{j+1,k}(t)) \approx \mathbf{f}(\mathbf{q}(x_{j+1/2}, y_k, t)),$ $\mathbf{F}_{v}(\mathbf{Q}_{jk}(t), \mathbf{Q}_{j+1,k}(t)) \approx \mathbf{f}_{v}(\mathbf{q}(x_{j+1/2}, y_k, t), \nabla \mathbf{q}(x_{j+1/2}, y_k, t)))$ yield (for simplicity)

$$\mathbf{Q}_{jk}^{n+1} = \mathbf{Q}_{kj}^{n} - \frac{\Delta t}{\Delta x} \left[\mathbf{F} \left(\mathbf{Q}_{jk}^{n}, \mathbf{Q}_{j+1,k}^{n} \right) - \mathbf{F} \left(\mathbf{Q}_{j-1,k}^{n}, \mathbf{Q}_{jk}^{n} \right) \right] + \frac{\Delta t}{\Delta x} \left[\mathbf{F}_{v} \left(\mathbf{Q}_{jk}^{n}, \mathbf{Q}_{j+1,k}^{n} \right) - \mathbf{F}_{v} \left(\mathbf{Q}_{j-1,k}^{n}, \mathbf{Q}_{jk}^{n} \right) \right]$$

Detonation simulation	Combustion with viscous terms	Higher order schemes	References
0000000000000000000	000000000000000000000000000000000000000	0000000	00
Finite volume scheme			

Time discretization $t_n = n\Delta t$, discrete volumes $I_{jk} = [x_j - \frac{1}{2}\Delta x, x_j + \frac{1}{2}\Delta x[\times[y_k - \frac{1}{2}\Delta y, y_k + \frac{1}{2}\Delta y[\times =: [x_{j-1/2}, x_{j+1/2}[\times[y_{k-1/2}, y_{k+1/2}[$ Approximation $\mathbf{Q}_{jk}(t) \approx \frac{1}{|I_{jk}|} \int_{I_{jk}} \mathbf{q}(\mathbf{x}, t) dx$ and numerical fluxes $\mathbf{F}(\mathbf{Q}_{jk}(t), \mathbf{Q}_{j+1,k}(t)) \approx \mathbf{f}(\mathbf{q}(x_{j+1/2}, y_k, t)),$ $\mathbf{F}_{v}(\mathbf{Q}_{jk}(t), \mathbf{Q}_{j+1,k}(t)) \approx \mathbf{f}_{v}(\mathbf{q}(x_{j+1/2}, y_k, t), \nabla \mathbf{q}(x_{j+1/2}, y_k, t))$ yield (for simplicity)

$$\mathbf{Q}_{jk}^{n+1} = \mathbf{Q}_{kj}^{n} - \frac{\Delta t}{\Delta x} \left[\mathbf{F} \left(\mathbf{Q}_{jk}^{n}, \mathbf{Q}_{j+1,k}^{n} \right) - \mathbf{F} \left(\mathbf{Q}_{j-1,k}^{n}, \mathbf{Q}_{jk}^{n} \right) \right] + \frac{\Delta t}{\Delta x} \left[\mathbf{F}_{\mathbf{v}} \left(\mathbf{Q}_{jk}^{n}, \mathbf{Q}_{j+1,k}^{n} \right) - \mathbf{F}_{\mathbf{v}} \left(\mathbf{Q}_{j-1,k}^{n}, \mathbf{Q}_{jk}^{n} \right) \right]$$

• Riemann solver to approximate $F\left(\mathbf{Q}_{jk}^{n},\mathbf{Q}_{j+1,k}^{n}\right)$

Detonation simulation	Combustion with viscous terms	Higher order schemes	References
	00000000000		
Finite volume scheme			

Time discretization $t_n = n\Delta t$, discrete volumes $I_{jk} = [x_j - \frac{1}{2}\Delta x, x_j + \frac{1}{2}\Delta x[\times[y_k - \frac{1}{2}\Delta y, y_k + \frac{1}{2}\Delta y][\times =: [x_{j-1/2}, x_{j+1/2}[\times[y_{k-1/2}, y_{k+1/2}[$ Approximation $\mathbf{Q}_{jk}(t) \approx \frac{1}{|I_{jk}|} \int_{jk} \mathbf{q}(\mathbf{x}, t) d\mathbf{x}$ and numerical fluxes $\mathbf{F} \left(\mathbf{Q}_{jk}(t), \mathbf{Q}_{j+1,k}(t) \right) \approx \mathbf{f}(\mathbf{q}(x_{j+1/2}, y_k, t)),$ $\mathbf{F}_{\mathbf{v}} \left(\mathbf{Q}_{jk}(t), \mathbf{Q}_{j+1,k}(t) \right) \approx \mathbf{f}_{\mathbf{v}}(\mathbf{q}(x_{j+1/2}, y_k, t), \nabla \mathbf{q}(x_{j+1/2}, y_k, t)))$ yield (for simplicity)

$$\mathbf{Q}_{jk}^{n+1} = \mathbf{Q}_{kj}^{n} - \frac{\Delta t}{\Delta x} \left[\mathbf{F} \left(\mathbf{Q}_{jk}^{n}, \mathbf{Q}_{j+1,k}^{n} \right) - \mathbf{F} \left(\mathbf{Q}_{j-1,k}^{n}, \mathbf{Q}_{jk}^{n} \right) \right] + \frac{\Delta t}{\Delta x} \left[\mathbf{F}_{v} \left(\mathbf{Q}_{jk}^{n}, \mathbf{Q}_{j+1,k}^{n} \right) - \mathbf{F}_{v} \left(\mathbf{Q}_{j-1,k}^{n}, \mathbf{Q}_{jk}^{n} \right) \right]$$

- Riemann solver to approximate $F\left(\mathbf{Q}_{jk}^{n},\mathbf{Q}_{j+1,k}^{n}\right)$
- ► 1st-order finite differences for F_v (Qⁿ_{jk}, Qⁿ_{j+1,k}) yield 2nd-order accurate central differences in (*)

Detonation simulation	Combustion with viscous terms	Higher order schemes	References
	00000000000		
Finite volume scheme			

Time discretization $t_n = n\Delta t$, discrete volumes $l_{jk} = [x_j - \frac{1}{2}\Delta x, x_j + \frac{1}{2}\Delta x[\times[y_k - \frac{1}{2}\Delta y, y_k + \frac{1}{2}\Delta y][\times =: [x_{j-1/2}, x_{j+1/2}][\times[y_{k-1/2}, y_{k+1/2}]]$ Approximation $\mathbf{Q}_{jk}(t) \approx \frac{1}{|l_{jk}|} \int_{l_{jk}} \mathbf{q}(\mathbf{x}, t) dx$ and numerical fluxes $\mathbf{F} \left(\mathbf{Q}_{jk}(t), \mathbf{Q}_{j+1,k}(t) \right) \approx \mathbf{f}(\mathbf{q}(x_{j+1/2}, y_k, t)),$ $\mathbf{F}_{v} \left(\mathbf{Q}_{jk}(t), \mathbf{Q}_{j+1,k}(t) \right) \approx \mathbf{f}_{v}(\mathbf{q}(x_{j+1/2}, y_k, t), \nabla \mathbf{q}(x_{j+1/2}, y_k, t))$ yield (for simplicity)

$$\mathbf{Q}_{jk}^{n+1} = \mathbf{Q}_{kj}^{n} - \frac{\Delta t}{\Delta x} \left[\mathbf{F} \left(\mathbf{Q}_{jk}^{n}, \mathbf{Q}_{j+1,k}^{n} \right) - \mathbf{F} \left(\mathbf{Q}_{j-1,k}^{n}, \mathbf{Q}_{jk}^{n} \right) \right] + \frac{\Delta t}{\Delta x} \left[\mathbf{F}_{v} \left(\mathbf{Q}_{jk}^{n}, \mathbf{Q}_{j+1,k}^{n} \right) - \mathbf{F}_{v} \left(\mathbf{Q}_{j-1,k}^{n}, \mathbf{Q}_{jk}^{n} \right) \right]$$

- Riemann solver to approximate $F\left(\mathbf{Q}_{jk}^{n},\mathbf{Q}_{j+1,k}^{n}\right)$
- ▶ 1st-order finite differences for $\mathbf{F}_{v}\left(\mathbf{Q}_{jk}^{n}, \mathbf{Q}_{j+1,k}^{n}\right)$ yield 2nd-order accurate central differences in (*)

Stability condition used:

$$\max_{i,j,k} \left\{ \frac{\Delta t}{\Delta x} (|u_{jk}| + c_{jk}) + \frac{8}{3} \frac{\mu_{jk} \Delta t}{\rho_{jk} \Delta x^2}, \frac{\Delta t}{\Delta x} (|u_{jk}| + c_{jk}) + \frac{2k_j \Delta t}{c_{v,jk} \rho_j \Delta x^2}, \frac{\Delta t}{\Delta x} (|u_{jk}| + c_{jk}) + D_{i,jk} \frac{\Delta t}{\Delta x^2} \right\} \leq 1$$

Finite volume scheme			
	00000000000		
Detonation simulation	Combustion with viscous terms	Higher order schemes	References

Finite volume discretization – cont.

Symmetry source term $C^{(\Delta t)}$: Use

$$\mathbf{Q}_{jk}^{n+1} = \mathbf{Q}_{jk}^{n} + \Delta t \left(\frac{\alpha}{y} (\mathbf{c}(\mathbf{Q}_{jk}^{n}) - \mathbf{g}(\mathbf{Q}_{jk}^{n}) + \frac{1}{2} \left(\mathbf{G}_{v} \left(\mathbf{Q}_{jk}^{n}, \mathbf{Q}_{j,k+1}^{n} \right) + \mathbf{G}_{v} \left(\mathbf{Q}_{j,k-1}^{n}, \mathbf{Q}_{jk}^{n} \right) \right) \right)$$

within explicit 2nd-order accurate Runge-Kutta method

• Gives 2nd-order central difference approximation of \mathbf{G}_{v}

Finite volume scheme			
	00000000000		
Detonation simulation	Combustion with viscous terms	Higher order schemes	References

Finite volume discretization – cont.

Symmetry source term $C^{(\Delta t)}$: Use

$$\mathbf{Q}_{jk}^{n+1} = \mathbf{Q}_{jk}^{n} + \Delta t \left(\frac{\alpha}{y} (\mathbf{c}(\mathbf{Q}_{jk}^{n}) - \mathbf{g}(\mathbf{Q}_{jk}^{n}) + \frac{1}{2} \left(\mathbf{G}_{v} \left(\mathbf{Q}_{jk}^{n}, \mathbf{Q}_{j,k+1}^{n} \right) + \mathbf{G}_{v} \left(\mathbf{Q}_{j,k-1}^{n}, \mathbf{Q}_{jk}^{n} \right) \right) \right)$$

within explicit 2nd-order accurate Runge-Kutta method

- Gives 2nd-order central difference approximation of \mathbf{G}_{v}
- Transport properties µ, k, D_i are stored in vector of state Q and kept constant throughout entire time step

Finite volume scheme			
	00000000000		
Detonation simulation	Combustion with viscous terms	Higher order schemes	References

Finite volume discretization – cont.

Symmetry source term $C^{(\Delta t)}$: Use

$$\mathbf{Q}_{jk}^{n+1} = \mathbf{Q}_{jk}^{n} + \Delta t \left(\frac{\alpha}{y} (\mathbf{c}(\mathbf{Q}_{jk}^{n}) - \mathbf{g}(\mathbf{Q}_{jk}^{n}) + \frac{1}{2} \left(\mathbf{G}_{v} \left(\mathbf{Q}_{jk}^{n}, \mathbf{Q}_{j,k+1}^{n} \right) + \mathbf{G}_{v} \left(\mathbf{Q}_{j,k-1}^{n}, \mathbf{Q}_{jk}^{n} \right) \right) \right)$$

within explicit 2nd-order accurate Runge-Kutta method

- Gives 2nd-order central difference approximation of \mathbf{G}_{v}
- Transport properties µ, k, D_i are stored in vector of state Q and kept constant throughout entire time step

Chemical source term $\mathcal{S}^{(\cdot)}$:

- 4th-order accurate semi-implicit ODE-solver subcycles within each cell
- *ρ*, *e*, *u*, *v* remain unchanged!

$$\partial_t \rho_i = W_i \dot{\omega}_i (\rho_1, \dots, \rho_K, T) \qquad i = 1, \dots, K$$

Finite volume scheme			
	00000000000		
Detonation simulation	Combustion with viscous terms	Higher order schemes	References

Lehr's ballistic range experiments

- Spherical-nosed projectile of radius 1.5 mm travels with constant velocity through stoichiometric H₂ : O₂ : N₂ mixture (molar ratios 2:1:3.76) at 42.663 kPa and T = 293 K [Lehr, 1972]
- > Mechanism by [Jachimowski, 1988]: 19 equilibrium reactions, 9 species. Chapman Jouguet velocity \sim 1957 m/s.

Finite volume scheme			
	00000000000		
Detonation simulation	Combustion with viscous terms	Higher order schemes	References

- Spherical-nosed projectile of radius 1.5 mm travels with constant velocity through stoichiometric H₂ : O₂ : N₂ mixture (molar ratios 2:1:3.76) at 42.663 kPa and T = 293 K [Lehr, 1972]
- \blacktriangleright Mechanism by [Jachimowski, 1988]: 19 equilibrium reactions, 9 species. Chapman Jouguet velocity \sim 1957 m/s.
- > Axisymmetric Navier-Stokes and Eulers simulations on AMR base mesh of 400×200 cells, physical domain size $6 \, {\rm cm} \times 3 \, {\rm cm}$
- 4-level computations with refinement factors 2,2,4 to final time $t = 170 \,\mu s$. Refinement downstream removed.

Detonation simulation	Combustion with viscous terms	Higher order schemes	References
	00000000000		
Einite volume scheme			

- Spherical-nosed projectile of radius 1.5 mm travels with constant velocity through stoichiometric H₂ : O₂ : N₂ mixture (molar ratios 2:1:3.76) at 42.663 kPa and T = 293 K [Lehr, 1972]
- \blacktriangleright Mechanism by [Jachimowski, 1988]: 19 equilibrium reactions, 9 species. Chapman Jouguet velocity \sim 1957 m/s.
- \blacktriangleright Axisymmetric Navier-Stokes and Eulers simulations on AMR base mesh of 400 \times 200 cells, physical domain size 6 $\rm cm \times 3\, cm$
- 4-level computations with refinement factors 2,2,4 to final time $t = 170 \,\mu s$. Refinement downstream removed.
- Main configurations
 - Velocity $v_l = 1931 \,\mathrm{m/s}$ (M = 4.79), $\sim 40 \,\mathrm{Pts}/l_{ig}$
 - Velocity $v_l = 1806 \,\mathrm{m/s}$ (M = 4.48), $\sim 60 \,\mathrm{Pts}/l_{ig}$
- Various previous studies with not entirely consistent results. E.g. [Yungster and Radhakrishnan, 1996], [Axdahl et al., 2011]

	Combustion with viscous terms	Higher order schemes	References
	00000000000		
Einite volume scheme			

- Spherical-nosed projectile of radius 1.5 mm travels with constant velocity through stoichiometric H₂ : O₂ : N₂ mixture (molar ratios 2:1:3.76) at 42.663 kPa and T = 293 K [Lehr, 1972]
- \blacktriangleright Mechanism by [Jachimowski, 1988]: 19 equilibrium reactions, 9 species. Chapman Jouguet velocity \sim 1957 m/s.
- \blacktriangleright Axisymmetric Navier-Stokes and Eulers simulations on AMR base mesh of 400 \times 200 cells, physical domain size 6 cm \times 3 cm
- 4-level computations with refinement factors 2,2,4 to final time $t = 170 \,\mu s$. Refinement downstream removed.
- Main configurations
 - Velocity $v_l = 1931 \,\mathrm{m/s}$ (M = 4.79), $\sim 40 \,\mathrm{Pts}/l_{ig}$
 - Velocity $v_l = 1806 \,\mathrm{m/s}$ (M = 4.48), $\sim 60 \,\mathrm{Pts}/l_{ig}$
- Various previous studies with not entirely consistent results. E.g. [Yungster and Radhakrishnan, 1996], [Axdahl et al., 2011]
- Stagnation point location and pressure tracked in every time step

Detonation simulation	Combustion with viscous terms	Higher order schemes	References
	00000000000		
Einite volume scheme			

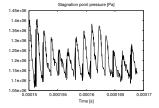
- Spherical-nosed projectile of radius 1.5 mm travels with constant velocity through stoichiometric H₂ : O₂ : N₂ mixture (molar ratios 2:1:3.76) at 42.663 kPa and T = 293 K [Lehr, 1972]
- \blacktriangleright Mechanism by [Jachimowski, 1988]: 19 equilibrium reactions, 9 species. Chapman Jouguet velocity \sim 1957 m/s.
- ► Axisymmetric Navier-Stokes and Eulers simulations on AMR base mesh of 400 × 200 cells, physical domain size 6 cm × 3 cm
- 4-level computations with refinement factors 2,2,4 to final time $t = 170 \,\mu s$. Refinement downstream removed.
- Main configurations
 - Velocity $v_l = 1931 \,\mathrm{m/s}$ (M = 4.79), $\sim 40 \,\mathrm{Pts}/l_{ig}$
 - Velocity $v_l = 1806 \,\mathrm{m/s}$ (M = 4.48), $\sim 60 \,\mathrm{Pts}/l_{ig}$
- Various previous studies with not entirely consistent results. E.g. [Yungster and Radhakrishnan, 1996], [Axdahl et al., 2011]
- Stagnation point location and pressure tracked in every time step
- $\blacktriangleright\,$ All computations were on 32 cores requiring $\,\,\sim 1500\,{\rm h}$ CPU each

	Combustion with viscous terms	Higher order schemes	References
	00000000000		
Einite volume scheme			

- Spherical-nosed projectile of radius 1.5 mm travels with constant velocity through stoichiometric H₂ : O₂ : N₂ mixture (molar ratios 2:1:3.76) at 42.663 kPa and T = 293 K [Lehr, 1972]
- \blacktriangleright Mechanism by [Jachimowski, 1988]: 19 equilibrium reactions, 9 species. Chapman Jouguet velocity \sim 1957 m/s.
- ► Axisymmetric Navier-Stokes and Eulers simulations on AMR base mesh of 400 × 200 cells, physical domain size 6 cm × 3 cm
- 4-level computations with refinement factors 2,2,4 to final time $t = 170 \,\mu s$. Refinement downstream removed.
- Main configurations
 - Velocity $v_l = 1931 \,\mathrm{m/s}$ (M = 4.79), $\sim 40 \,\mathrm{Pts}/l_{ig}$
 - Velocity $v_l = 1806 \,\mathrm{m/s}$ (M = 4.48), $\sim 60 \,\mathrm{Pts}/l_{ig}$
- Various previous studies with not entirely consistent results. E.g. [Yungster and Radhakrishnan, 1996], [Axdahl et al., 2011]
- Stagnation point location and pressure tracked in every time step
- $\blacktriangleright\,$ All computations were on 32 cores requiring $\,\,\sim 1500\,{\rm h}$ CPU each

vtf/amroc/clawpack/applications/euler_chem/2d/SphereLehr

 $vtf/amroc/clawpack/applications/euler_chem/2d/SphereLehrNav$

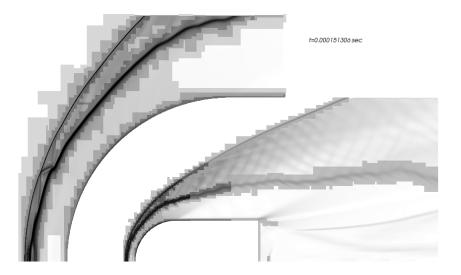

Detonation simulation	Combustion with viscous terms	Higher order schemes	References
	00000000000		
Finite volume scheme			

Viscous case – M = 4.79

- ▶ 5619 iterations with CFL=0.9 to $t = 170 \, \mu s$
- Oscillation frequency in last 20 μs : ~ 722 kHz (viscous), ~ 737 kHz (inviscid)
- ▶ Experimental value: ~ 720 kHz

Schlieren plot of density

Detonation simulation


Combustion with viscous terms

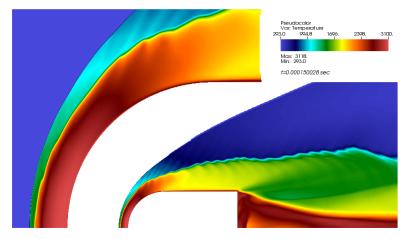
Higher order schen

References 00

Finite volume scheme

Viscous case -M = 4.79 – mesh adaptation

Detonation simulation

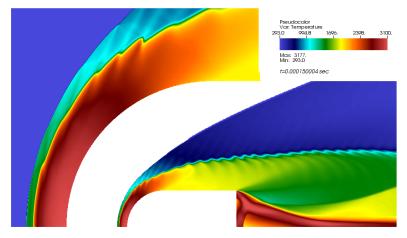

Combustion with viscous terms

Higher order scheme

References 00

Finite volume scheme

Comparison of temperature field


Viscous

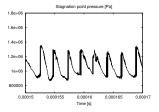
Detonation simulation 000000000000000000000 Finite volume scheme Combustion with viscous terms

Higher order scheme

References 00

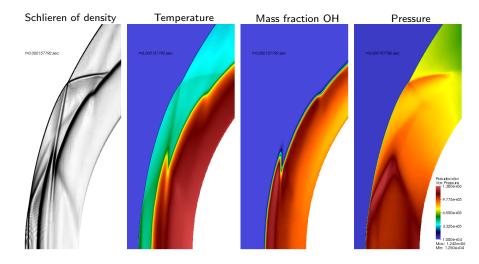
Comparison of temperature field

Inviscid

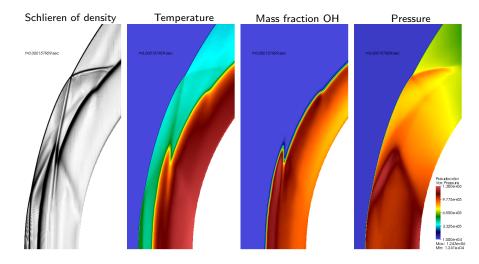

 Physical and the second se			
	000000000000000000000000000000000000000		
	Combustion with viscous terms	Higher order schemes	

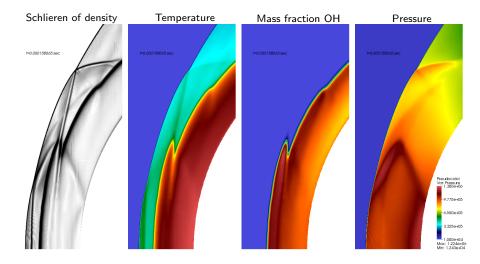
Viscous case – M = 4.48

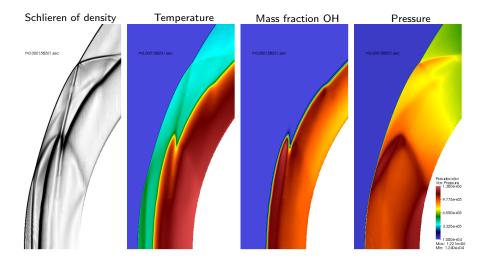
- ▶ 5432 iterations with CFL=0.9 to $t = 170 \,\mu s$
- Oscillation frequency in last 20 $\mu s: \sim$ 417 kHz
- Experimental value: \sim 425 kHz

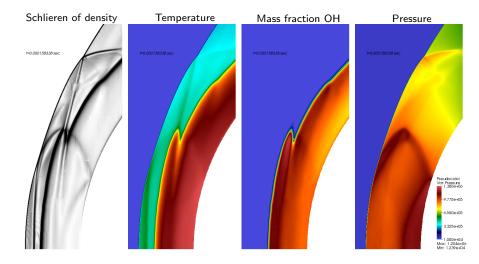


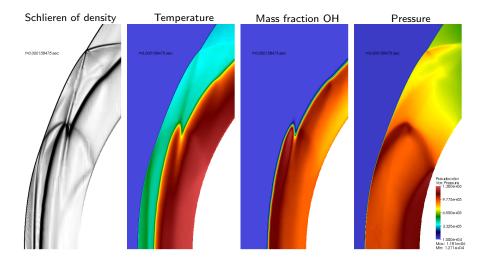
Schlieren plot of density

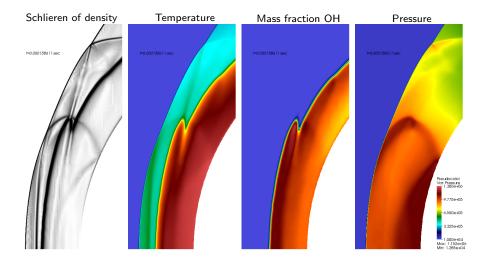


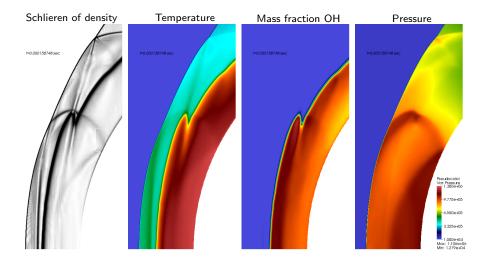

Finite volume scheme			
000000000000000000000000000000000000000	0000000000000		
Detonation simulation	Combustion with viscous terms	Higher order schemes	References

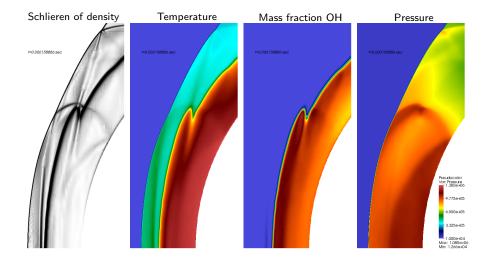

Finite volume scheme			
000000000000000000000000000000000000000	0000000000000		
Detonation simulation	Combustion with viscous terms	Higher order schemes	References

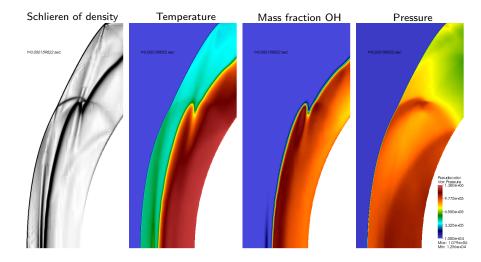

Finite volume scheme			
	000000000000000000000000000000000000000		
Detonation simulation	Combustion with viscous terms	Higher order schemes	References

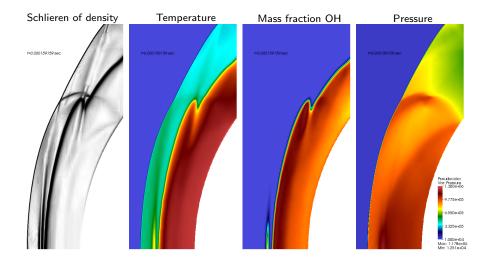

Finite volume scheme			
000000000000000000000000000000000000000	0000000000000		
Detonation simulation	Combustion with viscous terms	Higher order schemes	References

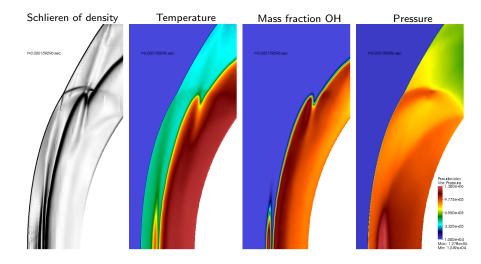

Finite volume scheme			
	000000000000000000000000000000000000000		
Detonation simulation	Combustion with viscous terms	Higher order schemes	References

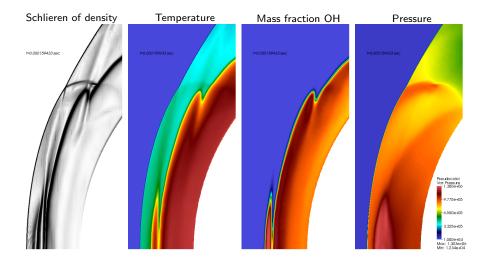

Finite volume scheme			
000000000000000000000000000000000000000	0000000000000		
Detonation simulation	Combustion with viscous terms	Higher order schemes	References

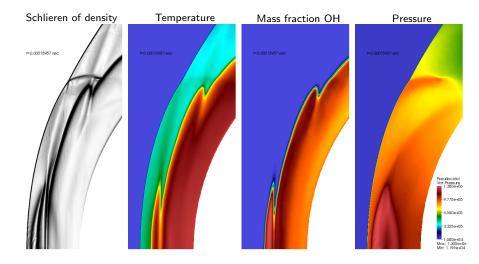

Finite volume scheme			
000000000000000000000000000000000000000	0000000000000		
Detonation simulation	Combustion with viscous terms	Higher order schemes	References

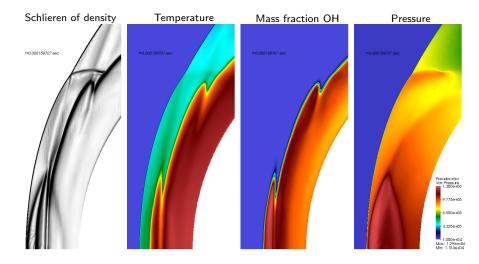

Finite volume scheme			
000000000000000000000000000000000000000	0000000000000		
Detonation simulation	Combustion with viscous terms	Higher order schemes	References


Finite volume scheme			
	000000000000000000000000000000000000000		
Detonation simulation	Combustion with viscous terms	Higher order schemes	References

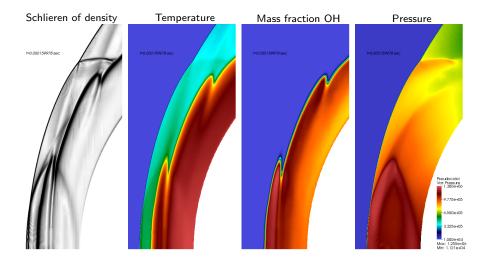

Finite volume scheme			
	000000000000000000000000000000000000000		
Detonation simulation	Combustion with viscous terms	Higher order schemes	References

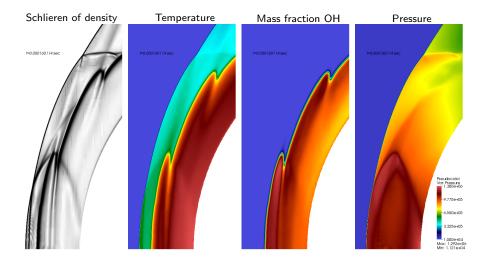

Finite volume scheme			
	000000000000000000000000000000000000000		
Detonation simulation	Combustion with viscous terms	Higher order schemes	References

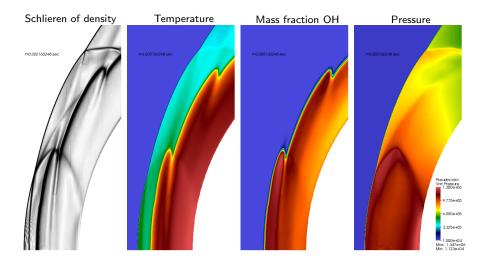

Finite volume scheme			
	000000000000000000000000000000000000000		
Detonation simulation	Combustion with viscous terms	Higher order schemes	References

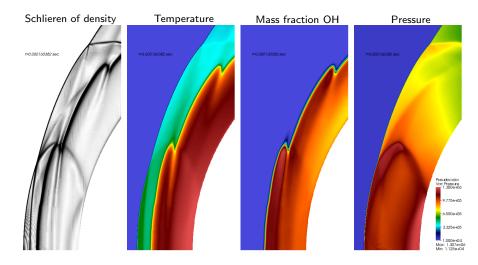

Finite volume scheme			
000000000000000000000000000000000000000	0000000000000		
Detonation simulation	Combustion with viscous terms	Higher order schemes	References

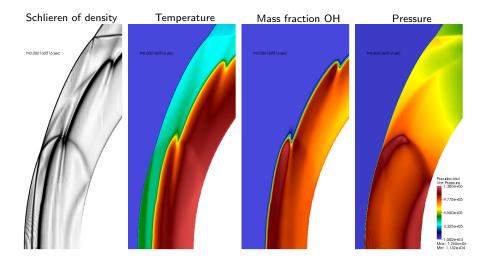
Finite volume scheme			
000000000000000000000000000000000000000	0000000000000		
Detonation simulation	Combustion with viscous terms	Higher order schemes	References

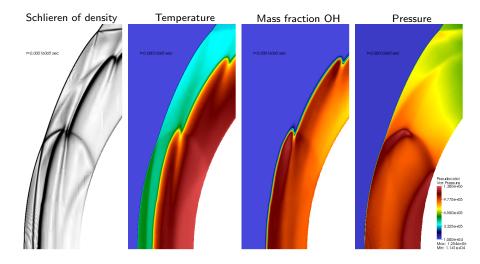

Finite volume scheme			
000000000000000000000000000000000000000	0000000000000		
Detonation simulation	Combustion with viscous terms	Higher order schemes	References

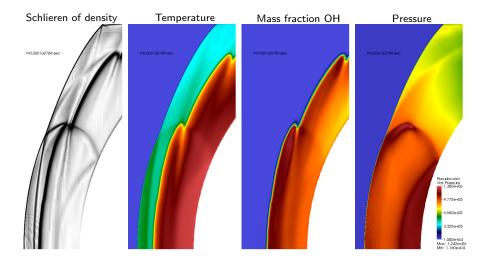

Finite volume scheme			
	000000000000000000000000000000000000000		
Detonation simulation	Combustion with viscous terms	Higher order schemes	References

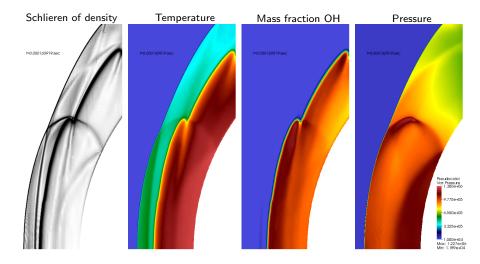

Finite volume scheme			
	000000000000		
Detonation simulation	Combustion with viscous terms	Higher order schemes	References

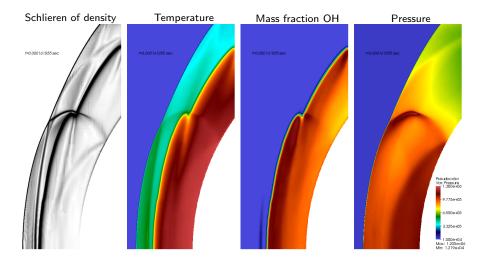

Einite volume scheme			
	000000000000000000000000000000000000000		
Detonation simulation	Combustion with viscous terms	Higher order schemes	References


Finite volume scheme			
	000000000000000000000000000000000000000		
Detonation simulation	Combustion with viscous terms	Higher order schemes	References


Finite volume scheme			
	0000000000000		
Detonation simulation	Combustion with viscous terms	Higher order schemes	References


Finite volume scheme			
	000000000000000000000000000000000000000		
Detonation simulation	Combustion with viscous terms	Higher order schemes	References

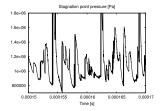

Finite volume scheme			
	0000000000000		
Detonation simulation	Combustion with viscous terms	Higher order schemes	References


Finite volume scheme			
	000000000000		
Detonation simulation	Combustion with viscous terms	Higher order schemes	References

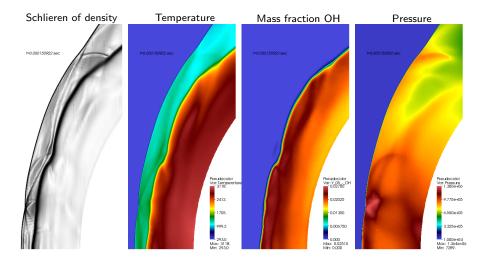
Finite volume scheme			
	0000000000000		
Detonation simulation	Combustion with viscous terms	Higher order schemes	References

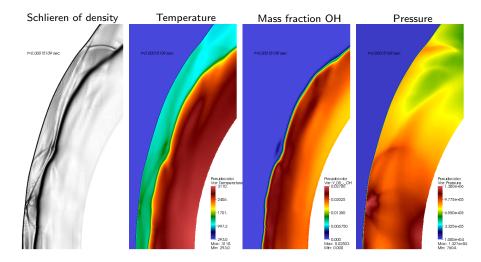
Finite volume scheme			
	0000000000000		
Detonation simulation	Combustion with viscous terms	Higher order schemes	References

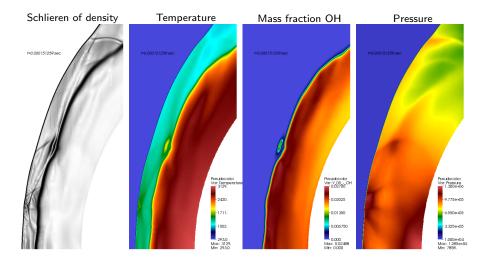
 Oscillation created by accelerated reaction due to slip line from previous triple point Detonation simulation 000000000000000000000 Finite volume scheme Combustion with viscous terms

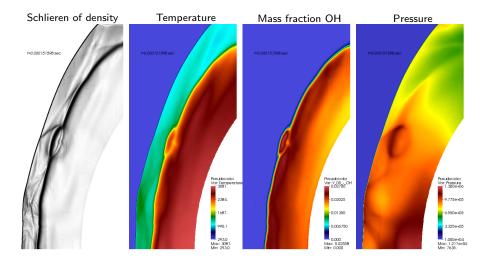

Higher order schem

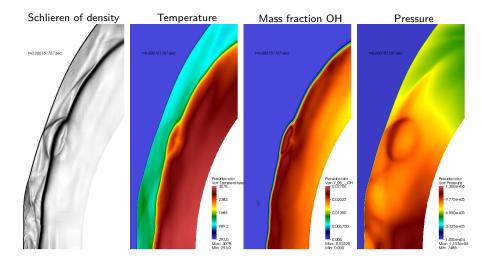
Inviscid case – M = 4.48

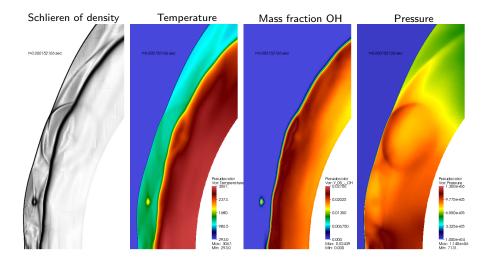

- 4048 iterations with CFL=0.9 to $t = 170 \,\mu s$
- Oscillation frequency in last 20 μs : \sim 395 kHz
- Experimental value: \sim 425 kHz

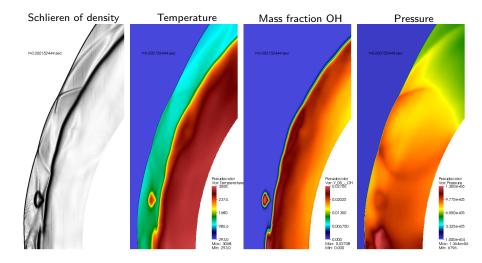


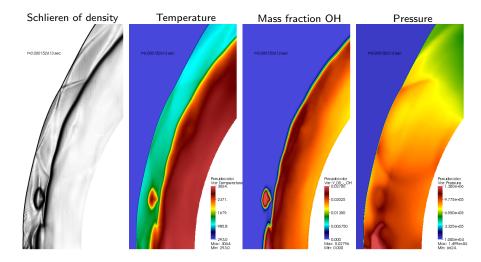

Schlieren plot of density

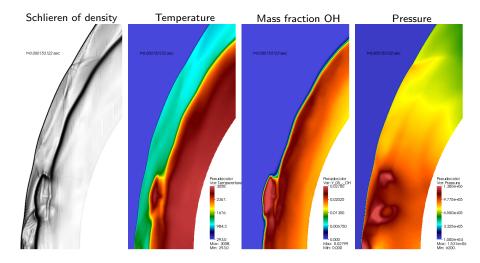


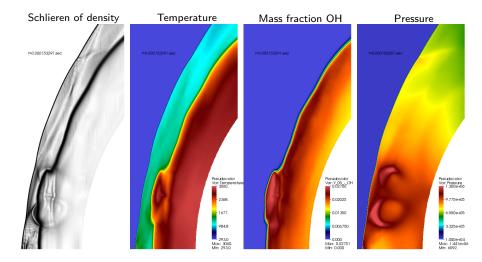


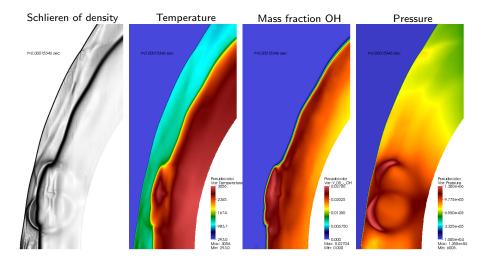


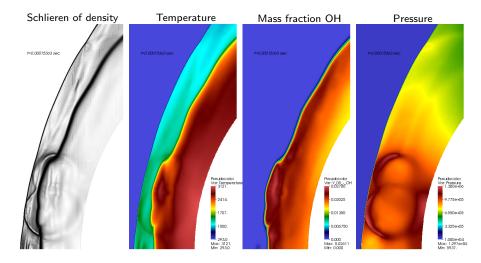


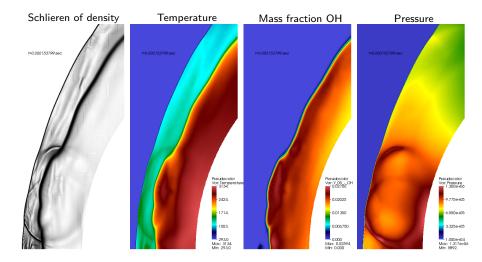


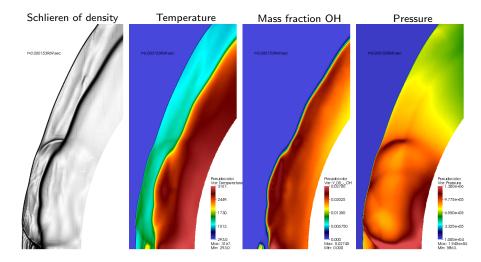


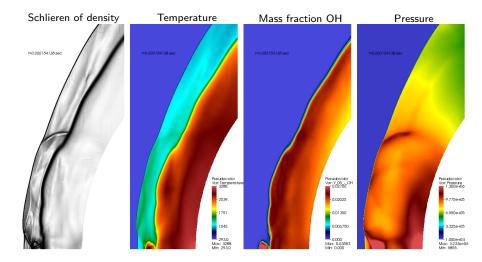


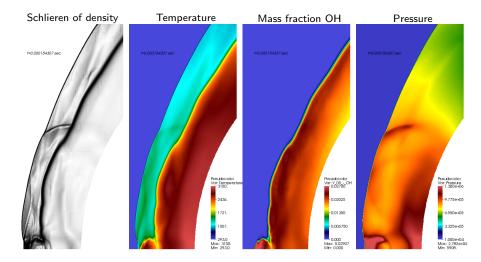


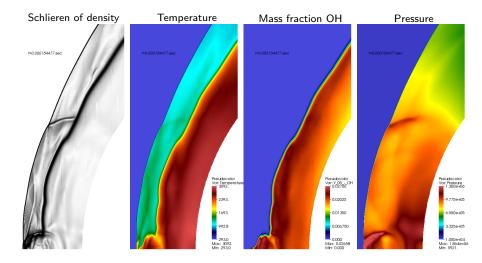


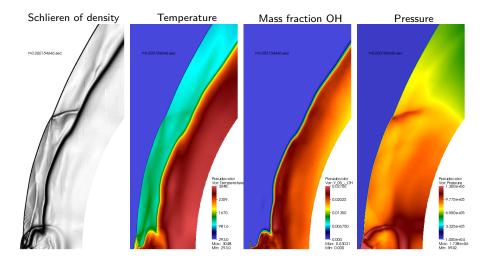


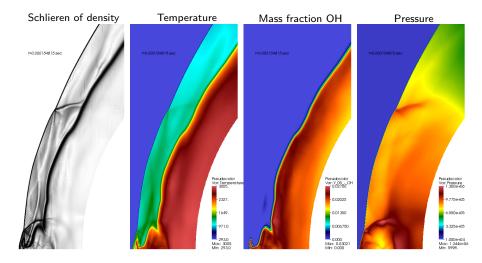


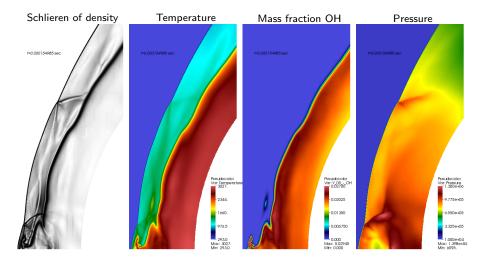


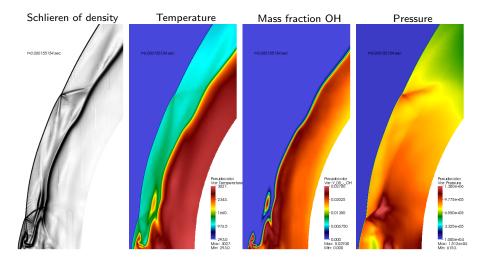


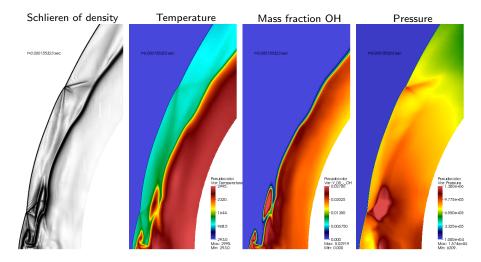


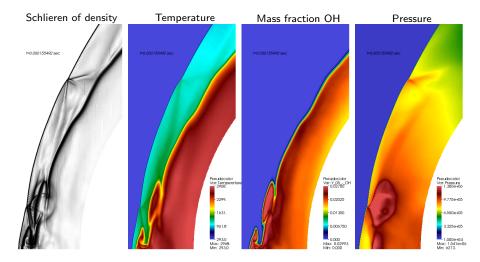


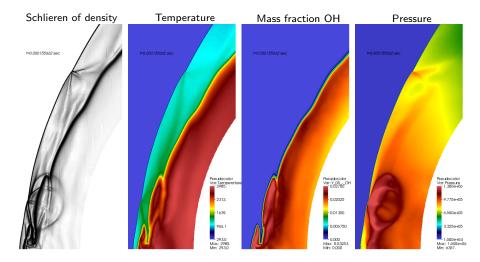


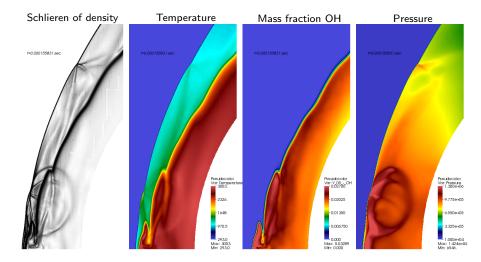


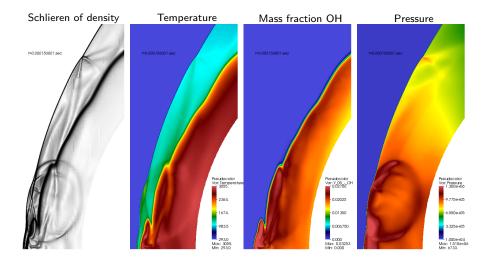


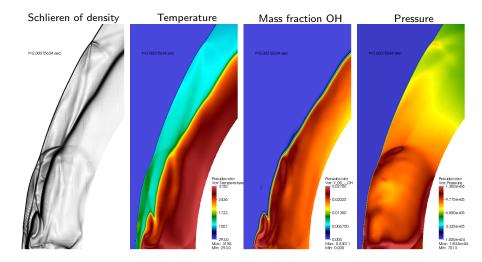


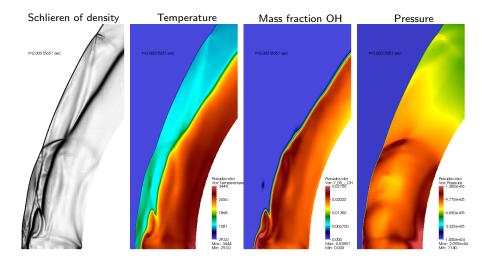


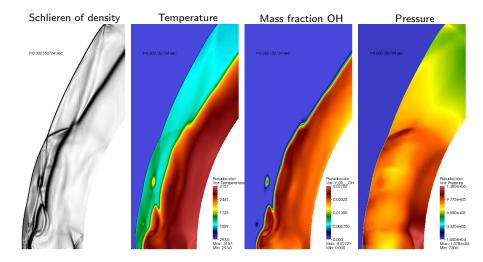


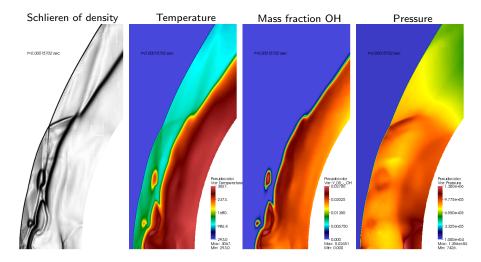


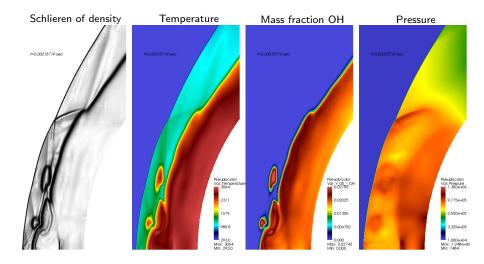


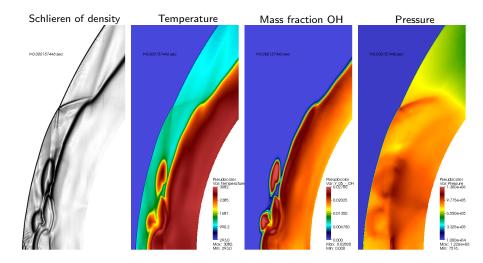












Perturbed oscillation mechanism

Small perturbations can quickly create numerous triple points

Detonation simulation	Combustion with viscous terms	Higher order schemes	References
		000000	
Hybrid methods			

Hybrid method

Convective numerical flux is defined as

$$\mathbf{F}_{inv}^{n} = \begin{cases} \mathbf{F}_{inv-WENO}^{n}, & \text{in } \mathcal{C} \\ \mathbf{F}_{inv-CD}^{n}, & \text{in } \overline{\mathcal{C}}, \end{cases}$$

Detonation simulation	Combustion with viscous terms	Higher order schemes	References
		000000	
Hybrid methods			

Hybrid method

Convective numerical flux is defined as

$$\mathbf{F}_{inv}^{n} = \begin{cases} \mathbf{F}_{inv-WENO}^{n}, & \text{in } \mathcal{C} \\ \mathbf{F}_{inv-CD}^{n}, & \text{in } \overline{\mathcal{C}}, \end{cases}$$

▶ For LES: 3rd order WENO method, 2nd order TCD [Hill and Pullin, 2004]

Detonation simulation	Combustion with viscous terms	Higher order schemes	References
		000000	
Hybrid methods			

Hybrid method

Convective numerical flux is defined as

$$\mathbf{F}_{inv}^{n} = \begin{cases} \mathbf{F}_{inv-WENO}^{n}, & \text{in } \mathcal{C} \\ \mathbf{F}_{inv-CD}^{n}, & \text{in } \overline{\mathcal{C}}, \end{cases}$$

▶ For LES: 3rd order WENO method, 2nd order TCD [Hill and Pullin, 2004]

 For DNS: Symmetric 6th order WENO, 6th-order CD scheme [Ziegler et al., 2011]

Detonation simulation	Combustion with viscous terms	Higher order schemes	References
		000000	
Hybrid methods			

Hybrid method

Convective numerical flux is defined as

$$\mathbf{F}_{inv}^{n} = \begin{cases} \mathbf{F}_{inv-WENO}^{n}, & \text{in } \mathcal{C} \\ \mathbf{F}_{inv-CD}^{n}, & \text{in } \overline{\mathcal{C}}, \end{cases}$$

▶ For LES: 3rd order WENO method, 2nd order TCD [Hill and Pullin, 2004]

 For DNS: Symmetric 6th order WENO, 6th-order CD scheme [Ziegler et al., 2011]

Use WENO scheme to only capture shock waves but resolve interface between species.

Detonation simulation	Combustion with viscous terms	Higher order schemes	References
		000000	
Hybrid methods			

Hybrid method

Convective numerical flux is defined as

$$\mathbf{F}_{inv}^{n} = \begin{cases} \mathbf{F}_{inv-WENO}^{n}, & \text{in } \mathcal{C} \\ \mathbf{F}_{inv-CD}^{n}, & \text{in } \overline{\mathcal{C}}, \end{cases}$$

- ▶ For LES: 3rd order WENO method, 2nd order TCD [Hill and Pullin, 2004]
- For DNS: Symmetric 6th order WENO, 6th-order CD scheme [Ziegler et al., 2011]

Use WENO scheme to only capture shock waves but resolve interface between species.

Shock detection based on using two criteria together:

1. Lax-Liu entropy condition $|u_R \pm a_R| < |u_* \pm a_*| < |u_L \pm a_L|$ tested with a threshold to eliminate weak acoustic waves. Used intermediate states at cell interfaces:

$$u_* = rac{\sqrt{
ho_L u_L} + \sqrt{
ho_R u_R}}{\sqrt{
ho_L} + \sqrt{
ho_R}}, \;\; a_* = \sqrt{(\gamma_* - 1)(h_* - rac{1}{2}u_*^2)}, \; \dots$$

Detonation simulation	Combustion with viscous terms	Higher order schemes	References
		000000	
Hybrid methods			

Hybrid method

Convective numerical flux is defined as

$$\mathbf{F}_{inv}^{n} = \begin{cases} \mathbf{F}_{inv-WENO}^{n}, & \text{in } \mathcal{C} \\ \mathbf{F}_{inv-CD}^{n}, & \text{in } \overline{\mathcal{C}}, \end{cases}$$

- ▶ For LES: 3rd order WENO method, 2nd order TCD [Hill and Pullin, 2004]
- For DNS: Symmetric 6th order WENO, 6th-order CD scheme [Ziegler et al., 2011]

Use WENO scheme to only capture shock waves but resolve interface between species.

Shock detection based on using two criteria together:

1. Lax-Liu entropy condition $|u_R \pm a_R| < |u_* \pm a_*| < |u_L \pm a_L|$ tested with a threshold to eliminate weak acoustic waves. Used intermediate states at cell interfaces:

$$u_* = rac{\sqrt{
ho_L u_L} + \sqrt{
ho_R u_R}}{\sqrt{
ho_L} + \sqrt{
ho_R}}, \;\; a_* = \sqrt{(\gamma_* - 1)(h_* - rac{1}{2}u_*^2)}, \; \dots$$

2. Limiter-inspired discontinuity test based on mapped normalized pressure gradient θ_j

$$\phi(\theta_j) = \frac{2\theta_j}{\left(1 + \theta_j\right)^2} \quad \text{with} \quad \theta_j = \frac{|\boldsymbol{p}_{j+1} - \boldsymbol{p}_j|}{|\boldsymbol{p}_{j+1} + \boldsymbol{p}_j|}, \quad \phi(\theta_j) > \alpha_{Map}$$

Detonation simulation	Combustion with viscous terms	Higher order schemes	References
		000000	
Hybrid methods			

Recall Runge-Kutta temporal update

$$\tilde{\mathbf{Q}}_{j}^{\upsilon} = \alpha_{\upsilon} \mathbf{Q}_{j}^{m} + \beta_{\upsilon} \tilde{\mathbf{Q}}_{j}^{\upsilon-1} + \gamma_{\upsilon} \frac{\Delta t}{\Delta x_{n}} \Delta \mathbf{F}^{n} (\tilde{\mathbf{Q}}^{\upsilon-1})$$

Detonation simulation	Combustion with viscous terms	Higher order schemes	References
0000000000000000000	000000000000	000000	00
Hybrid methods			

Recall Runge-Kutta temporal update

$$\tilde{\mathbf{Q}}_{j}^{\upsilon} = \alpha_{\upsilon} \mathbf{Q}_{j}^{m} + \beta_{\upsilon} \tilde{\mathbf{Q}}_{j}^{\upsilon-1} + \gamma_{\upsilon} \frac{\Delta t}{\Delta x_{n}} \Delta \mathbf{F}^{n} (\tilde{\mathbf{Q}}^{\upsilon-1})$$

rewrite scheme as

$$\mathbf{Q}^{m+1} = \mathbf{Q}^m - \sum_{\upsilon=1}^{\Upsilon} \varphi_\upsilon \, \frac{\Delta t}{\Delta x_n} \Delta \mathbf{F}^n(\tilde{\mathbf{Q}}^{\upsilon-1}) \quad \text{with} \quad \varphi_\upsilon = \gamma_\upsilon \prod_{\nu=\upsilon+1}^{\Upsilon} \beta_\nu$$

	Combustion with viscous terms	Higher order schemes	References
		000000	
Hybrid methods			

Recall Runge-Kutta temporal update

$$\tilde{\mathbf{Q}}_{j}^{\upsilon} = \alpha_{\upsilon} \, \mathbf{Q}_{j}^{m} + \beta_{\upsilon} \, \tilde{\mathbf{Q}}_{j}^{\upsilon-1} + \gamma_{\upsilon} \, \frac{\Delta t}{\Delta x_{n}} \Delta \mathbf{F}^{n}(\tilde{\mathbf{Q}}^{\upsilon-1})$$

rewrite scheme as

$$\mathbf{Q}^{m+1} = \mathbf{Q}^m - \sum_{\upsilon=1}^{\Upsilon} \varphi_\upsilon \frac{\Delta t}{\Delta x_n} \Delta \mathbf{F}^n(\tilde{\mathbf{Q}}^{\upsilon-1}) \quad \text{with} \quad \varphi_\upsilon = \gamma_\upsilon \prod_{\upsilon=\upsilon+1}^{\Upsilon} \beta_\upsilon$$

Flux correction to be used

1.
$$\delta \mathbf{F}_{i-\frac{1}{2},j}^{1,l+1} := -\varphi_1 \mathbf{F}_{i-\frac{1}{2},j}^{1,l} (\tilde{\mathbf{Q}}^0) , \qquad \delta \mathbf{F}_{i-\frac{1}{2},j}^{1,l+1} := \delta \mathbf{F}_{i-\frac{1}{2},j}^{1,l+1} - \sum_{\nu=2}^{\Upsilon} \varphi_{\nu} \mathbf{F}_{i-\frac{1}{2},j}^{1,l} (\tilde{\mathbf{Q}}^{\nu-1})$$

2. $\delta \mathbf{F}_{i-\frac{1}{2},j}^{1,l+1} := \delta \mathbf{F}_{i-\frac{1}{2},j}^{1,l+1} + \frac{1}{r_{l+1}^2} \sum_{\nu=0}^{r_{l+1}-1} \sum_{\nu=1}^{\Upsilon} \varphi_{\nu} \mathbf{F}_{\nu+\frac{1}{2},\nu+\nu}^{1,l+1} \left(\tilde{\mathbf{Q}}^{\nu-1} (t + \kappa \Delta t_{l+1}) \right)$

	Combustion with viscous terms	Higher order schemes	References
		000000	
Hybrid methods			

Recall Runge-Kutta temporal update

$$\tilde{\mathbf{Q}}_{j}^{\upsilon} = \alpha_{\upsilon} \mathbf{Q}_{j}^{m} + \beta_{\upsilon} \tilde{\mathbf{Q}}_{j}^{\upsilon-1} + \gamma_{\upsilon} \frac{\Delta t}{\Delta x_{n}} \Delta \mathbf{F}^{n} (\tilde{\mathbf{Q}}^{\upsilon-1})$$

rewrite scheme as

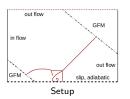
$$\mathbf{Q}^{m+1} = \mathbf{Q}^m - \sum_{\upsilon=1}^{\Upsilon} \varphi_\upsilon \frac{\Delta t}{\Delta x_n} \Delta \mathbf{F}^n(\tilde{\mathbf{Q}}^{\upsilon-1}) \quad \text{with} \quad \varphi_\upsilon = \gamma_\upsilon \prod_{\upsilon=\upsilon+1}^{\Upsilon} \beta_\upsilon$$

Flux correction to be used

1.
$$\delta \mathbf{F}_{i-\frac{1}{2},j}^{1,l+1} := -\varphi_1 \mathbf{F}_{i-\frac{1}{2},j}^{1,l} (\tilde{\mathbf{Q}}^0) , \qquad \delta \mathbf{F}_{i-\frac{1}{2},j}^{1,l+1} := \delta \mathbf{F}_{i-\frac{1}{2},j}^{1,l+1} - \sum_{\upsilon=2}^{\Upsilon} \varphi_{\upsilon} \mathbf{F}_{i-\frac{1}{2},j}^{1,l} (\tilde{\mathbf{Q}}^{\upsilon-1})$$

2. $\delta \mathbf{F}_{i-\frac{1}{2},j}^{1,l+1} := \delta \mathbf{F}_{i-\frac{1}{2},j}^{1,l+1} + \frac{1}{r_{l+1}^2} \sum_{\upsilon=0}^{r_{l+1}-1} \sum_{\upsilon=1}^{\Upsilon} \varphi_{\upsilon} \mathbf{F}_{\nu+\frac{1}{2},\nu+\iota}^{1,l+1} \left(\tilde{\mathbf{Q}}^{\upsilon-1}(t+\kappa\Delta t_{l+1}) \right)$

Storage-efficient SSPRK(3,3):

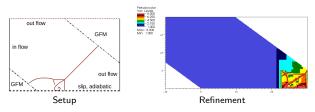


DNS of shear layer in detonation triple point

- Calorically perfect two-species model with γ = 1.29499 and h₀ = 54,000 J/mol and one-step Arrhenius reaction with parameters E_a = 30,000 J/mol, A = 6 · 10⁵ s⁻¹, W = 0.029 kg/mol → 1d ZND theory predicts d_{CJ} = 1587.8 m/s
- ▶ For dynamic viscosity, heat conductivity, and mass diffusion simple Sutherland models are used
- ► Distance $L(t) = d_{CJ} \sin(\theta)t$ is used to define a Reynolds number as $\operatorname{Re} = \frac{\rho_0 a_0 L(t)}{\mu_0}$
- Viscous shear layer thickness, thermal heat conduction layer thickness, and mass diffusion layer

thickness grow as
$$\delta_{
m visc} \approx \sqrt{rac{\mu}{
ho}} t, \quad \delta_{
m cond} \approx \sqrt{rac{k_{
m ref}}{
ho c_v}} t, \quad \delta_{
m mass,i} \approx \sqrt{rac{D_i}{
ho}} t$$

- Only shock thickness not resolved "pseudo-DNS"
- \blacktriangleright Computations with WENO/CD/RK3 use SAMR base mesh 320 \times 160 and up to 8 levels refined by factor 2, domain: 40 $\rm mm \times 20 \, mm$
- \blacktriangleright Computations with MUSCL scheme use base mesh 590 \times 352 and up to 7 levels refined by factor 2, domain: 40 mm \times 22 mm

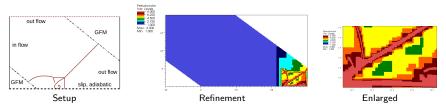


DNS of shear layer in detonation triple point

- Calorically perfect two-species model with γ = 1.29499 and h₀ = 54,000 J/mol and one-step Arrhenius reaction with parameters E_a = 30,000 J/mol, A = 6 · 10⁵ s⁻¹, W = 0.029 kg/mol → 1d ZND theory predicts d_{CJ} = 1587.8 m/s
- ▶ For dynamic viscosity, heat conductivity, and mass diffusion simple Sutherland models are used
- ► Distance $L(t) = d_{CJ} \sin(\theta)t$ is used to define a Reynolds number as $\operatorname{Re} = \frac{\rho_0 a_0 L(t)}{\mu_0}$
- Viscous shear layer thickness, thermal heat conduction layer thickness, and mass diffusion layer

thickness grow as
$$\delta_{
m visc} \approx \sqrt{rac{\mu}{
ho}} t, \quad \delta_{
m cond} \approx \sqrt{rac{k_{
m ref}}{
ho c_v}} t, \quad \delta_{
m mass,i} \approx \sqrt{rac{D_i}{
ho}} t$$

- Only shock thickness not resolved "pseudo-DNS"
- \blacktriangleright Computations with WENO/CD/RK3 use SAMR base mesh 320 \times 160 and up to 8 levels refined by factor 2, domain: 40 $\rm mm \times 20 \, mm$
- \blacktriangleright Computations with MUSCL scheme use base mesh 590 \times 352 and up to 7 levels refined by factor 2, domain: 40 mm \times 22 mm

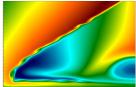


DNS of shear layer in detonation triple point

- Calorically perfect two-species model with γ = 1.29499 and h₀ = 54,000 J/mol and one-step Arrhenius reaction with parameters E_a = 30,000 J/mol, A = 6 · 10⁵ s⁻¹, W = 0.029 kg/mol → 1d ZND theory predicts d_{CJ} = 1587.8 m/s
- ▶ For dynamic viscosity, heat conductivity, and mass diffusion simple Sutherland models are used
- ► Distance $L(t) = d_{CJ} \sin(\theta)t$ is used to define a Reynolds number as $\operatorname{Re} = \frac{\rho_0 a_0 L(t)}{\mu_0}$
- Viscous shear layer thickness, thermal heat conduction layer thickness, and mass diffusion layer

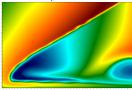
thickness grow as
$$\delta_{
m visc} \approx \sqrt{rac{\mu}{
ho}} t, \quad \delta_{
m cond} \approx \sqrt{rac{k_{
m ref}}{
ho c_v}} t, \quad \delta_{
m mass,i} \approx \sqrt{rac{D_i}{
ho}} t$$

- Only shock thickness not resolved "pseudo-DNS"
- \blacktriangleright Computations with WENO/CD/RK3 use SAMR base mesh 320 \times 160 and up to 8 levels refined by factor 2, domain: 40 $\rm mm \times 20 \, mm$
- \blacktriangleright Computations with MUSCL scheme use base mesh 590 \times 352 and up to 7 levels refined by factor 2, domain: 40 mm \times 22 mm

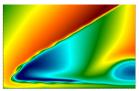


Combustion with viscous terms

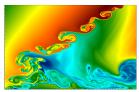
Higher order schemes


References

Computational results for shear layer WENO/CD - 6 levels WENO/CD - 7 levels

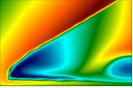

 $\Delta x_{\rm min} = 3.91 \cdot 10^{-6} \,\mathrm{m}$

MUSCL - 7 levels

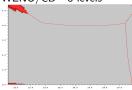


 $\Delta x_{\rm min} = 1.95 \cdot 10^{-6}\,\rm m$

MUSCL - 7 levels - Euler



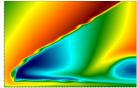
 $\Delta x_{\rm min} = 1.05 \cdot 10^{-6}\,\rm m$


 $\Delta x_{\rm min} = 1.05 \cdot 10^{-6}\,\rm m$

WENO/CD - 8 levels

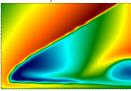
 $\Delta x_{\rm min} = 9.77 \cdot 10^{-7}\,\rm m$

Usage of WENO for WENO/CD - 8 levels

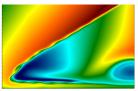


Combustion with viscous terms

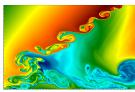
Higher order schemes


References

Computational results for shear layer WENO/CD - 6 levels WENO/CD - 7 levels

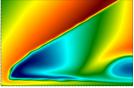

 $\Delta x_{\rm min} = 3.91 \cdot 10^{-6} \, \mathrm{m}$

MUSCL - 7 levels



 $\Delta x_{\rm min} = 1.95 \cdot 10^{-6}\,\rm m$

MUSCL - 7 levels - Euler



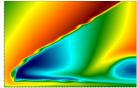
 $\Delta x_{\rm min} = 1.05 \cdot 10^{-6} \,\mathrm{m}$

 $\Delta x_{\rm min} = 1.05 \cdot 10^{-6}\,\rm m$

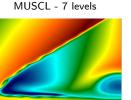
WENO/CD - 8 levels

 $\Delta x_{\rm min} = 9.77 \cdot 10^{-7}\,\rm m$

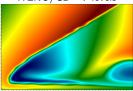
Usage of WENO for WENO/CD - 8 levels



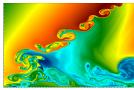
 WENO/CD/RK3 gives results comparable to 4x finer resolved optimal 2nd-order scheme, but CPU times with SAMR 2-3x larger Hybrid methods


Combustion with viscous terms

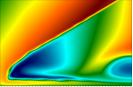
Higher order schemes 00000000


Computational results for shear layer WENO/CD - 6 levels WENO/CD - 7 levels

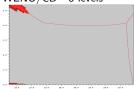
 $\Delta x_{\rm min} = 3.91 \cdot 10^{-6} \,\mathrm{m}$



 $\Delta x_{\rm min} = 1.05 \cdot 10^{-6} \,\mathrm{m}$


 $\Delta x_{\min} = 1.95 \cdot 10^{-6} \mathrm{m}$

MUSCL - 7 levels - Euler


 $\Delta x_{\rm min} = 1.05 \cdot 10^{-6} \, \mathrm{m}$

WENO/CD - 8 levels

 $\Delta x_{\rm min} = 9.77 \cdot 10^{-7} \,\mathrm{m}$

of WENO Usage for WENO/CD - 8 levels

- WENO/CD/RK3 gives results comparable to 4x finer resolved optimal 2nd-order scheme, but CPU times with SAMR 2-3x larger
 - Gain in CPU time from higher-order scheme roughly one order

large-eddy simulation			
000000000000000000000000000000000000000	00000000000	0000000	00
Detonation simulation	Combustion with viscous terms	Higher order schemes	References

Favre-averaged Navier-Stokes equations

$$\begin{aligned} \frac{\partial \bar{\rho}}{\partial t} + \frac{\partial}{\partial x_n} (\bar{\rho} \tilde{u}_n) &= 0\\ \frac{\partial}{\partial t} (\bar{\rho} \tilde{u}_k) + \frac{\partial}{\partial x_n} (\bar{\rho} \tilde{u}_k \tilde{u}_n + \delta_{kn} \bar{p} - \tilde{\tau}_{kn} + \sigma_{kn}) &= 0\\ \frac{\partial \bar{\rho} \bar{E}}{\partial t} + \frac{\partial}{\partial x_n} (\tilde{u}_n (\bar{\rho} \bar{E} + \bar{p}) + \tilde{q}_n - \tilde{\tau}_{nj} \tilde{u}_j + \sigma_n^e) &= 0\\ \frac{\partial}{\partial t} (\bar{\rho} \tilde{Y}_i) + \frac{\partial}{\partial x_n} (\bar{\rho} \tilde{Y}_i \tilde{u}_n + \tilde{J}_n^i + \sigma_n^i) &= 0 \end{aligned}$$

with stress tensor

$$ilde{ au}_{kn} = ilde{\mu} igg(rac{\partial ilde{u}_n}{\partial x_k} + rac{\partial ilde{u}_k}{\partial x_n} igg) - rac{2}{3} ilde{\mu} rac{\partial ilde{u}_j}{\partial x_j} \delta_{in} \ ,$$

heat conduction

$$\tilde{q}_n = -\tilde{\lambda} \frac{\partial \tilde{T}}{\partial x_n} \; ,$$

large-eddy simulation			
000000000000000000000000000000000000000	00000000000	0000000	00
Detonation simulation	Combustion with viscous terms	Higher order schemes	References

Favre-averaged Navier-Stokes equations

$$\begin{aligned} \frac{\partial \bar{\rho}}{\partial t} + \frac{\partial}{\partial x_n} (\bar{\rho} \tilde{u}_n) &= 0\\ \frac{\partial}{\partial t} (\bar{\rho} \tilde{u}_k) + \frac{\partial}{\partial x_n} (\bar{\rho} \tilde{u}_k \tilde{u}_n + \delta_{kn} \bar{p} - \tilde{\tau}_{kn} + \sigma_{kn}) &= 0\\ \frac{\partial \bar{\rho} \bar{E}}{\partial t} + \frac{\partial}{\partial x_n} (\tilde{u}_n (\bar{\rho} \bar{E} + \bar{p}) + \tilde{q}_n - \tilde{\tau}_{nj} \tilde{u}_j + \sigma_n^e) &= 0\\ \frac{\partial}{\partial t} (\bar{\rho} \tilde{Y}_i) + \frac{\partial}{\partial x_n} (\bar{\rho} \tilde{Y}_i \tilde{u}_n + \tilde{J}_n^i + \sigma_n^i) &= 0 \end{aligned}$$

with stress tensor

$$ilde{ au}_{kn} = ilde{\mu} igg(rac{\partial ilde{u}_n}{\partial x_k} + rac{\partial ilde{u}_k}{\partial x_n} igg) - rac{2}{3} ilde{\mu} rac{\partial ilde{u}_j}{\partial x_j} \delta_{in} \ ,$$

heat conduction

$$ilde{q}_n = - ilde{\lambda} rac{\partial ilde{T}}{\partial x_n} \; ,$$

and inter-species diffusion

$$\tilde{J}_n^i = -\bar{\rho}\tilde{D}_i\frac{\partial\tilde{Y}_i}{\partial x_n}$$

large-eddy simulation			
000000000000000000000000000000000000000	00000000000	0000000	00
Detonation simulation	Combustion with viscous terms	Higher order schemes	References

Favre-averaged Navier-Stokes equations

$$\begin{aligned} \frac{\partial \bar{\rho}}{\partial t} + \frac{\partial}{\partial x_n} (\bar{\rho} \tilde{u}_n) &= 0\\ \frac{\partial}{\partial t} (\bar{\rho} \tilde{u}_k) + \frac{\partial}{\partial x_n} (\bar{\rho} \tilde{u}_k \tilde{u}_n + \delta_{kn} \bar{p} - \tilde{\tau}_{kn} + \sigma_{kn}) &= 0\\ \frac{\partial \bar{\rho} \bar{E}}{\partial t} + \frac{\partial}{\partial x_n} (\tilde{u}_n (\bar{\rho} \bar{E} + \bar{p}) + \tilde{q}_n - \tilde{\tau}_{nj} \tilde{u}_j + \sigma_n^e) &= 0\\ \frac{\partial}{\partial t} (\bar{\rho} \tilde{Y}_i) + \frac{\partial}{\partial x_n} (\bar{\rho} \tilde{Y}_i \tilde{u}_n + \tilde{J}_n^i + \sigma_n^i) &= 0 \end{aligned}$$

with stress tensor

$$\tilde{\tau}_{kn} = \tilde{\mu} \big(\frac{\partial \tilde{u}_n}{\partial x_k} + \frac{\partial \tilde{u}_k}{\partial x_n} \big) - \frac{2}{3} \tilde{\mu} \frac{\partial \tilde{u}_j}{\partial x_j} \delta_{in} \,,$$

heat conduction

$$\tilde{q}_n = -\tilde{\lambda} \frac{\partial \tilde{T}}{\partial x_n}$$

and inter-species diffusion

$$\tilde{J}_n^i = -\bar{\rho}\tilde{D}_i\frac{\partial\tilde{Y}_i}{\partial x_n}$$

Favre-filtering

$$ilde{\phi} = rac{
ho\phi}{ar{
ho}} \quad ext{with} \quad ar{\phi}(\mathbf{x},t;\Delta_c) = \int_{\Omega} G(\mathbf{x}-\mathbf{x}^{'};\Delta_c)\phi(\mathbf{x}^{'},t)d\mathbf{x}^{'}$$

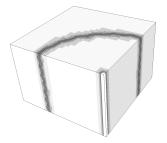
Large-eddy simulation			
		0000000	
Detonation simulation	Combustion with viscous terms	Higher order schemes	References

Subgrid terms σ_{kn} , σ_n^e , σ_n^i are computed by Pullin's stretched-vortex model

Large-eddy simulation			
000000000000000000000000000000000000000	00000000000	0000000	00
Detonation simulation	Combustion with viscous terms	Higher order schemes	References

- Subgrid terms σ_{kn} , σ_n^e , σ_n^i are computed by Pullin's stretched-vortex model
- Cutoff Δ_c is set to local SAMR resolution Δx_l

Large-eddy simulation			
		0000000	
Detonation simulation	Combustion with viscous terms	Higher order schemes	References

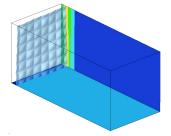

- Subgrid terms σ_{kn} , σ_n^e , σ_n^i are computed by Pullin's stretched-vortex model
- Cutoff Δ_c is set to local SAMR resolution Δx_l
- It remains to solve the Navier-Stokes equations in the hyperbolic regime
 - 3rd order WENO method (hybridized with a tuned centered difference stencil) for convection
 - > 2nd order conservative centered differences for diffusion

Detonation simulation	Combustion with viscous terms	Higher order schemes	References
		0000000	
large-eddy simulation			

- Subgrid terms σ_{kn} , σ_n^e , σ_n^i are computed by Pullin's stretched-vortex model
- Cutoff Δ_c is set to local SAMR resolution Δx_l
- It remains to solve the Navier-Stokes equations in the hyperbolic regime
 - 3rd order WENO method (hybridized with a tuned centered difference stencil) for convection
 - 2nd order conservative centered differences for diffusion

Example: Cylindrical Richtmyer-Meshkov instability

- Sinusoidal interface between two gases hit by shock wave
- Objective is correctly predict turbulent mixing
- Embedded boundary method used to regularize apex
- AMR base grid 95 × 95 × 64 cells, r_{1,2,3} = 2
- $\blacktriangleright~\sim$ 70,000 h CPU on 32 AMD 2.5GHZ-quad-core nodes

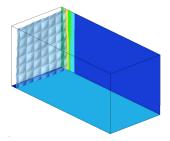


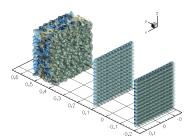
etonation simulation	Combustion with viscous terms	Higher order schemes	References
		000000	
and the second			

Planar Richtmyer-Meshkov instability

- Perturbed Air-SF6 interface shocked and re-shocked by Mach 1.5 shock
- Containment of turbulence in refined zones
- 96 CPUs IBM SP2-Power3
- WENO-TCD scheme with LES model
- AMR base grid 172 × 56 × 56, r_{1,2} = 2, 10 M cells in average instead of 3 M (uniform)

Task	2ms (%)	5ms (%)	10ms (%)
Integration	45.3	65.9	52.0
Boundary setting	44.3	28.6	41.9
Flux correction	7.2	3.4	4.1
Interpolation	0.9	0.4	0.3
Reorganization	1.6	1.2	1.2
Misc.	0.6	0.5	0.5
Max. imbalance	1.25	1.23	1.30


vtf/amroc/weno/applications/euler/3d/RM_AirSF6


etonation simulation	Combustion with viscous terms	Higher order schemes	References
		000000	

Planar Richtmyer-Meshkov instability

- Perturbed Air-SF6 interface shocked and re-shocked by Mach 1.5 shock
- Containment of turbulence in refined zones
- 96 CPUs IBM SP2-Power3
- WENO-TCD scheme with LES model
- AMR base grid 172 × 56 × 56, r_{1,2} = 2, 10 M cells in average instead of 3 M (uniform)

Task	2ms (%)	5ms (%)	10ms (%)
Integration	45.3	65.9	52.0
Boundary setting	44.3	28.6	41.9
Flux correction	7.2	3.4	4.1
Interpolation	0.9	0.4	0.3
Reorganization	1.6	1.2	1.2
Misc.	0.6	0.5	0.5
Max. imbalance	1.25	1.23	1.30

	Combustion with viscous terms	Higher order schemes	References
			••
References			
References I			

- [Axdahl et al., 2011] Axdahl, E., Kumar, A., and Wilhite, A. (2011). Study of unsteady, sphere-driven, shock-induced combustion for application to hypervelocity airbreathing propulsio. In Proc. 47th AIAA/ASME/SAE/SAEE Joint Propulsion Conference & Exhibit.
- [Ben-Dor, 2007] Ben-Dor, G. (2007). *Shock wave reflection phenomena*. Springer-Verlag, Berlin, Heidelberg, 2nd edition.
- [Deiterding, 2011] Deiterding, R. (2011). High-resolution numerical simulation and analysis of Mach reflection structures in detonation waves in low-pressure $h_2: o_2: ar$ mixtures: a summary of results obtained with adaptive mesh refinement framework AMROC. J. Combustion, 2011:738969.
- [Hill and Pullin, 2004] Hill, D. J. and Pullin, D. I. (2004). Hybrid tuned center difference - WENO method for large eddy simulations in the presence of strong shocks. J. Comput. Phys., 194(2):435–450.
- [Jachimowski, 1988] Jachimowski, C. J. (1988). An analytical study of the hydrogen-air reaction mechanism with application to scramjet combustion. Technical Report TP-2791, NASA.

	Combustion with viscous terms	Higher order schemes	References
			••
References			
References II			

- [Lehr, 1972] Lehr, H. F. (1972). Experiments on shock-induced combustion. Astronautica Acta, 17:589–597.
- [Pantano et al., 2007] Pantano, C., Deiterding, R., Hill, D. J., and Pullin, D. I. (2007). A low-numerical dissipation patch-based adaptive mesh refinement method for large-eddy simulation of compressible flows. J. Comput. Phys., 221(1):63–87.
- [Yungster and Radhakrishnan, 1996] Yungster, S. and Radhakrishnan, K. (1996). A fully implicit time accurate method for hypersonic combustion: application to shock-induced combustion instability. *Shock Waves*, 5:293–303.
- [Ziegler et al., 2011] Ziegler, J. L., Deiterding, R., Shepherd, J. E., and Pullin, D. I. (2011). An adaptive high-order hybrid scheme for compressive, viscous flows with detailed chemistry. J. Comput. Phys., 230(20):7598–7630.