Lecture 5 Fluid-structure interaction simulation

Course Block-structured Adaptive Finite Volume Methods for Shock-Induced Combustion Simulation

Ralf Deiterding German Aerospace Center (DLR) Institute for Aerodynamics and Flow Technology Bunsenstr. 10, Göttingen, Germany

E-mail: ralf.deiterding@dlr.de

Outline

Fluid-structure interaction

Coupling to a solid mechanics solver Rigid body motion Thin elastic and deforming thin structures Deformation from water hammer Real-world example

Outline

Fluid-structure interaction

Coupling to a solid mechanics solver Rigid body motion Thin elastic and deforming thin structures Deformation from water hammer Real-world example

Adaptive Lattice Boltzmann method with FSI

Adaptive LBM Realistic static embedded geometries Simulation of wind turbines

Outline

Fluid-structure interaction

Coupling to a solid mechanics solver Rigid body motion Thin elastic and deforming thin structures Deformation from water hammer Real-world example

Adaptive Lattice Boltzmann method with FSI

Adaptive LBM Realistic static embedded geometries Simulation of wind turbines

Adaptive Lattice Boltzmann method with FSI

References 0000

Construction of coupling data

 Moving boundary/interface is treated as a moving contact discontinuity and represented by level set [Fedkiw, 2002][Arienti et al., 2003]

Adaptive Lattice Boltzmann method with FSI

References 0000

Construction of coupling data

- Moving boundary/interface is treated as a moving contact discontinuity and represented by level set [Fedkiw, 2002][Arienti et al., 2003]
- One-sided construction of mirrored ghost cell and new FEM nodal point values

Adaptive Lattice Boltzmann method with FSI

References 0000

Construction of coupling data

- Moving boundary/interface is treated as a moving contact discontinuity and represented by level set [Fedkiw, 2002][Arienti et al., 2003]
- One-sided construction of mirrored ghost cell and new FEM nodal point values
- FEM ansatz-function interpolation to obtain intermediate surface values

Adaptive Lattice Boltzmann method with FSI

References 0000

Construction of coupling data

- Moving boundary/interface is treated as a moving contact discontinuity and represented by level set [Fedkiw, 2002][Arienti et al., 2003]
- One-sided construction of mirrored ghost cell and new FEM nodal point values
- FEM ansatz-function interpolation to obtain intermediate surface values

Coupling conditions on interface

$$\begin{array}{cccc} u_n^S &=& u_n^F \\ \sigma_{nn}^S &=& p^F \\ \sigma_{nm}^S &=& 0 \end{array} \Big|_{\mathcal{T}}$$

Adaptive Lattice Boltzmann method with FSI 00000000000 References 0000

Construction of coupling data

- Moving boundary/interface is treated as a moving contact discontinuity and represented by level set [Fedkiw, 2002][Arienti et al., 2003]
- One-sided construction of mirrored ghost cell and new FEM nodal point values
- FEM ansatz-function interpolation to obtain intermediate surface values
- Explicit coupling possible if geometry and velocities are prescribed for the more compressible medium [Specht, 2000]

$$u_n^{F} := u_n^{S}(t)|_{\mathcal{I}}$$

UpdateFluid(Δt)
 $\sigma_{nn}^{S} := p^{F}(t + \Delta t)|_{\mathcal{I}}$
UpdateSolid(Δt)
 $t := t + \Delta t$

Coupling conditions on interface

$$\begin{array}{cccc} u_n^S &=& u_n^F \\ \sigma_{nn}^S &=& p^F \\ \sigma_{nm}^S &=& 0 \end{array} \Big|_{\mathcal{T}}$$

Eulerian SAMR + non-adaptive Lagrangian FEM scheme

▶ Exploit SAMR time step refinement for effective coupling to solid solver

- Eulerian SAMR + non-adaptive Lagrangian FEM scheme
- ▶ Exploit SAMR time step refinement for effective coupling to solid solver
 - ▶ Lagrangian simulation is called only at level $I_c \leq I_{max}$

- Eulerian SAMR + non-adaptive Lagrangian FEM scheme
- Exploit SAMR time step refinement for effective coupling to solid solver
 - ▶ Lagrangian simulation is called only at level $I_c \leq I_{max}$
 - SAMR refines solid boundary at least at level I_c
 - Additional levels can be used resolve geometric ambiguities

- Eulerian SAMR + non-adaptive Lagrangian FEM scheme
- ▶ Exploit SAMR time step refinement for effective coupling to solid solver
 - ▶ Lagrangian simulation is called only at level $I_c \leq I_{max}$
 - SAMR refines solid boundary at least at level I_c
 - Additional levels can be used resolve geometric ambiguities
- Nevertheless: Inserting sub-steps accommodates for time step reduction from the solid solver within an SAMR cycle

- Eulerian SAMR + non-adaptive Lagrangian FEM scheme
- Exploit SAMR time step refinement for effective coupling to solid solver
 - ► Lagrangian simulation is called only at level $I_c \leq I_{max}$
 - SAMR refines solid boundary at least at level I_c
 - Additional levels can be used resolve geometric ambiguities
- Nevertheless: Inserting sub-steps accommodates for time step reduction from the solid solver within an SAMR cycle
- Communication strategy:
 - Updated boundary info from solid solver must be received before regridding operation
 - Boundary data is sent to solid when highest level available

References

- Eulerian SAMR + non-adaptive Lagrangian FEM scheme
- ▶ Exploit SAMR time step refinement for effective coupling to solid solver
 - ▶ Lagrangian simulation is called only at level $I_c \leq I_{max}$
 - SAMR refines solid boundary at least at level I_c
 - Additional levels can be used resolve geometric ambiguities
- Nevertheless: Inserting sub-steps accommodates for time step reduction from the solid solver within an SAMR cycle
- Communication strategy:
 - Updated boundary info from solid solver must be received before regridding operation
 - Boundary data is sent to solid when highest level available
- Inter-solver communication (point-to-point or globally) managed on the fly special coupling module

SAMR algorithm for FSI coupling

```
AdvanceLevel(/)
```

```
Repeat r_l times

Set ghost cells of \mathbf{Q}^l(t)

If time to regrid?

Regrid(l)

UpdateLevel(l)

If level l + 1 exists?

Set ghost cells of \mathbf{Q}^l(t + \Delta t_l)

AdvanceLevel(l + 1)

Average \mathbf{Q}^{l+1}(t + \Delta t_l) onto \mathbf{Q}^l(t + \Delta t_l)
```

 $t := t + \Delta t_l$

SAMR algorithm for FSI coupling

```
AdvanceLevel(/)
```

```
Repeat r_l times

Set ghost cells of \mathbf{Q}^l(t)

CPT(\varphi^l, C^l, \mathcal{I}, \delta_l)

If time to regrid?

Regrid(l)

UpdateLevel(\mathbf{Q}^l, \varphi^l, C^l, \mathbf{u}^S|_{\mathcal{I}}, \Delta t_l)

If level l + 1 exists?

Set ghost cells of \mathbf{Q}^l(t + \Delta t_l)

AdvanceLevel(l + 1)

Average \mathbf{Q}^{l+1}(t + \Delta t_l) onto \mathbf{Q}^l(t + \Delta t_l)
```

- Call CPT algorithm before Regrid(1)
 - Include also call to CPT(·) into
 Recompose(1) to ensure consistent level set data on levels that have changed

$$t := t + \Delta t_l$$

SAMR algorithm for FSI coupling

```
AdvanceLevel(/)
```

```
Repeat r_l times
   Set ghost cells of \mathbf{Q}'(t)
   CPT(\varphi', C', \mathcal{I}, \delta_l)
   If time to regrid?
          Regrid(/)
   UpdateLevel(\mathbf{Q}', \varphi', C', \mathbf{u}^{S}|_{\tau}, \Delta t_{l})
   If level l+1 exists?
          Set ghost cells of \mathbf{Q}^{\prime}(t + \Delta t_{l})
          AdvanceLevel(l+1)
          Average \mathbf{Q}^{l+1}(t + \Delta t_l) onto \mathbf{Q}^l(t + \Delta t_l)
   If l = l_c?
          SendInterfaceData(p^{F}(t + \Delta t_{l})|_{\tau})
          If (t + \Delta t_l) < (t_0 + \Delta t_0)?
                 ReceiveInterfaceData(\mathcal{I}, \mathbf{u}^{\mathsf{S}}|_{\tau})
   t := t + \Delta t_{l}
```

- Call CPT algorithm before Regrid(1)
- Include also call to CPT(·) into
 Recompose(1) to ensure consistent level set data on levels that have changed
- Communicate boundary data on coupling level *I_c*

Adaptive Lattice Boltzmann method with FSI

References 0000

SAMR algorithm for FSI coupling

AdvanceLevel(/)

Repeat r_l times Set ghost cells of $\mathbf{Q}'(t)$ $CPT(\varphi', C', \mathcal{I}, \delta_l)$ If time to regrid? Regrid(/) UpdateLevel($\mathbf{Q}', \varphi', C', \mathbf{u}^{S}|_{\tau}, \Delta t_{l}$) If level l+1 exists? Set ghost cells of $\mathbf{Q}^{\prime}(t + \Delta t_{l})$ AdvanceLevel(l+1)Average $\mathbf{Q}^{l+1}(t + \Delta t_l)$ onto $\mathbf{Q}^{l}(t + \Delta t_l)$ If $l = l_c?$ SendInterfaceData($p^{F}(t + \Delta t_{l})|_{\tau}$) If $(t + \Delta t_l) < (t_0 + \Delta t_0)$? ReceiveInterfaceData($\mathcal{I}, \mathbf{u}^{\mathsf{S}}|_{\tau}$) $t := t + \Delta t_{l}$

- Call CPT algorithm before Regrid(1)
 - Include also call to CPT(·) into
 Recompose(1) to ensure consistent level set data on levels that have changed
- Communicate boundary data on coupling level *l_c*

FluidStep()

 $\begin{array}{l} \Delta \tau_{F} := \min_{l=0,\cdots,l_{\max}} \left(R_{l} \cdot \text{ StableFluidTimeStep}(l) \,, \, \Delta \tau_{S} \right) \\ \Delta t_{l} := \Delta \tau_{F} / R_{l} \text{ for } l = 0, \cdots, L \\ \text{ReceiveInterfaceData}(\mathcal{I}, \, \mathbf{u}^{S}|_{\mathcal{I}}) \\ \text{AdvanceLevel}(0) \end{array}$

with
$$R_l = \prod_{\iota=0}^l r_\iota$$

FluidStep()

$$\begin{array}{l} \Delta\tau_{F} := \min_{l=0,\cdots,l_{\max}} \left(R_{l} \cdot \text{ StableFluidTimeStep}(l) \,, \,\, \Delta\tau_{S} \right) \\ \Delta t_{l} := \Delta\tau_{F}/R_{l} \,\,\, \text{for} \,\, l=0,\cdots,L \\ \text{ReceiveInterfaceData}(\mathcal{I}, \,\, \mathbf{u}^{S}|_{\mathcal{I}}) \\ \text{AdvanceLevel}(0) \end{array}$$

SolidStep()

$$\Delta \tau_{S} := \min(K \cdot R_{l_{c}} \cdot \texttt{StableSolidTimeStep(), } \Delta \tau_{F})$$

with
$$R_l = \prod_{\iota=0}^l r_\iota$$

FluidStep()

$$\begin{split} &\Delta \tau_F := \min_{l=0,\cdots,l_{\max}} \left(R_l \cdot \text{ StableFluidTimeStep}(l) \text{, } \Delta \tau_S \right) \\ &\Delta t_l := \Delta \tau_F / R_l \text{ for } l=0,\cdots,L \\ &\text{ReceiveInterfaceData}(\mathcal{I}, \left. \mathbf{u}^S \right|_{\mathcal{I}}) \\ &\text{AdvanceLevel}(0) \end{split}$$

SolidStep()

$$\begin{array}{l} \Delta \tau_{S} := \min\left(\mathcal{K} \cdot \mathcal{R}_{l_{c}} \cdot \text{ StableSolidTimeStep}() \text{, } \Delta \tau_{F} \right) \\ \text{Repeat } \mathcal{R}_{l_{c}} \text{ times} \\ t_{\text{end}} := t + \Delta \tau_{S} / \mathcal{R}_{l_{c}} \text{, } \Delta t := \Delta \tau_{S} / (\mathcal{K} \mathcal{R}_{l_{c}}) \end{array}$$

 Time step stays constant for R_{lc} steps, which correponds to one fluid step at level 0

with
$$R_l = \prod_{\iota=0}^l r_\iota$$

FluidStep()

 $\begin{array}{l} \Delta \tau_{F} := \min_{l=0,\cdots,l_{\max}} \left(R_{l} \cdot \text{ StableFluidTimeStep}(l) \,, \, \Delta \tau_{S} \right) \\ \Delta t_{l} := \Delta \tau_{F} / R_{l} \text{ for } l = 0, \cdots, L \\ \text{ReceiveInterfaceData}(\mathcal{I}, \left. \mathbf{u}^{S} \right|_{\mathcal{I}}) \\ \text{AdvanceLevel}(0) \end{array}$

SolidStep()

$$\begin{split} \Delta \tau_{S} &:= \min\left(K \cdot R_{l_{c}} \cdot \text{StableSolidTimeStep()}, \ \Delta \tau_{F}\right) \\ \text{Repeat } R_{l_{c}} \text{ times} \\ t_{\text{end}} &:= t + \Delta \tau_{S}/R_{l_{c}}, \ \Delta t := \Delta \tau_{S}/(KR_{l_{c}}) \\ \text{While } t < t_{\text{end}} \\ \text{SendInterfaceData}(\mathcal{I}(t), \ \vec{u}^{S}|_{\mathcal{I}}(t)) \\ \text{ReceiveInterfaceData}(p^{F}|_{\mathcal{I}}) \\ \text{UpdateSolid}(p^{F}|_{\mathcal{I}}, \ \Delta t) \\ t := t + \Delta t \\ \Delta t := \min(\text{StableSolidTimeStep()}, \ t_{\text{end}} - t) \end{split}$$

 Time step stays constant for R_{lc} steps, which correponds to one fluid step at level 0

with
$$R_l = \prod_{\iota=0}^l r_\iota$$

- Distribute both meshes seperately and copy necessary nodal values and geometry data to fluid nodes
- Setting of ghost cell values becomes strictly local operation

- Distribute both meshes seperately and copy necessary nodal values and geometry data to fluid nodes
- Setting of ghost cell values becomes strictly local operation
- Construct new nodal values strictly local on fluid nodes and transfer them back to solid nodes
- Only surface data is transfered

- Distribute both meshes seperately and copy necessary nodal values and geometry data to fluid nodes
- Setting of ghost cell values becomes strictly local operation
- Construct new nodal values strictly local on fluid nodes and transfer them back to solid nodes
- Only surface data is transfered
- Asynchronous communication ensures scalability
- Generic encapsulated implementation guarantees reusability

Eulerian/Lagrangian communication module

1. Put bounding boxes around each solid processors piece of the boundary and around each fluid processors grid

Eulerian/Lagrangian communication module

- Put bounding boxes around each solid processors piece of the boundary and around each fluid processors grid
- 2. Gather, exchange and broadcast of bounding box information

	*******	******	
*****	20222248		2022222
	20000000		0.00000
	00000000		10000000
2	00000000000		2011111111
			Common and
111111001111		20000000000	
		South States	
	*******	S COLORED S	******
0.00000000	IIIIII	80000000	IIIIIII
0.0000000000		0.0000000000000000000000000000000000000	
		N	

Eulerian/Lagrangian communication module

- Put bounding boxes around each solid processors piece of the boundary and around each fluid processors grid
- 2. Gather, exchange and broadcast of bounding box information
- 3. Optimal point-to-point communication pattern, non-blocking

			un nun
			1
	00000000		20100100
	22222222		1000000
for the second	00000000		
	anna ann ann ann ann ann ann ann ann an		anna ann
011111111000000000000000000000000000000			
0.0000000000000000000000000000000000000		0.000000000	
Sec. Contractor	******	Sector and a sector of the	
0.00000000	1111111	0.00000000	1111111
		S A S A S A S A S A S A S A S A S A S A	
+	******		******

Adaptive Lattice Boltzmann method with FSI

Coupling elements

Fluid-structure interaction

daptive Lattice Boltzmann method with FSI

References 0000

Lift-up of a spherical body

Cylindrical body hit by Mach 3 shockwave, 2D test case by [Falcovitz et al., 1997]

Schlieren plot of density

Refinement levels

vtf/amroc/clawpack/applications/euler/2d/SphereLiftOff

Proximal bodies in hypersonic flow

Flow modeled by Euler equations for a single polytropic gas with $p=(\gamma-1)\,
ho e$

 $\partial_t \rho + \partial_{x_n}(\rho u_n) = 0 , \quad \partial_t(\rho u_k) + \partial_{x_n}(\rho u_k u_n + \delta_{kn} p) = 0 , \quad \partial_t(\rho E) + \partial_{x_n}(u_n(\rho E + p)) = 0$

Numerical approximation with

 Finite volume flux-vector splitting scheme with MUSCL reconstruction, dimensional splitting

Proximal bodies in hypersonic flow

Flow modeled by Euler equations for a single polytropic gas with $p=(\gamma-1)\,
ho e$

 $\partial_t \rho + \partial_{x_n}(\rho u_n) = 0 , \quad \partial_t(\rho u_k) + \partial_{x_n}(\rho u_k u_n + \delta_{kn} p) = 0 , \quad \partial_t(\rho E) + \partial_{x_n}(u_n(\rho E + p)) = 0$

Numerical approximation with

- Finite volume flux-vector splitting scheme with MUSCL reconstruction, dimensional splitting
- ► Spherical bodies, force computation with overlaid lattitude-longitude mesh to obtain drag and lift coefficients $C_{D,L} = \frac{2F_{D,L}}{\rho v^2 \pi r^2}$

• inflow M = 10, C_D and C_L on secondary sphere, lateral position varied, no motion

References 0000

Verification and validation

Static force measurements, M = 10: [Laurence et al., 2007]

I _{max}	C _D	ΔC_D	CL	ΔC_L
1	1.264		-0.176	
2	1.442	0.178	-0.019	0.157
3	1.423	-0.019	0.052	0.071
4	1.408	-0.015	0.087	0.035

References 0000

Verification and validation

Static force measurements, M = 10: [Laurence et al., 2007]

I _{max}	C _D	ΔC_D	CL	ΔC_L
1	1.264		-0.176	
2	1.442	0.178	-0.019	0.157
3	1.423	-0.019	0.052	0.071
4	1.408	-0.015	0.087	0.035

 Comparison with experimental results: 3 additional levels, ~ 2000 h CPU

	Experimental	Computational
C_D	1.11 ± 0.08	1.01
C_L	0.29 ± 0.05	0.28

References 0000

Rigid body motion

Verification and validation

Static force measurements, M = 10: [Laurence et al., 2007]

I _{max}	C _D	ΔC_D	C_L	ΔC_L
1	1.264		-0.176	
2	1.442	0.178	-0.019	0.157
3	1.423	-0.019	0.052	0.071
4	1.408	-0.015	0.087	0.035

 Comparison with experimental results: 3 additional levels, ~ 2000 h CPU

	Experimental	Computational
C_D	1.11 ± 0.08	1.01
C_L	0.29 ± 0.05	0.28

Dynamic motion, M = 4:

- Base grid 150 × 125 × 90, two additional levels with r_{1,2} = 2
- 24,704 time steps, 36,808 h CPU on 256 cores IBM BG/P

[Laurence and Deiterding, 2011]

Fluid-structure interaction simulation

Rigid body motion

Schlieren graphics on refinement regions

vtf/amroc/clawpack/applications/euler/3d/Spheres

Treatment of thin structures

 Thin boundary structures or lower-dimensional shells require "thickening" to apply embedded boundary method

- Thin boundary structures or lower-dimensional shells require "thickening" to apply embedded boundary method
- \blacktriangleright Unsigned distance level set function φ

- Thin boundary structures or lower-dimensional shells require "thickening" to apply embedded boundary method
- \blacktriangleright Unsigned distance level set function φ
- Treat cells with 0 < φ < d as ghost fluid cells

- Thin boundary structures or lower-dimensional shells require "thickening" to apply embedded boundary method
- \blacktriangleright Unsigned distance level set function φ
- Treat cells with 0 < φ < d as ghost fluid cells</p>
- \blacktriangleright Leaving φ unmodified ensures correctness of $\nabla\varphi$

- Thin boundary structures or lower-dimensional shells require "thickening" to apply embedded boundary method
- \blacktriangleright Unsigned distance level set function φ
- ► Treat cells with 0 < φ < d as ghost fluid cells</p>

- \blacktriangleright Leaving φ unmodified ensures correctness of $\nabla\varphi$
- Use face normal in shell element to evaluate in $\Delta p = p^+ p^-$

Treatment of thin structures

- Thin boundary structures or lower-dimensional shells require "thickening" to apply embedded boundary method
- \blacktriangleright Unsigned distance level set function φ
- Treat cells with 0 < φ < d as ghost fluid cells</p>

- \blacktriangleright Leaving φ unmodified ensures correctness of $\nabla\varphi$
- ▶ Use face normal in shell element to evaluate in $\Delta p = p^+ p^-$
- Utilize finite difference solver using the beam equation

$$ho_s h rac{\partial^2 w}{\partial t^2} + E I rac{\partial^4 w}{\partial ar{x}^4} = p^F$$

to verify FSI algorithms

FSI verification by elastic vibration

- ▶ Thin steel plate (thickness $h = 1 \,\mathrm{mm}$, length 50 mm), clamped at lower end
- ▶ $\rho_s = 7600 \text{ kg/m}^3$, E = 220 GPa, $I = h^3/12$, $\nu = 0.3$
- Modeled with beam solver (101 points) and thin-shell FEM solver (325 triangles) by F. Cirak

FSI verification by elastic vibration

- Thin steel plate (thickness h = 1 mm, length 50 mm), clamped at lower end
- ▶ $\rho_s = 7600 \, \text{kg/m}^3$, $E = 220 \, \text{GPa}$, $I = h^3/12$, $\nu = 0.3$
- Modeled with beam solver (101 points) and thin-shell FEM solver (325 triangles) by F. Cirak
- \blacktriangleright Left: Coupling verification with constant instantenous loading by $\Delta p = 100 \, \rm kPa$

FSI verification by elastic vibration

- Thin steel plate (thickness h = 1 mm, length 50 mm), clamped at lower end
- $\rho_s = 7600 \, \text{kg/m}^3$, $E = 220 \, \text{GPa}$, $I = h^3/12$, $\nu = 0.3$
- Modeled with beam solver (101 points) and thin-shell FEM solver (325 triangles) by F. Cirak
- \blacktriangleright Left: Coupling verification with constant instantenous loading by $\Delta p = 100 \, \rm kPa$
- Right: FSI verification with Mach 1.21 shockwave in air ($\gamma = 1.4$)

Test case suggested by [Giordano et al., 2005]

Forward facing step geometry, fixed walls everywhere except at inflow

SAMR base mesh 320 × 64(×2), r_{1,2} = 2

Test case suggested by [Giordano et al., 2005]

Forward facing step geometry, fixed walls everywhere except at inflow

- SAMR base mesh 320 × 64(×2), r_{1,2} = 2
- Intel 3.4GHz Xeon dual processors, GB Ethernet interconnect
 - Beam-FSI: 12.25 h CPU on 3 fluid CPU + 1 solid CPU

vtf/fsi/beam-amroc/VibratingBeam - Fluid, Solid

► FEM-FSI: 322 h CPU on 14 fluid CPU + 2 solid CPU

Test case suggested by [Giordano et al., 2005]

Forward facing step geometry, fixed walls everywhere except at inflow

- SAMR base mesh 320 × 64(×2), r_{1,2} = 2
- Intel 3.4GHz Xeon dual processors, GB Ethernet interconnect
 - Beam-FSI: 12.25 h CPU on 3 fluid CPU + 1 solid CPU

vtf/fsi/beam-amroc/VibratingBeam - Fluid, Solid

► FEM-FSI: 322 h CPU on 14 fluid CPU + 2 solid CPU

Test case suggested by [Giordano et al., 2005]

Forward facing step geometry, fixed walls everywhere except at inflow

- SAMR base mesh 320 × 64(×2), r_{1,2} = 2
- Intel 3.4GHz Xeon dual processors, GB Ethernet interconnect
 - Beam-FSI: 12.25 h CPU on 3 fluid CPU + 1 solid CPU

vtf/fsi/beam-amroc/VibratingBeam - Fluid, Solid

► FEM-FSI: 322 h CPU on 14 fluid CPU + 2 solid CPU

Test case suggested by [Giordano et al., 2005]

Forward facing step geometry, fixed walls everywhere except at inflow

- SAMR base mesh 320 × 64(×2), r_{1,2} = 2
- Intel 3.4GHz Xeon dual processors, GB Ethernet interconnect
 - Beam-FSI: 12.25 h CPU on 3 fluid CPU + 1 solid CPU

vtf/fsi/beam-amroc/VibratingBeam-Fluid, Solid

► FEM-FSI: 322 h CPU on 14 fluid CPU + 2 solid CPU

0	

Detonation-driven plastic deformation

Chapman-Jouguet detonation in a tube filled with a stoichiometric ethylene and oxygen ($C_2H_4 + 3O_2$, 295 K) mixture. Euler equations with single exothermic reaction $A \longrightarrow B$

$$\begin{aligned} \partial_t \rho + \partial_{x_n}(\rho u_n) &= 0 , \quad \partial_t(\rho u_k) + \partial_{x_n}(\rho u_k u_n + \delta_{kn} p) = 0 , k = 1, \dots, d \\ \partial_t(\rho E) + \partial_{x_n}(u_n(\rho E + p)) &= 0 , \quad \partial_t(Y\rho) + \partial_{x_n}(Y\rho u_n) = \psi \end{aligned}$$

with

$$p = (\gamma - 1)(\rho E - \frac{1}{2}\rho u_n u_n - \rho Y q_0)$$
 and $\psi = -kY\rho \exp\left(\frac{-E_A\rho}{p}\right)$

Detonation-driven plastic deformation

Chapman-Jouguet detonation in a tube filled with a stoichiometric ethylene and oxygen ($C_2H_4 + 3O_2$, 295 K) mixture. Euler equations with single exothermic reaction $A \longrightarrow B$

$$\begin{aligned} \partial_t \rho + \partial_{x_n}(\rho u_n) &= 0 , \quad \partial_t(\rho u_k) + \partial_{x_n}(\rho u_k u_n + \delta_{kn} p) = 0 , k = 1, \dots, d \\ \partial_t(\rho E) + \partial_{x_n}(u_n(\rho E + p)) &= 0 , \quad \partial_t(Y\rho) + \partial_{x_n}(Y\rho u_n) = \psi \end{aligned}$$

with

$$p = (\gamma - 1)(
ho E - \frac{1}{2}
ho u_n u_n -
ho Y q_0)$$
 and $\psi = -kY
ho \exp\left(\frac{-E_A
ho}{p}\right)$

modeled with heuristic detonation model by [Mader, 1979]

$$\begin{split} &V:=\rho^{-1},\; V_0:=\rho_0^{-1},\; V_{\rm CJ}:=\rho_{\rm CJ}\\ &Y':=1-(V-V_0)/(V_{\rm CJ}-V_0)\\ &\text{If } 0\leq Y'\leq 1 \text{ and } Y>10^{-8} \text{ then}\\ &\text{If } Y< Y' \text{ and } Y'<0.9 \text{ then } Y':=0\\ &\text{If } Y'<0.99 \text{ then } p':=(1-Y')p_{\rm CJ}\\ &\text{ else } p':=p\\ &\rho_{\rm A}:=Y'\rho\\ &E:=p'/(\rho(\gamma-1))+Y'q_0+\frac{1}{2}u_nu_n \end{split}$$

Detonation-driven plastic deformation

Chapman-Jouguet detonation in a tube filled with a stoichiometric ethylene and oxygen ($C_2H_4 + 3O_2$, 295 K) mixture. Euler equations with single exothermic reaction $A \longrightarrow B$

$$\begin{aligned} \partial_t \rho + \partial_{x_n}(\rho u_n) &= 0 , \quad \partial_t(\rho u_k) + \partial_{x_n}(\rho u_k u_n + \delta_{kn} p) = 0 , k = 1, \dots, d \\ \partial_t(\rho E) + \partial_{x_n}(u_n(\rho E + p)) &= 0 , \quad \partial_t(Y\rho) + \partial_{x_n}(Y\rho u_n) = \psi \end{aligned}$$

with

$$p = (\gamma - 1)(
ho E - rac{1}{2}
ho u_n u_n -
ho Yq_0)$$
 and $\psi = -kY
ho \exp\left(rac{-E_A
ho}{p}
ight)$

modeled with heuristic detonation model by [Mader, 1979]

$$\begin{split} &V:=\rho^{-1}, \ V_0:=\rho_0^{-1}, \ V_{\rm CJ}:=\rho_{\rm CJ} \\ &Y':=1-(V-V_0)/(V_{\rm CJ}-V_0) \\ &\text{If } 0\leq Y'\leq 1 \text{ and } Y>10^{-8} \text{ then} \\ &\text{If } Y$$

- Fluid: VanLeer FVS
 - Detonation model with $\gamma = 1.24$, $p_{\rm CJ} = 3.3 \, {\rm MPa}$, $D_{\rm CJ} = 2376 \, {\rm m/s}$
 - AMR base level: $104 \times 80 \times 242$, $r_{1,2} = 2$, $r_3 = 4$
 - $\blacktriangleright~\sim 4\cdot 10^7$ cells instead of $7.9\cdot 10^9$ cells (uniform)
 - Tube and detonation fully refined
 - Thickening of 2D mesh: 0.81 mm on both sides (real 0.445 mm)

- Fluid: VanLeer FVS
 - Detonation model with $\gamma = 1.24$, $p_{\rm CJ} = 3.3 \, {\rm MPa}$, $D_{\rm CJ} = 2376 \, {\rm m/s}$
 - AMR base level: $104 \times 80 \times 242$, $r_{1,2} = 2$, $r_3 = 4$
 - $\sim 4 \cdot 10^7$ cells instead of $7.9 \cdot 10^9$ cells (uniform)
 - Tube and detonation fully refined
 - Thickening of 2D mesh: 0.81 mm on both sides (real 0.445 mm)
- Solid: thin-shell solver by F. Cirak
 - Aluminum, J2 plasticity with hardening, rate sensitivity, and thermal softening
 - Mesh: 8577 nodes, 17056 elements

- Fluid: VanLeer FVS
 - Detonation model with $\gamma = 1.24$, $p_{\rm CJ} = 3.3 \, {\rm MPa}$, $D_{\rm CJ} = 2376 \, {\rm m/s}$
 - AMR base level: $104 \times 80 \times 242$, $r_{1,2} = 2$, $r_3 = 4$
 - $\sim 4 \cdot 10^7$ cells instead of 7.9 $\cdot 10^9$ cells (uniform)
 - Tube and detonation fully refined
 - Thickening of 2D mesh: 0.81 mm on both sides (real 0.445 mm)
- Solid: thin-shell solver by F. Cirak
 - Aluminum, J2 plasticity with hardening, rate sensitivity, and thermal softening
 - Mesh: 8577 nodes, 17056 elements
- ▶ 16+2 nodes 2.2 GHz AMD Opteron quad processor, PCI-X 4x Infiniband network, \sim 4320 h CPU to t_{end} = 450 μ s

- Fluid: VanLeer FVS
 - Detonation model with $\gamma = 1.24$, $p_{\rm CJ} = 3.3 \, {\rm MPa}$, $D_{\rm CJ} = 2376 \, {\rm m/s}$
 - AMR base level: $104 \times 80 \times 242$, $r_{1,2} = 2$, $r_3 = 4$
 - $\blacktriangleright ~\sim 4 \cdot 10^7$ cells instead of $7.9 \cdot 10^9$ cells (uniform)
 - Tube and detonation fully refined
 - Thickening of 2D mesh: 0.81 mm on both sides (real 0.445 mm)
- Solid: thin-shell solver by F. Cirak
 - Aluminum, J2 plasticity with hardening, rate sensitivity, and thermal softening
 - Mesh: 8577 nodes, 17056 elements
- ▶ 16+2 nodes 2.2 GHz AMD Opteron quad processor, PCI-X 4x Infiniband network, \sim 4320 h CPU to $t_{end}=450\,\mu{\rm s}$

 $0.032 \mathrm{\,ms}$

 $0.030 \ \mathrm{ms}$

- Fluid: VanLeer FVS
 - Detonation model with $\gamma = 1.24$, $p_{\rm CJ} = 3.3 \, {\rm MPa}$, $D_{\rm CJ} = 2376 \, {\rm m/s}$
 - AMR base level: $104 \times 80 \times 242$, $r_{1,2} = 2$, $r_3 = 4$
 - $\sim 4 \cdot 10^7$ cells instead of $7.9 \cdot 10^9$ cells (uniform)
 - Tube and detonation fully refined
 - Thickening of 2D mesh: 0.81 mm on both sides (real 0.445 mm)
- Solid: thin-shell solver by F. Cirak
 - Aluminum, J2 plasticity with hardening, rate sensitivity, and thermal softening
 - Mesh: 8577 nodes, 17056 elements
- ▶ 16+2 nodes 2.2 GHz AMD Opteron quad processor, PCI-X 4x Infiniband network, \sim 4320 h CPU to $t_{end}=450\,\mu{\rm s}$

 $0.032~\mathrm{ms}$

 $0.030 \ \mathrm{ms}$

 $0.212~\mathrm{ms}$

 $0.210~\mathrm{ms}$

daptive Lattice Boltzmann method with FSI

References 0000

Tube with flaps: results

Fluid density and diplacement in ydirection in solid

daptive Lattice Boltzmann method with FSI

References 0000

Tube with flaps: results

Fluid density and diplacement in ydirection in solid Schlieren plot of fluid density on refinement levels

[Cirak et al., 2007] vtf/fsi/sfc-amroc/TubeCJBurnFlaps - Fluid, Solid

Adaptive Lattice Boltzmann method with FSI

Coupled fracture simulation

vtf/fsi/sfc-amroc/TubeCJBurnFrac - Fluid, Solid

Adaptive Lattice Boltzmann method with FSI

References 0000

Underwater explosion modeling

Volume fraction based two-component model with $\sum_{i=1}^m \alpha^i = \mathbf{1},$ that defines mixture quantities as

$$\rho = \sum_{i=1}^{m} \alpha^{i} \rho^{i} , \quad \rho u_{n} = \sum_{i=1}^{m} \alpha^{i} \rho^{i} u_{n}^{i} , \quad \rho e = \sum_{i=1}^{m} \alpha^{i} \rho^{i} e^{i}$$

Adaptive Lattice Boltzmann method with FSI

References 0000

Underwater explosion modeling

Volume fraction based two-component model with $\sum_{i=1}^m \alpha^i = \mathbf{1},$ that defines mixture quantities as

$$\rho = \sum_{i=1}^{m} \alpha^{i} \rho^{i} , \quad \rho u_{n} = \sum_{i=1}^{m} \alpha^{i} \rho^{i} u_{n}^{i} , \quad \rho e = \sum_{i=1}^{m} \alpha^{i} \rho^{i} e^{i}$$

Assuming total pressure $p = (\gamma - 1) \rho e - \gamma p_{\infty}$ and speed of sound $c = (\gamma (p + p_{\infty})/\rho)^{1/2}$ yields

$$rac{m{p}}{\gamma-1} = \sum_{i=1}^m rac{lpha^i m{p}^i}{\gamma^i-1} \ , \quad rac{\gamma m{p}_\infty}{\gamma-1} = \sum_{i=1}^m rac{lpha^i \gamma^i m{p}^i_\infty}{\gamma^i-1}$$

Adaptive Lattice Boltzmann method with FSI

References 0000

Underwater explosion modeling

Volume fraction based two-component model with $\sum_{i=1}^m \alpha^i = \mathbf{1}$, that defines mixture quantities as

$$\rho = \sum_{i=1}^{m} \alpha^{i} \rho^{i} , \quad \rho u_{n} = \sum_{i=1}^{m} \alpha^{i} \rho^{i} u_{n}^{i} , \quad \rho e = \sum_{i=1}^{m} \alpha^{i} \rho^{i} e^{i}$$

Assuming total pressure $p = (\gamma - 1) \rho e - \gamma p_{\infty}$ and speed of sound $c = (\gamma (p + p_{\infty})/\rho)^{1/2}$ yields

$$\frac{p}{\gamma-1} = \sum_{i=1}^{m} \frac{\alpha^{i} p^{i}}{\gamma^{i}-1} , \quad \frac{\gamma p_{\infty}}{\gamma-1} = \sum_{i=1}^{m} \frac{\alpha^{i} \gamma^{i} p_{\infty}^{i}}{\gamma^{i}-1}$$

and the overall set of equations [Shyue, 1998]

 $\partial_t \rho + \partial_{x_n}(\rho u_n) = 0 , \quad \partial_t(\rho u_k) + \partial_{x_n}(\rho u_k u_n + \delta_{k_n} \rho) = 0 , \quad \partial_t(\rho E) + \partial_{x_n}(u_n(\rho E + \rho)) = 0$

$$\frac{\partial}{\partial t}\left(\frac{1}{\gamma-1}\right) + u_n \frac{\partial}{\partial x_n}\left(\frac{1}{\gamma-1}\right) = 0, \quad \frac{\partial}{\partial t}\left(\frac{\gamma p_\infty}{\gamma-1}\right) + u_n \frac{\partial}{\partial x_n}\left(\frac{\gamma p_\infty}{\gamma-1}\right) = 0$$

Adaptive Lattice Boltzmann method with FSI

References 0000

Underwater explosion modeling

Volume fraction based two-component model with $\sum_{i=1}^{m} \alpha^{i} = 1$, that defines mixture quantities as

$$\rho = \sum_{i=1}^{m} \alpha^{i} \rho^{i} , \quad \rho u_{n} = \sum_{i=1}^{m} \alpha^{i} \rho^{i} u_{n}^{i} , \quad \rho e = \sum_{i=1}^{m} \alpha^{i} \rho^{i} e^{i}$$

Assuming total pressure $p = (\gamma - 1) \rho e - \gamma p_{\infty}$ and speed of sound $c = (\gamma (p + p_{\infty})/\rho)^{1/2}$ yields

$$\frac{p}{\gamma-1} = \sum_{i=1}^{m} \frac{\alpha^{i} p^{i}}{\gamma^{i}-1} , \quad \frac{\gamma p_{\infty}}{\gamma-1} = \sum_{i=1}^{m} \frac{\alpha^{i} \gamma^{i} p_{\infty}^{i}}{\gamma^{i}-1}$$

and the overall set of equations [Shyue, 1998]

 $\partial_t \rho + \partial_{x_n}(\rho u_n) = 0 , \quad \partial_t(\rho u_k) + \partial_{x_n}(\rho u_k u_n + \delta_{k_n} p) = 0 , \quad \partial_t(\rho E) + \partial_{x_n}(u_n(\rho E + p)) = 0$

$$\frac{\partial}{\partial t}\left(\frac{1}{\gamma-1}\right)+u_n\frac{\partial}{\partial x_n}\left(\frac{1}{\gamma-1}\right)=0\;,\quad \frac{\partial}{\partial t}\left(\frac{\gamma p_{\infty}}{\gamma-1}\right)+u_n\frac{\partial}{\partial x_n}\left(\frac{\gamma p_{\infty}}{\gamma-1}\right)=0$$

Oscillation free at contacts: [Abgrall and Karni, 2001][Shyue, 2006]

Adaptive Lattice Boltzmann method with FSI

References 0000

Approximate Riemann solver

Use HLLC approach because of robustness and positivity preservation

$$\mathbf{q}^{HLLC}(x_{1},t) = \begin{cases} \mathbf{q}_{L}, & x_{1} < s_{L} t, \\ \mathbf{q}_{L}^{\star}, & s_{L} t \leq x_{1} < s^{\star} t, \\ \mathbf{q}_{R}^{\star}, & s^{\star} t \leq x_{1} \leq s_{R} t, \\ \mathbf{q}_{R}, & x_{1} > s_{R} t, \end{cases} \qquad s_{L}^{t} \mathbf{q}_{L}^{\star} \mathbf{q}_{R}^{\star} \mathbf{s}_{R} t$$

Wave speed estimates [Davis, 1988] $s_L = \min\{u_{1,L} - c_L, u_{1,R} - c_R\}, s_R = \max\{u_{1,L} + c_L, u_{1,R} + c_R\}$

Adaptive Lattice Boltzmann method with FSI

References 0000

Approximate Riemann solver

Use HLLC approach because of robustness and positivity preservation

$$\mathbf{q}^{HLLC}(x_{1},t) = \begin{cases} \mathbf{q}_{L}, & x_{1} < s_{L}t, \\ \mathbf{q}_{L}^{\star}, & s_{L}t \leq x_{1} < s^{\star}t, \\ \mathbf{q}_{R}^{\star}, & s^{\star}t \leq x_{1} \leq s_{R}t, \\ \mathbf{q}_{R}, & x_{1} > s_{R}t, \end{cases} \qquad s_{L}^{t} \mathbf{q}_{L}^{\star} \mathbf{q}_{R}^{\star} \mathbf{s}_{R}t$$

Wave speed estimates [Davis, 1988] $s_L = \min\{u_{1,L} - c_L, u_{1,R} - c_R\}, s_R = \max\{u_{1,L} + c_L, u_{1,R} + c_R\}$ Unkown state [Toro et al., 1994]

$$s^{\star} = \frac{p_R - p_L + s_L u_{1,L}(s_L - u_{1,L}) - \rho_R u_{1,R}(s_R - u_{1,R})}{\rho_L(s_L - u_{1,L}) - \rho_R(s_R - u_{1,R})}$$

Adaptive Lattice Boltzmann method with FSI

References 0000

Approximate Riemann solver

Use HLLC approach because of robustness and positivity preservation

$$\mathbf{q}^{HLLC}(x_{1},t) = \begin{cases} \mathbf{q}_{L}, & x_{1} < s_{L} t, \\ \mathbf{q}_{L}^{\star}, & s_{L} t \leq x_{1} < s^{\star} t, \\ \mathbf{q}_{R}^{\star}, & s^{\star} t \leq x_{1} \leq s_{R} t, \\ \mathbf{q}_{R}, & x_{1} > s_{R} t, \end{cases} \qquad s_{L}^{t} \mathbf{q}_{L}^{\star} \qquad s_{L}^{s^{\star}} \mathbf{q}_{R}^{\star} \mathbf{s}_{R} t$$

Wave speed estimates [Davis, 1988] $\textbf{s}_L = \min\{u_{1,L} - c_L, u_{1,R} - c_R\},$ $\textbf{s}_R = \max\{u_{1,L} + c_L, u_{1,R} + c_R\}$ Unkown state [Toro et al., 1994]

$$s^{\star} = \frac{p_{R} - p_{L} + s_{L}u_{1,L}(s_{L} - u_{1,L}) - \rho_{R}u_{1,R}(s_{R} - u_{1,R})}{\rho_{L}(s_{L} - u_{1,L}) - \rho_{R}(s_{R} - u_{1,R})}$$
$$\mathbf{q}_{\tau}^{\star} = \left[\eta, \eta s^{\star}, \eta u_{2}, \eta \left[\frac{(\rho E)_{\tau}}{\rho_{\tau}} + (s^{\star} - u_{1,\tau})\left(s_{\tau} + \frac{p_{\tau}}{\rho_{\tau}(s_{\tau} - u_{1,\tau})}\right)\right], \frac{1}{\gamma_{\tau} - 1}, \frac{\gamma_{\tau} p_{\infty,\tau}}{\gamma_{\tau} - 1}\right]^{T}$$
$$\eta = \rho_{\tau} \frac{s_{\tau} - u_{1,\tau}}{s_{\tau} - s^{\star}}, \quad \tau = \{L, R\}$$

1

Adaptive Lattice Boltzmann method with FSI

References 0000

Approximate Riemann solver

Use HLLC approach because of robustness and positivity preservation

$$\mathbf{q}^{HLLC}(x_{1},t) = \begin{cases} \mathbf{q}_{L}, & x_{1} < s_{L} t, \\ \mathbf{q}_{L}^{\star}, & s_{L} t \leq x_{1} < s^{\star} t, \\ \mathbf{q}_{R}^{\star}, & s^{\star} t \leq x_{1} \leq s_{R} t, \\ \mathbf{q}_{R}, & x_{1} > s_{R} t, \end{cases} \qquad s_{L}^{t} \mathbf{q}_{L}^{\star} \qquad s_{L}^{s^{\star}} \mathbf{q}_{R}^{\star} \mathbf{s}_{R} t$$

Wave speed estimates [Davis, 1988] $s_L = \min\{u_{1,L} - c_L, u_{1,R} - c_R\}, s_R = \max\{u_{1,L} + c_L, u_{1,R} + c_R\}$ Unkown state [Toro et al., 1994]

$$s^{*} = \frac{\rho_{R} - \rho_{L} + s_{L} u_{1,L}(s_{L} - u_{1,L}) - \rho_{R} u_{1,R}(s_{R} - u_{1,R})}{\rho_{L}(s_{L} - u_{1,L}) - \rho_{R}(s_{R} - u_{1,R})}$$

$$\mathbf{q}_{\tau}^{\star} = \left[\eta, \eta \mathbf{s}^{\star}, \eta u_{2}, \eta \left[\frac{(\rho E)_{\tau}}{\rho_{\tau}} + (\mathbf{s}^{\star} - u_{1,\tau})\left(\mathbf{s}_{\tau} + \frac{p_{\tau}}{\rho_{\tau}(\mathbf{s}_{\tau} - u_{1,\tau})}\right)\right], \frac{1}{\gamma_{\tau} - 1}, \frac{\gamma_{\tau} p_{\infty,\tau}}{\gamma_{\tau} - 1}\right]^{\prime}$$
$$\eta = \rho_{\tau} \frac{\mathbf{s}_{\tau} - u_{1,\tau}}{\mathbf{s}_{\tau} - \mathbf{s}^{\star}}, \quad \tau = \{L, R\}$$

Evaluate waves as $\mathcal{W}_1 = \mathbf{q}_L^{\star} - \mathbf{q}_L$, $\mathcal{W}_2 = \mathbf{q}_R^{\star} - \mathbf{q}_L^{\star}$, $\mathcal{W}_3 = \mathbf{q}_R - \mathbf{q}_R^{\star}$ and $\lambda_1 = \mathbf{s}_L$, $\lambda_2 = \mathbf{s}^{\star}$, $\lambda_3 = \mathbf{s}_R$ to compute the fluctuations $\mathcal{A}^-\Delta = \sum_{\lambda_\nu < 0} \lambda_\nu \mathcal{W}_\nu$, $\mathcal{A}^+\Delta = \sum_{\lambda_\nu \geq 0} \lambda_\nu \mathcal{W}_\nu$ for $\nu = \{1, 2, 3\}$

Overall scheme: Wave Propagation method [Shyue, 2006]

Deformation from water hammer

Underwater explosion FSI simulations

• Air:
$$\gamma^{A} = 1.4$$
, $p_{\infty}^{A} = 0$, $\rho^{A} = 1.29 \, \text{kg/m}^{3}$

• Water:
$$\gamma^W = 7.415$$
, $p_{\infty}^W = 296.2 \,\mathrm{MPa}$, $\rho^W = 1027 \,\mathrm{kg/m^3}$
Underwater explosion FSI simulations

• Air:
$$\gamma^{A} = 1.4$$
, $p_{\infty}^{A} = 0$, $\rho^{A} = 1.29 \, \text{kg/m}^{3}$

- Water: $\gamma^W = 7.415$, $p_{\infty}^W = 296.2 \text{ MPa}$, $\rho^W = 1027 \text{ kg/m}^3$
- Cavitation modeling with pressure cut-off model at p = -1 MPa

Underwater explosion FSI simulations

• Air:
$$\gamma^A = 1.4$$
, $p^A_{\infty} = 0$, $\rho^A = 1.29 \, \text{kg/m}^3$

- $\blacktriangleright\,$ Water: $\gamma^W=$ 7.415, $p^W_\infty=$ 296.2 MPa, $\rho^W=$ 1027 $\rm kg/m^3$
- Cavitation modeling with pressure cut-off model at $p = -1 \, \text{MPa}$
- ▶ 3D simulation of deformation of air backed aluminum plate with r = 85 mm, h = 3 mm from underwater explosion
 - \blacktriangleright Water basin [Ashani and Ghamsari, 2008] $2\,m\times1.6\,m\times2\,m$
 - \blacktriangleright Explosion modeled as energy increase ($m_{\rm C4}\cdot 6.06\,{\rm MJ/kg})$ in sphere with r=5mm
 - ▶ $\rho_s = 2719 \text{ kg/m3}$, E = 69 GPa, $\nu = 0.33$, J2 plasticity model, yield stress $\sigma_{\gamma} = 217.6 \text{ MPa}$

Underwater explosion FSI simulations

• Air:
$$\gamma^A = 1.4$$
, $p^A_{\infty} = 0$, $\rho^A = 1.29 \, \text{kg/m}^3$

- \blacktriangleright Water: $\gamma^W=$ 7.415, $\rho_\infty^W=$ 296.2 MPa, $\rho^W=$ 1027 $\rm kg/m^3$
- Cavitation modeling with pressure cut-off model at $p = -1 \, \text{MPa}$
- ▶ 3D simulation of deformation of air backed aluminum plate with r = 85 mm, h = 3 mm from underwater explosion
 - \blacktriangleright Water basin [Ashani and Ghamsari, 2008] $2\,m\times1.6\,m\times2\,m$
 - \blacktriangleright Explosion modeled as energy increase ($m_{\rm C4}\cdot 6.06\,{\rm MJ/kg})$ in sphere with r=5mm
 - ► $\rho_s = 2719 \text{ kg/m3}$, E = 69 GPa, $\nu = 0.33$, J2 plasticity model, yield stress $\sigma_y = 217.6 \text{ MPa}$
- ▶ 3D simulation of copper plate r = 32 mm, h = 0.25 mm rupturing due to water hammer
 - Water-filled shocktube 1.3 m with driver piston [Deshpande et al., 2006]
 - Piston simulated with separate level set, see [Deiterding et al., 2009] for pressure wave
 - ▶ $\rho_s = 8920 \text{ kg/m3}$, E = 130 GPa, $\nu = 0.31$, J2 plasticity model, $\sigma_y = 38.5 \text{ MPa}$, cohesive interface model, max. tensile stress $\sigma_c = 525 \text{ MPa}$

Underwater explosion simulation

- AMR base grid $50 \times 40 \times 50$, $r_{1,2,3} = 2$, $r_4 = 4$, $l_c = 3$, highest level restricted to initial explosion center, 3rd and 4th level to plate vicinity
- Triangular mesh with 8148 elements
- Computations of 1296 coupled time steps to t_{end} = 1 ms
- 10+2 nodes 3.4 GHz Intel Xeon dual processor, ~ 130 h CPU

	Exp.	Sim.
$20{ m g}, d = 25{ m cm}$	28.83	25.88
$30\mathrm{g}, d=30\mathrm{cm}$	30.09	27.31

Underwater explosion simulation

- AMR base grid $50 \times 40 \times 50$, $r_{1,2,3} = 2$, $r_4 = 4$, $l_c = 3$, highest level restricted to initial explosion center, 3rd and 4th level to plate vicinity
- Triangular mesh with 8148 elements
- Computations of 1296 coupled time steps to t_{end} = 1 ms
- 10+2 nodes 3.4 GHz Intel Xeon dual processor, ~ 130 h CPU

Maximal deflection [mm]

	-	-
	Exp.	Sim.
$20{ m g}, d = 25{ m cm}$	28.83	25.88
$30\mathrm{g}, d=30\mathrm{cm}$	30.09	27.31

- AMR base mesh $374 \times 20 \times 20$, $r_{1,2} = 2$, $l_c = 2$, solid mesh: 8896 triangles
- ~ 1250 coupled time steps to $t_{end} = 1 \, {
 m ms}$
- $\blacktriangleright~$ 6+6 nodes 3.4 GHz Intel Xeon dual processor, $\sim 800\,{\rm h}$ CPU

$$p_0 = 64 \,\mathrm{MPa}$$

- AMR base mesh 374 \times 20 \times 20, $r_{1,2}$ = 2, l_c = 2, solid mesh: 8896 triangles
- ~ 1250 coupled time steps to $t_{end} = 1 \, {
 m ms}$
- $\blacktriangleright~$ 6+6 nodes 3.4 GHz Intel Xeon dual processor, $\sim 800\,{\rm h}$ CPU

- AMR base mesh 374 \times 20 \times 20, $r_{1,2} = 2$, $l_c = 2$, solid mesh: 8896 triangles
- $ightarrow \sim 1250$ coupled time steps to $t_{end} = 1\,\mathrm{ms}$
- $\blacktriangleright~$ 6+6 nodes 3.4 GHz Intel Xeon dual processor, $\sim 800\,{\rm h}$ CPU

- AMR base mesh 374 \times 20 \times 20, $r_{1,2} = 2$, $l_c = 2$, solid mesh: 8896 triangles
- $ightarrow \sim 1250$ coupled time steps to $t_{end} = 1\,\mathrm{ms}$
- $\blacktriangleright~$ 6+6 nodes 3.4 GHz Intel Xeon dual processor, $\sim 800\,{\rm h}$ CPU

 $p_0 = 173 \,\mathrm{MPa}$

- $\blacktriangleright~20\,m\times40\,m\times25\,m$ seven-story building similar to [Luccioni et al., 2004]
- Spherical energy deposition \equiv 400 kg TNT, $r = 0.5 \,\mathrm{m}$ in lobby of building
- ▶ SAMR: $80 \times 120 \times 90$ base level, three additional levels $r_{1,2} = 2$, $l_{fsi} = 1$, k = 1
- \blacktriangleright Simulation with ground: 1,070 coupled time steps, 830 h CPU ($\sim 25.9 \ h$ wall time) on 31+1 cores
- ~ 8,000,000 cells instead of 55,296,000 (uniform)
- 69,709 hexahedral elements and with material parameters. [Deiterding and Wood, 2013]

	$ ho_s [kg/m^3]$	σ_0 [MPa]	E_T [GPa]	β	K [GPa]	G [GPa]	$\overline{\epsilon}^{p}$	p _f [MPa]
Columns	2010	50	11.2	1.0	21.72	4.67	0.02	-30
Walls	2010	25	11.2	1.0	6.22	4.67	0.01	-15

- $\blacktriangleright~20\,m\times40\,m\times25\,m$ seven-story building similar to [Luccioni et al., 2004]
- Spherical energy deposition $\equiv 400 \text{ kg TNT}$, r = 0.5 m in lobby of building
- ▶ SAMR: $80 \times 120 \times 90$ base level, three additional levels $r_{1,2} = 2$, $l_{fsi} = 1$, k = 1
- \blacktriangleright Simulation with ground: 1,070 coupled time steps, 830 h CPU ($\sim 25.9 \ h$ wall time) on 31+1 cores
- ~ 8,000,000 cells instead of 55,296,000 (uniform)
- 69,709 hexahedral elements and with material parameters. [Deiterding and Wood, 2013]

	$ ho_s$ [kg/m ³]	σ_0 [MPa]	E_T [GPa]	β	K [GPa]	G [GPa]	$\overline{\epsilon}^{p}$	p _f [MPa]
Columns	2010	50	11.2	1.0	21.72	4.67	0.02	-30
Walls	2010	25	11.2	1.0	6.22	4.67	0.01	-15

- $\blacktriangleright~20\,m\times40\,m\times25\,m$ seven-story building similar to [Luccioni et al., 2004]
- Spherical energy deposition $\equiv 400 \text{ kg TNT}$, r = 0.5 m in lobby of building
- ▶ SAMR: $80 \times 120 \times 90$ base level, three additional levels $r_{1,2} = 2$, $l_{fsi} = 1$, k = 1
- \blacktriangleright Simulation with ground: 1,070 coupled time steps, 830 h CPU ($\sim 25.9 \ h$ wall time) on 31+1 cores
- ~ 8,000,000 cells instead of 55,296,000 (uniform)
- 69,709 hexahedral elements and with material parameters. [Deiterding and Wood, 2013]

	$ ho_s$ [kg/m ³]	σ_0 [MPa]	E_T [GPa]	β	K [GPa]	G [GPa]	$\overline{\epsilon}^{p}$	p _f [MPa]
Columns	2010	50	11.2	1.0	21.72	4.67	0.02	-30
Walls	2010	25	11.2	1.0	6.22	4.67	0.01	-15

- \triangleright 20 m \times 40 m \times 25 m seven-story building similar to [Luccioni et al., 2004]
- Spherical energy deposition $\equiv 400 \, \text{kg TNT}$, $r = 0.5 \,\mathrm{m}$ in lobby of building
- SAMR: 80 × 120 × 90 base level, three additional levels $r_{1,2} = 2$, $l_{fsi} = 1$, k = 1
- Simulation with ground: 1,070 coupled time steps, 830 h CPU (\sim 25.9 h wall time) on 31+1 cores
- \sim 8,000,000 cells instead of 55,296,000 (uniform)
- 69,709 hexahedral elements and with material parameters. [Deiterding and Wood, 2013]

	$ ho_s$ [kg/m ³]	σ_0 [MPa]	E_T [GPa]	β	K [GPa]	G [GPa]	$\overline{\epsilon}^{p}$	p _f [MPa]
Columns	2010	50	11.2	1.0	21.72	4.67	0.02	-30
Walls	2010	25	11.2	1.0	6.22	4.67	0.01	-15

Columns	2010	50	11.2	1.0	21.72	4.67	0.
Walls	2010	25	11.2	1.0	6.22	4.67	0.

- $\blacktriangleright~20\,m\times40\,m\times25\,m$ seven-story building similar to [Luccioni et al., 2004]
- Spherical energy deposition $\equiv 400 \text{ kg TNT}$, r = 0.5 m in lobby of building
- ▶ SAMR: $80 \times 120 \times 90$ base level, three additional levels $r_{1,2} = 2$, $l_{fsi} = 1$, k = 1
- \blacktriangleright Simulation with ground: 1,070 coupled time steps, 830 h CPU ($\sim 25.9 \ h$ wall time) on 31+1 cores
- ~ 8,000,000 cells instead of 55,296,000 (uniform)
- 69,709 hexahedral elements and with material parameters. [Deiterding and Wood, 2013]

	$ ho_s$ [kg/m ³]	σ_0 [MPa]	E_T [GPa]	β	K [GPa]	G [GPa]	$\overline{\epsilon}^{p}$	p _f [MPa]
Columns	2010	50	11.2	1.0	21.72	4.67	0.02	-30
Walls	2010	25	11.2	1.0	6.22	4.67	0.01	-15

- $\blacktriangleright~20\,m\times40\,m\times25\,m$ seven-story building similar to [Luccioni et al., 2004]
- Spherical energy deposition $\equiv 400 \text{ kg TNT}$, r = 0.5 m in lobby of building
- ▶ SAMR: $80 \times 120 \times 90$ base level, three additional levels $r_{1,2} = 2$, $l_{fsi} = 1$, k = 1
- \blacktriangleright Simulation with ground: 1,070 coupled time steps, 830 h CPU ($\sim 25.9 \ h$ wall time) on 31+1 cores
- ~ 8,000,000 cells instead of 55,296,000 (uniform)
- 69,709 hexahedral elements and with material parameters. [Deiterding and Wood, 2013]

	$ ho_s$ [kg/m ³]	σ_0 [MPa]	E_T [GPa]	β	K [GPa]	G [GPa]	$\overline{\epsilon}^{p}$	p _f [MPa]
Columns	2010	50	11.2	1.0	21.72	4.67	0.02	-30
Walls	2010	25	11.2	1.0	6.22	4.67	0.01	-15

- $\blacktriangleright~20\,m\times40\,m\times25\,m$ seven-story building similar to [Luccioni et al., 2004]
- Spherical energy deposition $\equiv 400 \text{ kg TNT}$, r = 0.5 m in lobby of building
- ▶ SAMR: $80 \times 120 \times 90$ base level, three additional levels $r_{1,2} = 2$, $l_{fsi} = 1$, k = 1
- \blacktriangleright Simulation with ground: 1,070 coupled time steps, 830 h CPU ($\sim 25.9 \ h$ wall time) on 31+1 cores
- ~ 8,000,000 cells instead of 55,296,000 (uniform)
- 69,709 hexahedral elements and with material parameters. [Deiterding and Wood, 2013]

	$ ho_s$ [kg/m ³]	σ_0 [MPa]	E_T [GPa]	β	K [GPa]	G [GPa]	$\overline{\epsilon}^{p}$	p _f [MPa]
Columns	2010	50	11.2	1.0	21.72	4.67	0.02	-30
Walls	2010	25	11.2	1.0	6.22	4.67	0.01	-15

- \triangleright 20 m \times 40 m \times 25 m seven-story building similar to [Luccioni et al., 2004]
- Spherical energy deposition $\equiv 400 \, \text{kg TNT}$, $r = 0.5 \,\mathrm{m}$ in lobby of building
- SAMR: 80 × 120 × 90 base level, three additional levels $r_{1,2} = 2$, $l_{fsi} = 1$, k = 1
- Simulation with ground: 1.070 coupled time steps, 830 h CPU (~ 25.9 h wall time) on 31+1 cores
- \sim 8,000,000 cells instead of 55,296,000 (uniform)
- 69,709 hexahedral elements and with material parameters. [Deiterding and Wood, 2013]

	$ ho_s~[kg/m^3]$	σ_0 [MPa]	E_T [GPa]	β	K [GPa]	G [GPa]	$\overline{\epsilon}^{p}$	p _f [MPa]
Columns	2010	50	11.2	1.0	21.72	4.67	0.02	-30
Walls	2010	25	11.2	1.0	6.22	4.67	0.01	-15

$ ho_s [kg/m^3]$	σ_0 [MPa]	E_T [GPa]	β	K [GPa]	G [GPa]	$\overline{\epsilon}^{p}$	p_f [MPa
 2010	F0	11 0	1 0	01 70	467	0 00	20

- $\blacktriangleright~20\,m\times40\,m\times25\,m$ seven-story building similar to [Luccioni et al., 2004]
- Spherical energy deposition $\equiv 400 \text{ kg TNT}$, r = 0.5 m in lobby of building
- ▶ SAMR: $80 \times 120 \times 90$ base level, three additional levels $r_{1,2} = 2$, $l_{fsi} = 1$, k = 1
- \blacktriangleright Simulation with ground: 1,070 coupled time steps, 830 h CPU ($\sim 25.9 \ h$ wall time) on 31+1 cores
- ~ 8,000,000 cells instead of 55,296,000 (uniform)
- 69,709 hexahedral elements and with material parameters. [Deiterding and Wood, 2013]

	$ ho_s$ [kg/m ³]	σ_0 [MPa]	E_T [GPa]	β	K [GPa]	G [GPa]	$\overline{\epsilon}^{p}$	p _f [MPa]
Columns	2010	50	11.2	1.0	21.72	4.67	0.02	-30
Walls	2010	25	11.2	1.0	6.22	4.67	0.01	-15

- $\blacktriangleright~20\,m\times40\,m\times25\,m$ seven-story building similar to [Luccioni et al., 2004]
- Spherical energy deposition $\equiv 400 \text{ kg TNT}$, r = 0.5 m in lobby of building
- ▶ SAMR: $80 \times 120 \times 90$ base level, three additional levels $r_{1,2} = 2$, $l_{fsi} = 1$, k = 1
- \blacktriangleright Simulation with ground: 1,070 coupled time steps, 830 h CPU ($\sim 25.9 \ h$ wall time) on 31+1 cores
- ~ 8,000,000 cells instead of 55,296,000 (uniform)
- 69,709 hexahedral elements and with material parameters. [Deiterding and Wood, 2013]

	$ ho_s$ [kg/m ³]	σ_0 [MPa]	E_T [GPa]	β	K [GPa]	G [GPa]	$\overline{\epsilon}^{p}$	p _f [MPa]
Columns	2010	50	11.2	1.0	21.72	4.67	0.02	-30
Walls	2010	25	11.2	1.0	6.22	4.67	0.01	-15

- $\blacktriangleright~20\,m\times40\,m\times25\,m$ seven-story building similar to [Luccioni et al., 2004]
- Spherical energy deposition $\equiv 400 \text{ kg TNT}$, r = 0.5 m in lobby of building
- ▶ SAMR: $80 \times 120 \times 90$ base level, three additional levels $r_{1,2} = 2$, $l_{fsi} = 1$, k = 1
- \blacktriangleright Simulation with ground: 1,070 coupled time steps, 830 h CPU ($\sim 25.9 \ h$ wall time) on 31+1 cores
- ~ 8,000,000 cells instead of 55,296,000 (uniform)
- 69,709 hexahedral elements and with material parameters. [Deiterding and Wood, 2013]

	$ ho_s$ [kg/m ³]	σ_0 [MPa]	E_T [GPa]	β	K [GPa]	G [GPa]	$\overline{\epsilon}^{p}$	p _f [MPa]
Columns	2010	50	11.2	1.0	21.72	4.67	0.02	-30
Walls	2010	25	11.2	1.0	6.22	4.67	0.01	-15

- $\blacktriangleright~20\,m\times40\,m\times25\,m$ seven-story building similar to [Luccioni et al., 2004]
- Spherical energy deposition $\equiv 400 \text{ kg TNT}$, r = 0.5 m in lobby of building
- ▶ SAMR: $80 \times 120 \times 90$ base level, three additional levels $r_{1,2} = 2$, $l_{fsi} = 1$, k = 1
- \blacktriangleright Simulation with ground: 1,070 coupled time steps, 830 h CPU ($\sim 25.9 \ h$ wall time) on 31+1 cores
- ~ 8,000,000 cells instead of 55,296,000 (uniform)
- 69,709 hexahedral elements and with material parameters. [Deiterding and Wood, 2013]

	$ ho_s$ [kg/m ³]	σ_0 [MPa]	E_T [GPa]	β	K [GPa]	G [GPa]	$\overline{\epsilon}^{p}$	p _f [MPa]
Columns	2010	50	11.2	1.0	21.72	4.67	0.02	-30
Walls	2010	25	11.2	1.0	6.22	4.67	0.01	-15

- $\blacktriangleright~20\,m\times40\,m\times25\,m$ seven-story building similar to [Luccioni et al., 2004]
- Spherical energy deposition \equiv 400 kg TNT, $r = 0.5 \,\mathrm{m}$ in lobby of building
- SAMR: $80 \times 120 \times 90$ base level, three additional levels $r_{1,2} = 2$, $l_{\text{fsi}} = 1$, k = 1
- \blacktriangleright Simulation with ground: 1,070 coupled time steps, 830 h CPU ($\sim 25.9 \ h$ wall time) on 31+1 cores
- ~ 8,000,000 cells instead of 55,296,000 (uniform)
- 69,709 hexahedral elements and with material parameters. [Deiterding and Wood, 2013]

	$ ho_s [kg/m^3]$	σ_0 [MPa]	E_T [GPa]	β	K [GPa]	G [GPa]	$\overline{\epsilon}^{p}$	р _f [MPa]
Columns	2010	50	11.2	1.0	21.72	4.67	0.02	-30
Walls	2010	25	11.2	1.0	6.22	4.67	0.01	-15

- $\blacktriangleright~20\,m\times40\,m\times25\,m$ seven-story building similar to [Luccioni et al., 2004]
- Spherical energy deposition \equiv 400 kg TNT, $r = 0.5 \,\mathrm{m}$ in lobby of building
- SAMR: $80 \times 120 \times 90$ base level, three additional levels $r_{1,2} = 2$, $l_{\text{fsi}} = 1$, k = 1
- \blacktriangleright Simulation with ground: 1,070 coupled time steps, 830 h CPU ($\sim 25.9 \ h$ wall time) on 31+1 cores
- ~ 8,000,000 cells instead of 55,296,000 (uniform)
- 69,709 hexahedral elements and with material parameters. [Deiterding and Wood, 2013]

	$ ho_s$ [kg/m ³]	σ_0 [MPa]	E_T [GPa]	β	K [GPa]	G [GPa]	$\overline{\epsilon}^{p}$	p _f [MPa]
Columns	2010	50	11.2	1.0	21.72	4.67	0.02	-30
Walls	2010	25	11.2	1.0	6.22	4.67	0.01	-15

Adaptive Lattice Boltzmann method with FSI

References 0000

Real-world example

Adaptive Lattice Boltzmann method with FSI

References 0000

Real-world example

Adaptive Lattice Boltzmann method with FSI

References 0000

Real-world example

Adaptive Lattice Boltzmann method with FSI

References 0000

Real-world example

Adaptive Lattice Boltzmann method with FSI

References 0000

Real-world example

Adaptive Lattice Boltzmann method with FSI

References 0000

Real-world example

Adaptive Lattice Boltzmann method with FSI

References 0000

Real-world example

Adaptive Lattice Boltzmann method with FSI

References 0000

Real-world example

Adaptive Lattice Boltzmann method with FSI

References 0000

Real-world example

Adaptive Lattice Boltzmann method with FSI

References 0000

Real-world example

Adaptive Lattice Boltzmann method with FSI

References 0000

Real-world example

Adaptive Lattice Boltzmann method with FSI

References 0000

Real-world example

Adaptive Lattice Boltzmann method with FSI

References 0000

Real-world example

Adaptive Lattice Boltzmann method with FSI

References 0000

Real-world example

Blast explosion in a multistory building - II

 $t = 48.7 \,\mathrm{ms}$

Adaptive Lattice Boltzmann method with FSI

References 0000

Lattice Boltzmann method

Boltzmann equation: $\partial_t f + \mathbf{u} \cdot \nabla f = \omega (f^{eq} - f)$ Two-dimensional LBM for weakly compressible flows Formulated on FV grids! (\rightarrow boundary conditions!)

$$\rho(\mathbf{x},t) = \sum_{\alpha=0}^{8} f_{\alpha}(\mathbf{x},t), \quad \rho(\mathbf{x},t)u_{i}(\mathbf{x},t) = \sum_{\alpha=0}^{8} \mathbf{e}_{\alpha i}f_{\alpha}(\mathbf{x},t)$$

Adaptive Lattice Boltzmann method with FSI

References 0000

Lattice Boltzmann method

Boltzmann equation: $\partial_t f + \mathbf{u} \cdot \nabla f = \omega (f^{eq} - f)$ Two-dimensional LBM for weakly compressible flows Formulated on FV grids! (\rightarrow boundary conditions!)

$$\rho(\mathbf{x},t) = \sum_{\alpha=0}^{8} f_{\alpha}(\mathbf{x},t), \quad \rho(\mathbf{x},t)u_{i}(\mathbf{x},t) = \sum_{\alpha=0}^{8} \mathbf{e}_{\alpha i}f_{\alpha}(\mathbf{x},t)$$

1.) Transport step \mathcal{T} : $\tilde{f}_{\alpha}(\mathbf{x} + \mathbf{e}_{\alpha}\Delta t, t + \Delta t) = f_{\alpha}(\mathbf{x}, t)$

Adaptive Lattice Boltzmann method with FSI

References 0000

Lattice Boltzmann method

Boltzmann equation: $\partial_t f + \mathbf{u} \cdot \nabla f = \omega (f^{eq} - f)$ Two-dimensional LBM for weakly compressible flows Formulated on FV grids! (\rightarrow boundary conditions!)

$$\rho(\mathbf{x},t) = \sum_{\alpha=0}^{8} f_{\alpha}(\mathbf{x},t), \quad \rho(\mathbf{x},t)u_{i}(\mathbf{x},t) = \sum_{\alpha=0}^{8} \mathbf{e}_{\alpha i}f_{\alpha}(\mathbf{x},t)$$

1.) Transport step T: $\tilde{f}_{\alpha}(\mathbf{x} + \mathbf{e}_{\alpha}\Delta t, t + \Delta t) = f_{\alpha}(\mathbf{x}, t)$ 2.) Collision step C:

$$f_lpha(\cdot,t+\Delta t)= ilde{f}_lpha(\cdot,t+\Delta t)+\omega\Delta t\left(ilde{f}^{eq}_lpha(\cdot,t+\Delta t)- ilde{f}_lpha(\cdot,t+\Delta t)
ight)$$

Adaptive Lattice Boltzmann method with FSI

References 0000

Lattice Boltzmann method

Boltzmann equation: $\partial_t f + \mathbf{u} \cdot \nabla f = \omega (f^{eq} - f)$ Two-dimensional LBM for weakly compressible flows Formulated on FV grids! (\rightarrow boundary conditions!)

$$\rho(\mathbf{x},t) = \sum_{\alpha=0}^{8} f_{\alpha}(\mathbf{x},t), \quad \rho(\mathbf{x},t)u_{i}(\mathbf{x},t) = \sum_{\alpha=0}^{8} \mathbf{e}_{\alpha i}f_{\alpha}(\mathbf{x},t)$$

1.) Transport step T: $\tilde{f}_{\alpha}(\mathbf{x} + \mathbf{e}_{\alpha}\Delta t, t + \Delta t) = f_{\alpha}(\mathbf{x}, t)$ 2.) Collision step C:

$$f_lpha(\cdot,t+\Delta t)= ilde{f}_lpha(\cdot,t+\Delta t)+\omega\Delta t\left(ilde{f}^{eq}_lpha(\cdot,t+\Delta t)- ilde{f}_lpha(\cdot,t+\Delta t)
ight)$$

with equilibrium function

$$f_{\alpha}^{eq}(\rho, \mathbf{u}) = \rho t_{\alpha} \left[1 + \frac{\mathbf{e}_{\alpha}\mathbf{u}}{c_{s}^{2}} + \frac{(\mathbf{e}_{\alpha}\mathbf{u})^{2}}{2c_{s}^{4}} - \frac{\mathbf{u}^{2}}{2c_{s}^{4}} \right]$$

$$\left\{ 4, 1, 1, 1, \frac{1}{4}, \frac{1}{4}, 1, \frac{1}{4}, \frac{1}{4} \right\}$$

mit $t_{\alpha} = \frac{1}{\alpha}$

Adaptive Lattice Boltzmann method with FSI

Lattice Boltzmann method

Boltzmann equation: $\partial_t f + \mathbf{u} \cdot \nabla f = \omega(f^{eq} - f)$ Two-dimensional LBM for weakly compressible flows Formulated on FV grids! (\rightarrow boundary conditions!)

$$\rho(\mathbf{x},t) = \sum_{\alpha=0}^{8} f_{\alpha}(\mathbf{x},t), \quad \rho(\mathbf{x},t)u_{i}(\mathbf{x},t) = \sum_{\alpha=0}^{8} \mathbf{e}_{\alpha i}f_{\alpha}(\mathbf{x},t)$$

1.) Transport step T: $\tilde{f}_{\alpha}(\mathbf{x} + \mathbf{e}_{\alpha}\Delta t, t + \Delta t) = f_{\alpha}(\mathbf{x}, t)$ 2.) Collision step C:

$$f_lpha(\cdot,t+\Delta t)= ilde{f}_lpha(\cdot,t+\Delta t)+\omega\Delta t\left(ilde{f}^{eq}_lpha(\cdot,t+\Delta t)- ilde{f}_lpha(\cdot,t+\Delta t)
ight)$$

with equilibrium function

$$f_{\alpha}^{eq}(\rho,\mathbf{u}) = \rho t_{\alpha} \left[1 + \frac{\mathbf{e}_{\alpha}\mathbf{u}}{c_s^2} + \frac{(\mathbf{e}_{\alpha}\mathbf{u})^2}{2c_s^4} - \frac{\mathbf{u}^2}{2c_s^4} \right]$$

mit $t_{\alpha} = \frac{1}{9} \left\{ 4, 1, 1, 1, \frac{1}{4}, \frac{1}{4}, 1, \frac{1}{4}, \frac{1}{4} \right\}$ Lattice speed of sound: $c_s = \frac{1}{\sqrt{3}} \frac{\Delta x}{\Delta t}$, pressure $p = \sum_{\alpha} f_{\alpha}^{eq} c_s^2 = \rho c_s^2 = \rho RT$ Collision frequency vs. kinematic viscosity: $\omega = \frac{c_s^2}{\nu + \Delta t c_s^2/2}$ cf. [Hähnel, 2004]

1. Complete update on coarse grid:
$$f_{\alpha}^{C,n+1} := CT(f_{\alpha}^{C,n})$$

- 1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := CT(f_{\alpha}^{C,n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.

- 1. Complete update on coarse grid: $f_{\alpha}^{\mathcal{C},n+1} := \mathcal{CT}(f_{\alpha}^{\mathcal{C},n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.

$$f^{f,n}_{\alpha,in}$$

- 1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := CT(f_{\alpha}^{C,n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.
- 3. $\tilde{f}^{f,n}_{\alpha} := \mathcal{T}(f^{f,n}_{\alpha})$ on whole fine mesh. $f^{f,n+1/2}_{\alpha} := \mathcal{C}(\tilde{f}^{f,n}_{\alpha})$ in interior.

$$\tilde{f}^{f,n}_{lpha,in}$$

- 1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := CT(f_{\alpha}^{C,n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.
- 3. $\tilde{f}_{\alpha}^{f,n} := \mathcal{T}(f_{\alpha}^{f,n})$ on whole fine mesh. $f_{\alpha}^{f,n+1/2} := \mathcal{C}(\tilde{f}_{\alpha}^{f,n})$ in interior.
- 4. $\tilde{f}^{f,n+1/2}_{\alpha} := \mathcal{T}(f^{f,n+1/2}_{\alpha})$ on whole fine mesh. $f^{f,n+1}_{\alpha} := \mathcal{C}(\tilde{f}^{f,n+1/2}_{\alpha})$ in interior.

$${\widetilde f}^{f,n+1/2}_{lpha,{\it in}}$$

- 1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := CT(f_{\alpha}^{C,n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.
- 3. $\tilde{f}_{\alpha}^{f,n} := \mathcal{T}(f_{\alpha}^{f,n})$ on whole fine mesh. $f_{\alpha}^{f,n+1/2} := \mathcal{C}(\tilde{f}_{\alpha}^{f,n})$ in interior.
- 4. $\tilde{f}^{f,n+1/2}_{\alpha} := \mathcal{T}(f^{f,n+1/2}_{\alpha})$ on whole fine mesh. $f^{f,n+1}_{\alpha} := \mathcal{C}(\tilde{f}^{f,n+1/2}_{\alpha})$ in interior.

				\mathbf{N}	\mathbf{N}	
				1	\mathbf{N}	
				₩	₩	
				₩	₩	
7	1	¥	¥	米	兼	
7	1	¥	¥	来	来	

 $\tilde{f}^{f,n+1/2}_{\alpha, \textit{in}}$

 $f_{\alpha,out}^{f,n}$

- 1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := CT(f_{\alpha}^{C,n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.
- 3. $\tilde{f}_{\alpha}^{f,n} := \mathcal{T}(f_{\alpha}^{f,n})$ on whole fine mesh. $f_{\alpha}^{f,n+1/2} := \mathcal{C}(\tilde{f}_{\alpha}^{f,n})$ in interior.
- 4. $\tilde{f}^{f,n+1/2}_{\alpha} := \mathcal{T}(f^{f,n+1/2}_{\alpha})$ on whole fine mesh. $f^{f,n+1}_{\alpha} := \mathcal{C}(\tilde{f}^{f,n+1/2}_{\alpha})$ in interior.

				×	X	
				≯	₩	
				₩	¥	
				₩	¥	
X	₩	¥	¥	*	¥	
X	¥	¥	¥	*	1	

 $\tilde{f}^{f,n+1/2}_{lpha,in}$

- 1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := CT(f_{\alpha}^{C,n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.
- 3. $\tilde{f}_{\alpha}^{f,n} := \mathcal{T}(f_{\alpha}^{f,n})$ on whole fine mesh. $f_{\alpha}^{f,n+1/2} := \mathcal{C}(\tilde{f}_{\alpha}^{f,n})$ in interior.
- 4. $\tilde{f}^{f,n+1/2}_{\alpha} := \mathcal{T}(f^{f,n+1/2}_{\alpha})$ on whole fine mesh. $f^{f,n+1}_{\alpha} := \mathcal{C}(\tilde{f}^{f,n+1/2}_{\alpha})$ in interior.

 $\tilde{f}^{f,n+1/2}_{lpha,out}$

- 1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := CT(f_{\alpha}^{C,n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.
- 3. $\tilde{f}^{f,n}_{\alpha} := \mathcal{T}(f^{f,n}_{\alpha})$ on whole fine mesh. $f^{f,n+1/2}_{\alpha} := \mathcal{C}(\tilde{f}^{f,n}_{\alpha})$ in interior.
- 4. $\tilde{f}^{f,n+1/2}_{\alpha} := \mathcal{T}(f^{f,n+1/2}_{\alpha})$ on whole fine mesh. $f^{f,n+1}_{\alpha} := \mathcal{C}(\tilde{f}^{f,n+1/2}_{\alpha})$ in interior.

						1	1
						1	>
				₩	₩	≯	₩
				₩	₩	≯	¥
		<u>*</u>	*	釆	釆	₩	ょ
		×	¥	米	米	훆	凗
1	1	¥	¥	¥	¥	7	1
1	1	¥	¥	¥	¥	7	1

$$\tilde{\textit{f}}_{\alpha,out}^{f,n+1/2}, \tilde{\textit{f}}_{\alpha,in}^{f,n+1/2}$$

- 1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := CT(f_{\alpha}^{C,n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.
- 3. $\tilde{f}_{\alpha}^{f,n} := \mathcal{T}(f_{\alpha}^{f,n})$ on whole fine mesh. $f_{\alpha}^{f,n+1/2} := \mathcal{C}(\tilde{f}_{\alpha}^{f,n})$ in interior.
- 4. $\tilde{f}^{f,n+1/2}_{\alpha} := \mathcal{T}(f^{f,n+1/2}_{\alpha})$ on whole fine mesh. $f^{f,n+1}_{\alpha} := \mathcal{C}(\tilde{f}^{f,n+1/2}_{\alpha})$ in interior.

5. Average
$$\tilde{f}_{\alpha,out}^{f,n+1/2}$$
 (inner halo layer), $\tilde{f}_{\alpha,out}^{f,n}$ (outer halo layer) to obtain $\tilde{f}_{\alpha,out}^{C,n}$.

- 1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := CT(f_{\alpha}^{C,n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.
- 3. $\tilde{f}_{\alpha}^{f,n} := \mathcal{T}(f_{\alpha}^{f,n})$ on whole fine mesh. $f_{\alpha}^{f,n+1/2} := \mathcal{C}(\tilde{f}_{\alpha}^{f,n})$ in interior.
- 4. $\tilde{f}^{f,n+1/2}_{\alpha} := \mathcal{T}(f^{f,n+1/2}_{\alpha})$ on whole fine mesh. $f^{f,n+1}_{\alpha} := \mathcal{C}(\tilde{f}^{f,n+1/2}_{\alpha})$ in interior.

5. Average $\tilde{f}_{\alpha,out}^{f,n+1/2}$ (inner halo layer), $\tilde{f}_{\alpha,out}^{f,n}$ (outer halo layer) to obtain $\tilde{f}_{\alpha,out}^{C,n}$.

- 1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := CT(f_{\alpha}^{C,n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.
- 3. $\tilde{f}_{\alpha}^{f,n} := \mathcal{T}(f_{\alpha}^{f,n})$ on whole fine mesh. $f_{\alpha}^{f,n+1/2} := \mathcal{C}(\tilde{f}_{\alpha}^{f,n})$ in interior.
- 4. $\tilde{f}^{f,n+1/2}_{\alpha} := \mathcal{T}(f^{f,n+1/2}_{\alpha})$ on whole fine mesh. $f^{f,n+1}_{\alpha} := \mathcal{C}(\tilde{f}^{f,n+1/2}_{\alpha})$ in interior.

- 5. Average $\tilde{f}_{\alpha,out}^{f,n+1/2}$ (inner halo layer), $\tilde{f}_{\alpha,out}^{f,n}$ (outer halo layer) to obtain $\tilde{f}_{\alpha,out}^{C,n}$.
- 6. Revert transport into halos: $\overline{f}_{\alpha,out}^{C,n} := \mathcal{T}^{-1}(\widetilde{f}_{\alpha,out}^{C,n})$

- 1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := CT(f_{\alpha}^{C,n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.
- 3. $\tilde{f}_{\alpha}^{f,n} := \mathcal{T}(f_{\alpha}^{f,n})$ on whole fine mesh. $f_{\alpha}^{f,n+1/2} := \mathcal{C}(\tilde{f}_{\alpha}^{f,n})$ in interior.
- 4. $\tilde{f}^{f,n+1/2}_{\alpha} := \mathcal{T}(f^{f,n+1/2}_{\alpha})$ on whole fine mesh. $f^{f,n+1}_{\alpha} := \mathcal{C}(\tilde{f}^{f,n+1/2}_{\alpha})$ in interior.

- 5. Average $\tilde{f}_{\alpha,out}^{f,n+1/2}$ (inner halo layer), $\tilde{f}_{\alpha,out}^{f,n}$ (outer halo layer) to obtain $\tilde{f}_{\alpha,out}^{C,n}$.
- 6. Revert transport into halos: $\bar{f}_{\alpha,out}^{C,n} := \mathcal{T}^{-1}(\tilde{f}_{\alpha,out}^{C,n})$
- 7. Parallel synchronization of $f_{\alpha}^{C,n}, \overline{f}_{\alpha,out}^{C,n}$

- 1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := CT(f_{\alpha}^{C,n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.
- 3. $\tilde{f}_{\alpha}^{f,n} := \mathcal{T}(f_{\alpha}^{f,n})$ on whole fine mesh. $f_{\alpha}^{f,n+1/2} := \mathcal{C}(\tilde{f}_{\alpha}^{f,n})$ in interior.
- 4. $\tilde{f}^{f,n+1/2}_{\alpha} := \mathcal{T}(f^{f,n+1/2}_{\alpha})$ on whole fine mesh. $f^{f,n+1}_{\alpha} := \mathcal{C}(\tilde{f}^{f,n+1/2}_{\alpha})$ in interior.

- 5. Average $\tilde{f}_{\alpha,out}^{f,n+1/2}$ (inner halo layer), $\tilde{f}_{\alpha,out}^{f,n}$ (outer halo layer) to obtain $\tilde{f}_{\alpha,out}^{C,n}$.
- 6. Revert transport into halos: $\bar{f}_{\alpha,out}^{C,n} := \mathcal{T}^{-1}(\tilde{f}_{\alpha,out}^{C,n})$
- 7. Parallel synchronization of $f_{\alpha}^{C,n}, \overline{f}_{\alpha,out}^{C,n}$
- 8. Cell-wise update where correction is needed: $f_{\alpha}^{C,n+1} := CT(f_{\alpha}^{C,n}, \overline{f}_{\alpha,out}^{C,n})$

- 1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := CT(f_{\alpha}^{C,n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.
- 3. $\tilde{t}^{f,n}_{\alpha} := \mathcal{T}(t^{f,n}_{\alpha})$ on whole fine mesh. $t^{f,n+1/2}_{\alpha} := \mathcal{C}(\tilde{t}^{f,n}_{\alpha})$ in interior.
- 4. $\tilde{f}^{f,n+1/2}_{\alpha} := \mathcal{T}(f^{f,n+1/2}_{\alpha})$ on whole fine mesh. $f^{f,n+1}_{\alpha} := \mathcal{C}(\tilde{f}^{f,n+1/2}_{\alpha})$ in interior.

- 5. Average $\tilde{f}_{\alpha,out}^{f,n+1/2}$ (inner halo layer), $\tilde{f}_{\alpha,out}^{f,n}$ (outer halo layer) to obtain $\tilde{f}_{\alpha,out}^{C,n}$.
- 6. Revert transport into halos: $\bar{f}_{\alpha,out}^{C,n} := \mathcal{T}^{-1}(\tilde{f}_{\alpha,out}^{C,n})$
- 7. Parallel synchronization of $f_{\alpha}^{C,n}, \bar{f}_{\alpha,out}^{C,n}$
- 8. Cell-wise update where correction is needed: $f_{\alpha}^{C,n+1} := CT(f_{\alpha}^{C,n}, \bar{f}_{\alpha,out}^{C,n})$

Algorithm equivalent to [Chen et al., 2006].

Verification - driven cavity

- Re = 1500 in air, $\nu = 1.5 \cdot 10^{-5} \,\mathrm{m^2/s}$, $u = 22.5 \,\mathrm{m/s}$.
- Domain size $1 \text{ mm} \times 1 \text{ mm}$.
- Reference computation uses 800 × 800 lattice.
- ▶ 588,898 time steps to $t_e = 5 \cdot 10^{-3}$ s, ~ 35 h CPU.
- Statically adaptive computation uses 100×100 lattice with $r_{1,2} = 2$.
- > 294,452 time steps to $t_e = 5 \cdot 10^{-3}$ s on finest level.

Isolines of density. Left: reference, right on refinement at t_e .

Driven cavity - dynamic refinement

- Dynamic refinement based on heuristic error estimation of |u|
- Threshold intentionally chosen to show refinement evolution

vtf/amroc/lbm/applications/Navier-Stokes/2d/Cavity

Adaptive Lattice Boltzmann method with FSI

References 0000

Driven cavity - dynamic refinement

- Dynamic refinement based on heuristic error estimation of |u|
- Threshold intentionally chosen to show refinement evolution

vtf/amroc/lbm/applications/Navier-Stokes/2d/Cavity

Adaptive Lattice Boltzmann method with FSI

References 0000

Driven cavity - dynamic refinement

- Dynamic refinement based on heuristic error estimation of |u|
- Threshold intentionally chosen to show refinement evolution

vtf/amroc/lbm/applications/Navier-Stokes/2d/Cavity

Adaptive Lattice Boltzmann method with FSI

References 0000

Driven cavity - dynamic refinement

- Dynamic refinement based on heuristic error estimation of |u|
- Threshold intentionally chosen to show refinement evolution

vtf/amroc/lbm/applications/Navier-Stokes/2d/Cavity

Adaptive Lattice Boltzmann method with FSI

References 0000

Driven cavity - dynamic refinement

- Dynamic refinement based on heuristic error estimation of |u|
- Threshold intentionally chosen to show refinement evolution

vtf/amroc/lbm/applications/Navier-Stokes/2d/Cavity

Driven cavity - dynamic refinement

- Dynamic refinement based on heuristic error estimation of |u|
- Threshold intentionally chosen to show refinement evolution

vtf/amroc/lbm/applications/Navier-Stokes/2d/Cavity

Driven cavity - dynamic refinement

- Dynamic refinement based on heuristic error estimation of |u|
- Threshold intentionally chosen to show refinement evolution

vtf/amroc/lbm/applications/Navier-Stokes/2d/Cavity

Driven cavity - dynamic refinement

- Dynamic refinement based on heuristic error estimation of |u|
- Threshold intentionally chosen to show refinement evolution

vtf/amroc/lbm/applications/Navier-Stokes/2d/Cavity

Adaptive Lattice Boltzmann method with FSI

References 0000

Driven cavity - dynamic refinement

- Dynamic refinement based on heuristic error estimation of |u|
- Threshold intentionally chosen to show refinement evolution

vtf/amroc/lbm/applications/Navier-Stokes/2d/Cavity

Adaptive Lattice Boltzmann method with FSI

References 0000

Driven cavity - dynamic refinement

- Dynamic refinement based on heuristic error estimation of |u|
- Threshold intentionally chosen to show refinement evolution

vtf/amroc/lbm/applications/Navier-Stokes/2d/Cavity

Driven cavity - dynamic refinement

- Dynamic refinement based on heuristic error estimation of |u|
- Threshold intentionally chosen to show refinement evolution
- vtf/amroc/lbm/applications/Navier-Stokes/2d/Cavity

Adaptive Lattice Boltzmann method with FSI

References 0000

Driven cavity - dynamic refinement

- Dynamic refinement based on heuristic error estimation of |u|
- Threshold intentionally chosen to show refinement evolution

vtf/amroc/lbm/applications/Navier-Stokes/2d/Cavity

Driven cavity - dynamic refinement

- > Dynamic refinement based on heuristic error estimation of $|\mathbf{u}|$
- Threshold intentionally chosen to show refinement evolution
- vtf/amroc/lbm/applications/Navier-Stokes/2d/Cavity

Side-wind investigation for a train model

Complex boundary consideration with level set method

- Construction of macro-values in embedded cells by inter- / extrapolation.
- Then use $f^{eq}_{\alpha}(\rho', \mathbf{u}')$ to construct distributions in embedded ghost cells.
- 2nd order improvements possible, cf. [Peng and Luo, 2008].

Typical DLR problem

1:25 train model represented with 74,670 triangles (41,226 front body, 12,398 back body, 21,006 blade)

Side-wind investigation for a train model

Complex boundary consideration with level set method

- Construction of macro-values in embedded cells by inter- / extrapolation.
- Then use $f_{\alpha}^{eq}(\rho', \mathbf{u}')$ to construct distributions in embedded ghost cells.
- 2nd order improvements possible, cf. [Peng and Luo, 2008].

Typical DLR problem

- 1:25 train model represented with 74,670 triangles (41,226 front body, 12,398 back body, 21,006 blade)
- Wind tunnel conditions: air at room temperature with 60.25 m/s (M = 0.18), Re = 450,000
- ▶ Systematic side wind investigation with $0 \ge \beta \ge 30^o$ to obtain lift, drag and roll moment coefficients

vtf/amroc/lbm/applications/Navier-Stokes/3d/NGT2

Adaptive Lattice Boltzmann method with FSI

References 0000

Flow prediction, Re = 450,000, $\beta = 30^{\circ}$

- Domain 10 m × 2.4 m × 1.6 m
- Computation started in 3 steps. Full resolution after 5889 coarsest level steps or $t \ge 0.4 \, {
 m s}$
- \blacktriangleright \sim 1140 coarsest level steps in 24 h on 96 cores shown above. Overall cost \sim 4600 h CPU.

Vorticity vector component perpendicular to middle axis.

Adaptive Lattice Boltzmann method with FSI

References 0000

Flow prediction, Re = 450,000, $\beta = 30^{\circ}$

- Domain $10 \text{ m} \times 2.4 \text{ m} \times 1.6 \text{ m}$
- Computation started in 3 steps. Full resolution after 5889 coarsest level steps or $t \ge 0.4 \, {
 m s}$
- $\blacktriangleright~\sim$ 1140 coarsest level steps in 24 h on 96 cores shown above. Overall cost \sim 4600 h CPU.

Experiment (time-averaged)

AMROC-LBM Simulation (instantaneous snapshots)

Vorticity component (seen from behind) in axial direction $80 \,\mathrm{mm}$ and $290 \,\mathrm{mm}$ away from model tip.

Flow prediction, Re = 450,000, $\beta = 30^{\circ}$

- Domain 10 m × 2.4 m × 1.6 m
- Computation started in 3 steps. Full resolution after 5889 coarsest level steps or $t \ge 0.4 \, {
 m s}$
- \blacktriangleright \sim 1140 coarsest level steps in 24 h on 96 cores shown above. Overall cost \sim 4600 h CPU.

Experiment (time-averaged)

AMROC-LBM Simulation (instantaneous snapshots)

Vorticity component (seen from behind) in axial direction $80\ \mathrm{mm}$ and $290\ \mathrm{mm}$ away from model tip.

Flow prediction, Re = 450,000, $\beta = 30^{\circ}$

- Domain 10 m × 2.4 m × 1.6 m
- Computation started in 3 steps. Full resolution after 5889 coarsest level steps or $t \ge 0.4 \, {
 m s}$
- \blacktriangleright \sim 1140 coarsest level steps in 24 h on 96 cores shown above. Overall cost \sim 4600 h CPU.

Experiment (time-averaged)

AMROC-LBM Simulation (instantaneous snapshots)

Vorticity component (seen from behind) in axial direction $80 \ \mathrm{mm}$ and $290 \ \mathrm{mm}$ away from model tip.

Flow prediction, Re = 450,000, $\beta = 30^{\circ}$

- Domain $10 \text{ m} \times 2.4 \text{ m} \times 1.6 \text{ m}$
- Computation started in 3 steps. Full resolution after 5889 coarsest level steps or $t \ge 0.4 \, {
 m s}$
- \blacktriangleright \sim 1140 coarsest level steps in 24 h on 96 cores shown above. Overall cost \sim 4600 h CPU.

Experiment (time-averaged)

AMROC-LBM Simulation (instantaneous snapshots)

Vorticity component (seen from behind) in axial direction $80 \mathrm{\,mm}$ and $290 \mathrm{\,mm}$ away from model tip.

- ▶ Base mesh 500 × 120 × 80 cells, refinement factors 2,2,4.
- Refinement based on error estimation of |u| up to second highest level.
- Highest level reserved to geometry refinement with $\Delta x = 1.25 \,\mathrm{mm}$.

Dynamically adapting mesh. View in wind direction.

- Base mesh 500 \times 120 \times 80 cells, refinement factors 2,2,4.
- Refinement based on error estimation of |u| up to second highest level.
- Highest level reserved to geometry refinement with $\Delta x = 1.25 \,\mathrm{mm}$.

Dynamically adapting mesh. View in wind direction.

- Base mesh 500 \times 120 \times 80 cells, refinement factors 2,2,4.
- Refinement based on error estimation of |u| up to second highest level.
- Highest level reserved to geometry refinement with $\Delta x = 1.25 \,\mathrm{mm}$.

- Base mesh 500 \times 120 \times 80 cells, refinement factors 2,2,4.
- Refinement based on error estimation of |u| up to second highest level.
- Highest level reserved to geometry refinement with $\Delta x = 1.25 \,\mathrm{mm}$.

- Base mesh 500 \times 120 \times 80 cells, refinement factors 2,2,4.
- Refinement based on error estimation of |u| up to second highest level.
- Highest level reserved to geometry refinement with $\Delta x = 1.25 \,\mathrm{mm}$.

- $\blacktriangleright\,$ Geometry from realistic Vestas V27 turbine. Rotor diameter 27 $\rm m,\,tower$ height $\sim35\,\rm m.\,$ Ground considered.
- Prescribed motion of rotor with 15 rpm. Inflow velocity 7 m/s.
- Simulation domain $200 \text{ m} \times 100 \text{ m} \times 100 \text{ m}$.
- Base mesh 400 \times 200 \times 200 cells with refinement factors 2,2,4. Resolution of rotor and tower $\Delta x = 3.125~{\rm cm}.$
- 141,344 highest level iterations to $t_e = 30 \text{ s}$ computed.

- $\blacktriangleright\,$ Geometry from realistic Vestas V27 turbine. Rotor diameter 27 $\rm m,\,tower$ height $\sim35\,\rm m.\,$ Ground considered.
- Prescribed motion of rotor with 15 rpm. Inflow velocity 7 m/s.
- Simulation domain 200 m \times 100 m \times 100 m.
- Base mesh 400 \times 200 \times 200 cells with refinement factors 2,2,4. Resolution of rotor and tower $\Delta x=3.125~{\rm cm}.$
- ▶ 141,344 highest level iterations to $t_e = 30 \text{ s}$ computed.

- $\blacktriangleright\,$ Geometry from realistic Vestas V27 turbine. Rotor diameter 27 $\rm m,\,tower$ height $\sim35\,\rm m.\,$ Ground considered.
- Prescribed motion of rotor with 15 rpm. Inflow velocity 7 m/s.
- Simulation domain $200 \text{ m} \times 100 \text{ m} \times 100 \text{ m}$.
- Base mesh 400 \times 200 \times 200 cells with refinement factors 2,2,4. Resolution of rotor and tower $\Delta x=3.125~{\rm cm}.$
- ▶ 141,344 highest level iterations to $t_e = 30 \text{ s}$ computed.

- $\blacktriangleright\,$ Geometry from realistic Vestas V27 turbine. Rotor diameter 27 $\rm m,\,tower$ height $\sim35\,\rm m.\,$ Ground considered.
- Prescribed motion of rotor with 15 rpm. Inflow velocity 7 m/s.
- Simulation domain 200 m \times 100 m \times 100 m.
- Base mesh 400 \times 200 \times 200 cells with refinement factors 2,2,4. Resolution of rotor and tower $\Delta x=3.125~{\rm cm}.$
- ▶ 141,344 highest level iterations to $t_e = 30 \text{ s}$ computed.

- $\blacktriangleright\,$ Geometry from realistic Vestas V27 turbine. Rotor diameter 27 $\rm m,\,tower\,height\sim35\,m.$ Ground considered.
- Prescribed motion of rotor with 15 rpm. Inflow velocity 7 m/s.
- Simulation domain 200 m \times 100 m \times 100 m.
- Base mesh 400 \times 200 \times 200 cells with refinement factors 2,2,4. Resolution of rotor and tower $\Delta x=3.125~{\rm cm}.$
- ▶ 141,344 highest level iterations to $t_e = 30 \text{ s}$ computed.

- $\blacktriangleright\,$ Geometry from realistic Vestas V27 turbine. Rotor diameter 27 $\rm m,\,tower\,height\sim35\,m.$ Ground considered.
- Prescribed motion of rotor with 15 rpm. Inflow velocity 7 m/s.
- Simulation domain $200 \text{ m} \times 100 \text{ m} \times 100 \text{ m}$.
- Base mesh 400 \times 200 \times 200 cells with refinement factors 2,2,4. Resolution of rotor and tower $\Delta x=3.125~{\rm cm}.$
- > 141,344 highest level iterations to $t_e = 30 \, \text{s}$ computed.

- $\blacktriangleright\,$ Geometry from realistic Vestas V27 turbine. Rotor diameter 27 $\rm m,\,tower$ height $\sim35\,\rm m.\,$ Ground considered.
- Prescribed motion of rotor with 15 rpm. Inflow velocity 7 m/s.
- Simulation domain $200 \text{ m} \times 100 \text{ m} \times 100 \text{ m}$.
- Base mesh 400 \times 200 \times 200 cells with refinement factors 2,2,4. Resolution of rotor and tower $\Delta x = 3.125$ cm.
- 141,344 highest level iterations to $t_e = 30 \text{ s}$ computed.

- $\blacktriangleright\,$ Geometry from realistic Vestas V27 turbine. Rotor diameter 27 $\rm m,\,tower$ height $\sim35\,\rm m.\,$ Ground considered.
- Prescribed motion of rotor with 15 rpm. Inflow velocity 7 m/s.
- Simulation domain $200 \text{ m} \times 100 \text{ m} \times 100 \text{ m}$.
- Base mesh 400 \times 200 \times 200 cells with refinement factors 2,2,4. Resolution of rotor and tower $\Delta x = 3.125$ cm.
- 141,344 highest level iterations to $t_e = 30 \text{ s}$ computed.

Adaptive Lattice Boltzmann method with FSI

References 0000

Wake field behind turbine

- Simulation on 96 cores Intel Xeon-Westmere. \sim 10, 400 h CPU.
- Error estimation in $|\mathbf{u}|$ refines wake up to level 1 ($\Delta x = 25 \text{ cm}$).
- Rotation starts at t = 4 s.
- vtf/fsi/motion-amroc/WindTurbine_Terrain Fluid, Solid

Adaptive Lattice Boltzmann method with FSI

Simulation of wind turbines

Adaptive refinement

Dynamic evolution of refinement blocks (indicated by color).

Preliminary simulation of the SWIFT array

- $\blacktriangleright\,$ Three Vestas V27 turbines. 225 $\rm kW$ power generation at wind speeds 14 to 25 $\rm m/s$ (then cut-off).
- Prescribed motion of rotor with 15 rpm. Inflow velocity 7 m/s (power generation 52.5 kW).
- Simulation domain $488 \text{ m} \times 240 \text{ m} \times 100 \text{ m}$.
- Base mesh 448 × 240 × 100 cells with refinement factors 2,2,2. Resolution of rotor and tower Δx = 12.5 cm.
- 47,120 highest level iterations to t_e = 40 s computed.

Adaptive Lattice Boltzmann method with FSI 00000000000000

Simulation of wind turbines

Wakes in SWIFT array (preliminary)

- ► Simulation on 288 cores Intel Xeon-Westmere. \sim 28,000 h CPU.
- Refinement of wake up to level 2 ($\Delta x = 25 \text{ cm}$). ►
- Rotation starts at t = 4 s, full refinement at t = 8 s to avoid refining initial acoustic waves.

References I

- [Abgrall and Karni, 2001] Abgrall, R. and Karni, S. (2001). Computations of compressible multifluids. J. Comput. Phys., 169:594–523.
- [Arienti et al., 2003] Arienti, M., Hung, P., Morano, E., and Shepherd, J. E. (2003). A level set approach to Eulerian-Lagrangian coupling. J. Comput. Phys., 185:213–251.
- [Ashani and Ghamsari, 2008] Ashani, J. Z. and Ghamsari, A. K. (2008). Theoretical and experimental analysis of plastic response of isotropic circular plates subjected to underwater explosion loading. *Mat.-wiss. u. Werkstofftechn.*, 39(2):171–175.
- [Chen et al., 2006] Chen, H., Filippova, O., Hoch, J., Molvig, K., Shock, R., Teixeira, C., and Zhang, R. (2006). Grid refinement in lattice Boltzmann methods based on volumetric formulation. *Physica A*, 362:158–167.
- [Cirak et al., 2007] Cirak, F., Deiterding, R., and Mauch, S. P. (2007). Large-scale fluid-structure interaction simulation of viscoplastic and fracturing thin shells subjected to shocks and detonations. *Computers & Structures*, 85(11-14):1049–1065.
- [Davis, 1988] Davis, S. F. (1988). Simplified second-order Godunov-type methods. SIAM J. Sci. Stat. Comp., 9:445–473.

References II

- [Deiterding et al., 2009] Deiterding, R., Cirak, F., and Mauch, S. P. (2009). Efficient fluid-structure interaction simulation of viscoplastic and fracturing thin-shells subjected to underwater shock loading. In Hartmann, S., Meister, A., Schäfer, M., and Turek, S., editors, Int. Workshop on Fluid-Structure Interaction. Theory, Numerics and Applications, Herrsching am Ammersee 2008, pages 65–80. kassel university press GmbH.
- [Deiterding and Wood, 2013] Deiterding, R. and Wood, S. L. (2013). Parallel adaptive fluid-structure interaction simulations of explosions impacting building structures. *Computers & Fluids*, 88:719–729.
- [Deshpande et al., 2006] Deshpande, V. S., Heaver, A., and Fleck, N. A. (2006). An underwater shock simulator. *Royal Society of London Proceedings Series A*, 462(2067):1021–1041.
- [Falcovitz et al., 1997] Falcovitz, J., Alfandary, G., and Hanoch, G. (1997). A two-dimensional conservation laws scheme for compressible flows with moving boundaries. J. Comput. Phys., 138:83–102.

References III

- [Fedkiw, 2002] Fedkiw, R. P. (2002). Coupling an Eulerian fluid calculation to a Lagrangian solid calculation with the ghost fluid method. J. Comput. Phys., 175:200–224.
- [Giordano et al., 2005] Giordano, J., Jourdan, G., Burtschell, Y., Medale, M., Zeitoun, D. E., and Houas, L. (2005). Shock wave impacts on deforming panel, an application of fluid-structure interaction. *Shock Waves*, 14(1-2):103–110.
- [Hähnel, 2004] Hähnel, D., editor (2004). Molekulare Gasdynamik. Springer.
- [Laurence and Deiterding, 2011] Laurence, S. J. and Deiterding, R. (2011). Shock-wave surfing. J. Fluid Mech., 676:369–431.
- [Laurence et al., 2007] Laurence, S. J., Deiterding, R., and Hornung, H. G. (2007). Proximal bodies in hypersonic flows. *J. Fluid Mech.*, 590:209–237.
- [Luccioni et al., 2004] Luccioni, B. M., Ambrosini, R. D., and Danesi, R. F. (2004). Analysis of building collapse under blast loads. *Engineering & Structures*, 26:63–71.
- [Mader, 1979] Mader, C. L. (1979). *Numerical modeling of detonations*. University of California Press, Berkeley and Los Angeles, California.

References IV

- [Peng and Luo, 2008] Peng, Y. and Luo, L.-S. (2008). A comparative study of immersed-boundary and interpolated bounce-back methods in Ibe. *Prog. Comp. Fluid Dynamics*, 8(1-4):156–167.
- [Shyue, 1998] Shyue, K.-M. (1998). An efficient shock-capturing algorithm for compressible multicomponent problems. J. Comput. Phys., 142:208–242.
- [Shyue, 2006] Shyue, K.-M. (2006). A volume-fraction based algorithm for hybrid barotropic and non-barotropic two-fluid flow problems. *Shock Waves*, 15:407–423.
- [Specht, 2000] Specht, U. (2000). Numerische Simulation mechanischer Wellen an Fluid-Festkörper-Mediengrenzen. Number 398 in VDI Reihe 7. VDU Verlag, Düsseldorf.
- [Toro et al., 1994] Toro, E. F., Spruce, M., and Speares, W. (1994). Restoration of the contact surface in the HLL-Riemann solver. *Shock Waves*, 4:25–34.