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Linear iterative methods for Poisson-type problems
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Linear iterative methods for Poisson-type problems

Iterative methods

Jacobi iteration

Qm+1
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1
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h
(Qm

j+1,k + Qm
j−1,k)∆x2

2 + (Qm
j,k+1 + Qm
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i

Lexicographical Gauss-Seidel iteration (use updated values when they become
available)

Qm+1
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j−1,k)∆x2

2 + (Qm
j,k+1 + Qm+1

j,k−1)∆x2
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2ψjk

i
Efficient parallelization / patch-wise application not possible!

Checker-board or Red-Black Gauss Seidel iteration

1. Qm+1
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i
for j + k mod 2 = 0

2. Qm+1
jk =
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j−1,k)∆x2

2 + (Qm+1
j,k+1 + Qm+1

j,k−1)∆x2
1 −∆x2

1 ∆x2
2ψjk

i
for j + k mod 2 = 1

Gauss-Seidel methods require ∼ 1/2 of iterations than Jacobi method, however,
iteration count still proportional to number of unknowns [Hackbusch, 1994]
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Linear iterative methods for Poisson-type problems

Smoothing vs. solving

ν iterations with iterative linear solver

Qm+ν = S(Qm, ψ, ν)

Defect after m iterations
dm = ψ −A(Qm)

Defect after m + ν iterations

dm+ν = ψ −A(Qm+ν) = ψ −A(Qm + vm
ν ) = dm −A(vm

ν )

with correction
vm
ν = S(~0, dm, ν)

Neglecting the sub-iterations in the smoother we write

Qn+1 = Qn + v = Qn + S(dn)

Observation: Oscillations are damped faster on coarser grid.

Coarse grid correction:

Qn+1 = Qn + v = Qn + PSR(dn)

where R is suitable restriction operator and P a suitable prolongation operator

Supplementary material: Using the SAMR approach for elliptic problems 5
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Multi-level algorithms

Two-grid correction method

Relaxation on current grid:

Q̄ = S(Qn, ψ, ν)

Qn+1 = Q̄ + PS(~0, ·, µ)R(ψ −A(Q̄))

Algorithm:

Q̄ := S(Qn, ψ, ν)
d := ψ −A(Q̄)

dc := R(d)
vc := S(0, dc , µ)
v := P(vc)
Qn+1 := Q̄ + v

with smoothing:

d := ψ −A(Q)
v := S(0, d , ν)
r := d −A(v)
dc := R(r)
vc := S(0, dc , µ)
v := v + P(vc)
Qn+1 := Q + v

with pre- and post-iteration:

d := ψ −A(Q)
v := S(0, d , ν1)
r := d −A(v)
dc := R(r)
vc := S(0, dc , µ)
v := v + P(vc)
d := d −A(v)
r := S(0, d , ν2)
Qn+1 := Q + v + r

[Hackbusch, 1985]

Supplementary material: Using the SAMR approach for elliptic problems 6
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Multi-level algorithms

Multi-level methods and cycles
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S

[Hackbusch, 1985] [Wesseling, 1992] . . .
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1D Example: Cell j , ψ −∇ · ∇q = 0
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j = ψj−

1

∆xl

„
1

∆xl
(Q l

j+1 − Q l
j )−

1

∆xl
(Q l

j − Q l
j−1)

«

= ψj−
1

∆xl

“
H l

j+ 1
2
− H l

j− 1
2

”
H is approximation to derivative of Q l .
Consider 2-level situation with rl+1 = 2:

Q l
j−1 Q l

j Q l
j+1

Q l+1
wQ l+1

w−1 Q l+1
w+1

Solution needs to be continuously dif-
ferentiable across interface.
Easiest approach: H l+1

w+ 1
2

≡ H l
j− 1

2

No specific modification necessary for 1D vertex-based stencils, cf.

[Bastian, 1996]
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Set H l+1

w+ 1
2

= HI .

Inserting Q gives

Q l+1
w+1 − Q l+1

w

∆xl+1
=

Q l
j − Q l+1

w

3
2
∆xl+1

from which we readily derive

Q l+1
w+1 =

2

3
Q l

j +
1

3
Q l+1

w

for the boundary cell on l + 1. We use the flux correction procedure to enforce
H l+1

w+ 1
2

≡ H l
j− 1

2
and thereby H l

j− 1
2
≡ HI .

Correction pass [Martin, 1998]

1. δH l+1

j− 1
2

:= −H l
j− 1

2

2. δH l+1

j− 1
2

:= δH l+1

j− 1
2

+ H l+1

w+ 1
2

= −H l
j− 1

2
+ (Q l

j − Q l+1
w )/

3

2
∆xl+1

3. ď l
j := d l

j +
1

∆xl
δH l+1

j− 1
2

yields

ď l
j = ψj −

1

∆xl

„
1

∆xl
(Q l

j+1 − Q l
j )−

2

3∆xl+1
(Q l

j − Q l+1
w )

«
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Stencil modification at coarse-fine boundaries: 2D

Q l+1
vw

Q l
jk

Q l+1
v,w−1 =

1

3
Q l+1

vw

+

2

3

„
3

4
Q l

jk +
1

4
Q l

j+1,k

«
In general:

Q l+1
v,w−1 =

„
1− 2

rl+1 + 1

«
Q l+1

vw +

2

rl+1 + 1

“
(1− f )Q l

jk + fQ l
j+1,k

”
with

f =
xv

1,l+1 − x j
1,l

∆x1,l
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Multigrid algorithms on SAMR data structures

Components of an SAMR multigrid method
I Stencil operators

I Application of defect d l = ψl −A(Q l) on each grid Gl,m of level l
I Computation of correction v l = S(0, d l , ν) on each grid of level l

I Boundary (ghost cell) operators

I Synchronization of Q l and v l on S̃1
l

I Specification of Dirichlet boundary
conditions for a finite volume
discretization for Q l ≡ w and v l ≡ w
on P̃1

l

I Specification of v l ≡ 0 on Ĩ 1
l

I Specification of Ql = (rl−1)Q l+1+2Q l

rl +1

on Ĩ 1
l

vj −vj

Qj 2w − Qj

ut

ut

ut

w

Qj

2w − Qj

I Coarse-fine boundary flux accumulation and application of δH l+1 on defect d l

I Standard prolongation and restriction on grids between adjacent levels

I Adaptation criteria

I E.g., standard restriction to project solution on 2x coarsended grid,
then use local error estimation

I Looping instead of time steps and check of convergence
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l

I Specification of Ql = (rl−1)Q l+1+2Q l

rl +1

on Ĩ 1
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l

I Specification of Ql = (rl−1)Q l+1+2Q l

rl +1

on Ĩ 1
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Multigrid algorithms on SAMR data structures

Additive geometric multigrid algorithm
AdvanceLevelMG(l) - Correction Scheme

Set ghost cells of Q l

Calculate defect d l from Q l,ψl d l := ψl −A(Q l)
If (l < lmax)

Calculate updated defect r l+1 from v l+1,d l+1 r l+1 := d l+1 −A(v l+1)
Restrict d l+1 onto d l d l := Rl+1

l (r l+1)
Do ν1 smoothing steps to get correction v l v l := S(0, d l , ν1)
If (l > lmin)

Do γ > 1 times

AdvanceLevelMG(l − 1)
Set ghost cells of v l−1

Prolongate and add v l−1 to v l v l := v l + P l−1
l (v l−1)

If (ν2 > 0)
Set ghost cells of v l

Update defect d l according to v l d l := d l −A(v l)
Do ν2 post-smoothing steps to get r l r l := S(v l , d l , ν2)
Add addional correction r l to v l v l := v l + r l

Add correction v l to Q l Q l := Q l + v l
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Multigrid algorithms on SAMR data structures

Additive Geometric Multiplicative Multigrid Algorithm

Start - Start iteration on level lmax

For l = lmax Downto lmin + 1 Do

Restrict Q l onto Q l−1 Q l−1 := Rl−1
l (Q l)

Regrid(0)

AdvanceLevelMG(lmax)

See also: [Trottenberg et al., 2001], [Canu and Ritzdorf, 1994]
Vertex-based: [Brandt, 1977], [Briggs et al., 2001]
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Example

Example

On Ω = [0, 10]× [0, 10] use hat
function

ψ =

(
−An cos

“
πr

2Rn

”
, r < Rn

0 elsewhere

with r =
p

(x1 − Xn)2 + (x2 − Yn)2

to define three sources with

n An Rn Xn Yn

1 0.3 0.3 6.5 8.0
2 0.2 0.3 2.0 7.0
3 -0.1 0.4 7.0 3.0

128× 128 1024× 1024 1024× 1024
lmax 3 0 0
lmin -4 -7 -4
ν1 5 5 5
ν2 5 5 5

V-Cycles 15 16 341
Time [sec] 9.4 27.7 563

Stop at ‖d l‖max < 10−7 for l ≥ 0, γ = 1, rl = 2
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Some comments on parabolic problems

I Consequences of time step refinement

I Level-wise elliptic solves vs. global solve

I If time step refinement is used an elliptic flux correction is
unavoidable.

I The correction is explained in Bell, J. (2004). Block-structured
adaptive mesh refinement. Lecture 2. Available at
https://ccse.lbl.gov/people/jbb/shortcourse/lecture2.pdf.
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