Conservation laws	Finite volume methods	Upwind schemes	References

Lecture 1 Fundamentals

Course Block-structured Adaptive Finite Volume Methods in C++

Ralf Deiterding University of Southampton Engineering and the Environment Highfield Campus, Southampton SO17 1BJ, UK

E-mail: r.deiterding@soton.ac.uk

Conservation laws	Finite volume methods	Upwind schemes	References

Conservation laws

Mathematical background Characteristic information Weak and entropy solutions Characteristic form of the Euler equations Navier-Stokes equations

Conservation laws	Finite volume methods	Upwind schemes	References
000000000000	00000	0000000000	

Conservation laws

Mathematical background Characteristic information Weak and entropy solutions Characteristic form of the Euler equations Navier-Stokes equations

Finite volume methods

Basics of finite difference methods Splitting methods, second derivatives

Conservation laws	Upwind schemes	References

Conservation laws

Mathematical background Characteristic information Weak and entropy solutions Characteristic form of the Euler equations Navier-Stokes equations

Finite volume methods

Basics of finite difference methods Splitting methods, second derivatives

Upwind schemes

The linear Riemann problem Flux-difference splitting Flux-vector splitting

Conservation laws	Upwind schemes	References

Conservation laws

Mathematical background Characteristic information Weak and entropy solutions Characteristic form of the Euler equations Navier-Stokes equations

Finite volume methods

Basics of finite difference methods Splitting methods, second derivatives

Upwind schemes

The linear Riemann problem Flux-difference splitting Flux-vector splitting

Conservation laws	Finite volume methods	Upwind schemes	References
000000000000			
Mathematical background			

$$\frac{\partial}{\partial t}\mathbf{q}(\mathbf{x},t) + \sum_{n=1}^{d} \frac{\partial}{\partial x_n} \mathbf{f}_n(\mathbf{q}(\mathbf{x},t)) = 0, \quad D \subset \{(\mathbf{x},t) \in \mathbb{R}^d \times \mathbb{R}_0^+\}$$
(1)

Conservation laws	Finite volume methods	Upwind schemes	References
000000000000			
Mathematical background			

$$\frac{\partial}{\partial t}\mathbf{q}(\mathbf{x},t) + \sum_{n=1}^{d} \frac{\partial}{\partial x_n} \mathbf{f}_n(\mathbf{q}(\mathbf{x},t)) = 0, \quad D \subset \{(\mathbf{x},t) \in \mathbb{R}^d \times \mathbb{R}_0^+\}$$
(1)

 $\mathbf{q}=\mathbf{q}(\mathbf{x},t)\in \mathcal{S}\subset\mathbb{R}^{M}$ - vector of state, $\mathbf{f}_{n}(\mathbf{q})\in\mathrm{C}^{1}(\mathcal{S},\mathbb{R}^{M})$ - flux functions,

Conservation laws	Finite volume methods	Upwind schemes	References
000000000000			
Mathematical background			

$$\frac{\partial}{\partial t}\mathbf{q}(\mathbf{x},t) + \sum_{n=1}^{d} \frac{\partial}{\partial x_n} \mathbf{f}_n(\mathbf{q}(\mathbf{x},t)) = \mathbf{s}(\mathbf{q}(\mathbf{x},t)), \quad D \subset \{(\mathbf{x},t) \in \mathbb{R}^d \times \mathbb{R}_0^+\}$$
(1)

 $\mathbf{q} = \mathbf{q}(\mathbf{x},t) \in S \subset \mathbb{R}^M$ - vector of state, $\mathbf{f}_n(\mathbf{q}) \in \mathrm{C}^1(S,\mathbb{R}^M)$ - flux functions, $\mathbf{s}(\mathbf{q}) \in \mathrm{C}^1(S,\mathbb{R}^M)$ - source term

Conservation laws	Finite volume methods	Upwind schemes	References
000000000000			
Mathematical background			

$$\frac{\partial}{\partial t}\mathbf{q}(\mathbf{x},t) + \sum_{n=1}^{d} \frac{\partial}{\partial x_n} \mathbf{f}_n(\mathbf{q}(\mathbf{x},t)) = \mathbf{s}(\mathbf{q}(\mathbf{x},t)), \quad D \subset \{(\mathbf{x},t) \in \mathbb{R}^d \times \mathbb{R}_0^+\}$$
(1)

$$\label{eq:q_states} \begin{split} \mathbf{q} &= \mathbf{q}(\mathbf{x},t) \in S \subset \mathbb{R}^M \text{ - vector of state, } \mathbf{f}_n(\mathbf{q}) \in \mathrm{C}^1(S,\mathbb{R}^M) \text{ - flux functions, } \\ \mathbf{s}(\mathbf{q}) \in \mathrm{C}^1(S,\mathbb{R}^M) \text{ - source term} \end{split}$$

Definition (Hyperbolicity)

 $\mathbf{A}(\mathbf{q},\nu) = \nu_1 \mathbf{A}_1(\mathbf{q}) + \dots + \nu_d \mathbf{A}_d(\mathbf{q})$ with $\mathbf{A}_n(\mathbf{q}) = \partial \mathbf{f}_n(\mathbf{q})/\partial \mathbf{q}$ has M real eigenvalues $\lambda_1(\mathbf{q},\nu) \leq \dots \leq \lambda_M(\mathbf{q},\nu)$ and M linear independent right eigenvectors $\mathbf{r}_m(\mathbf{q},\nu)$.

Conservation laws	Finite volume methods	Upwind schemes	References
000000000000			
Mathematical background			

$$\frac{\partial}{\partial t}\mathbf{q}(\mathbf{x},t) + \sum_{n=1}^{d} \frac{\partial}{\partial x_n} \mathbf{f}_n(\mathbf{q}(\mathbf{x},t)) = \mathbf{s}(\mathbf{q}(\mathbf{x},t)), \quad D \subset \{(\mathbf{x},t) \in \mathbb{R}^d \times \mathbb{R}_0^+\}$$
(1)

$$\label{eq:q_states} \begin{split} \mathbf{q} &= \mathbf{q}(\mathbf{x},t) \in S \subset \mathbb{R}^M \text{ - vector of state, } \mathbf{f}_n(\mathbf{q}) \in \mathrm{C}^1(S,\mathbb{R}^M) \text{ - flux functions, } \\ \mathbf{s}(\mathbf{q}) \in \mathrm{C}^1(S,\mathbb{R}^M) \text{ - source term} \end{split}$$

Definition (Hyperbolicity)

 $\mathbf{A}(\mathbf{q},\nu) = \nu_1 \mathbf{A}_1(\mathbf{q}) + \dots + \nu_d \mathbf{A}_d(\mathbf{q})$ with $\mathbf{A}_n(\mathbf{q}) = \partial \mathbf{f}_n(\mathbf{q})/\partial \mathbf{q}$ has M real eigenvalues $\lambda_1(\mathbf{q},\nu) \leq \dots \leq \lambda_M(\mathbf{q},\nu)$ and M linear independent right eigenvectors $\mathbf{r}_m(\mathbf{q},\nu)$.

If $\mathbf{f}_n(\mathbf{q})$ is nonlinear, classical solutions $\mathbf{q}(\mathbf{x},t) \in \mathrm{C}^1(D,S)$ do not generally exist, not even for $\mathbf{q}_0(\mathbf{x}) \in \mathrm{C}^1(\mathbb{R}^d,S)$ [Majda, 1984], [Godlewski and Raviart, 1996], [Kröner, 1997]

Line and the second sec

Example: Euler equations

Conservation laws	Upwind schemes	References
000000000000000000000000000000000000000		
Characteristic information		

Consider the first-order partial differential equation

$$\frac{\partial \mathbf{q}}{\partial t} + \mathbf{A}(\mathbf{q})\frac{\partial \mathbf{q}}{\partial x} = 0$$
 (2)

Conservation laws	Upwind schemes	References
000000000000000000000000000000000000000		
Characteristic information		

Consider the first-order partial differential equation

$$\frac{\partial \mathbf{q}}{\partial t} + \mathbf{A}(\mathbf{q})\frac{\partial \mathbf{q}}{\partial x} = 0$$
 (2)

For $\mathbf{A} = const$. Eq. (2) is called linear, for $\mathbf{A} = \mathbf{A}(\mathbf{q}(x, t))$ it is called quasi-linear. For a hyperbolic system, \mathbf{A} is diagonalizable as

 $\mathbf{R}^{-1}\mathbf{A}\mathbf{R} = \Lambda$

Conservation laws	Upwind schemes	References
000000000000000000000000000000000000000		
Characteristic information		

Consider the first-order partial differential equation

$$\frac{\partial \mathbf{q}}{\partial t} + \mathbf{A}(\mathbf{q})\frac{\partial \mathbf{q}}{\partial x} = 0$$
 (2)

For $\mathbf{A} = const$. Eq. (2) is called linear, for $\mathbf{A} = \mathbf{A}(\mathbf{q}(x, t))$ it is called quasi-linear. For a hyperbolic system, \mathbf{A} is diagonalizable as

$$\boldsymbol{\mathsf{R}}^{-1}\boldsymbol{\mathsf{A}}\,\boldsymbol{\mathsf{R}}=\boldsymbol{\Lambda}$$

R is the matrix of right eigenvectors (column-wise)

$$\mathbf{R} = (\mathbf{r}_1 | \cdots | \mathbf{r}_M)$$

Conservation laws	Upwind schemes	References
000000000000000000000000000000000000000		
Characteristic information		

Consider the first-order partial differential equation

$$\frac{\partial \mathbf{q}}{\partial t} + \mathbf{A}(\mathbf{q})\frac{\partial \mathbf{q}}{\partial x} = 0$$
 (2)

For $\mathbf{A} = const$. Eq. (2) is called linear, for $\mathbf{A} = \mathbf{A}(\mathbf{q}(x, t))$ it is called quasi-linear. For a hyperbolic system, \mathbf{A} is diagonalizable as

$$\mathbf{R}^{-1}\mathbf{A}\mathbf{R} = \Lambda$$

R is the matrix of right eigenvectors (column-wise)

$$\mathbf{R} = (\mathbf{r}_1 | \cdots | \mathbf{r}_M)$$

and Λ the diagonal matrix of eigenvalues

$$\Lambda = \left(\begin{array}{ccc} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_M \end{array} \right)$$

Conservation laws	Upwind schemes	References
000000000000		
Characteristic information		

Multiplying (2) with \mathbf{R}^{-1} gives

$$\mathbf{R}^{-1}\frac{\partial \mathbf{q}}{\partial t} + \mathbf{R}^{-1}\mathbf{A}\frac{\partial \mathbf{q}}{\partial x} = \mathbf{0}$$

Conservation laws	Finite volume methods	Upwind schemes	References
000000000000			
Characteristic information			

Multiplying (2) with \mathbf{R}^{-1} gives

$$\mathbf{R}^{-1}\frac{\partial \mathbf{q}}{\partial t} + \mathbf{R}^{-1}\mathbf{A}\frac{\partial \mathbf{q}}{\partial x} = \mathbf{0}$$

with $\mathbf{R}^{-1}d\mathbf{q} = d\mathbf{v}$ this becomes

$$\frac{\partial \mathbf{v}}{\partial t} + \mathbf{R}^{-1} \mathbf{A} \mathbf{R} \frac{\partial \mathbf{v}}{\partial x} = \mathbf{0}$$

or

$$\frac{\partial \mathbf{v}}{\partial t} + \Lambda \frac{\partial \mathbf{v}}{\partial x} = \mathbf{0}$$

Conservation laws	Upwind schemes	References
000000000000		
Characteristic information		

Multiplying (2) with \mathbf{R}^{-1} gives

$$\mathbf{R}^{-1}\frac{\partial \mathbf{q}}{\partial t} + \mathbf{R}^{-1}\mathbf{A}\frac{\partial \mathbf{q}}{\partial x} = \mathbf{0}$$

with $\mathbf{R}^{-1}d\mathbf{q} = d\mathbf{v}$ this becomes

$$\frac{\partial \mathbf{v}}{\partial t} + \mathbf{R}^{-1} \mathbf{A} \mathbf{R} \frac{\partial \mathbf{v}}{\partial x} = \mathbf{0}$$

or

$$\frac{\partial \mathbf{v}}{\partial t} + \Lambda \frac{\partial \mathbf{v}}{\partial x} = \mathbf{0}$$

which is just a set of decoupled independent advection equations for the components, i.e.,

$$\frac{\partial \mathbf{v}_m}{\partial t} + \lambda_m \frac{\partial \mathbf{v}_m}{\partial x} = 0 \qquad \text{for } m = 1, \dots, M$$
(3)

Conservation laws	Upwind schemes	References
000000000000		
Characteristic information		

Multiplying (2) with \mathbf{R}^{-1} gives

$$\mathsf{R}^{-1}\frac{\partial \mathsf{q}}{\partial t} + \mathsf{R}^{-1}\mathsf{A}\frac{\partial \mathsf{q}}{\partial x} = \mathsf{0}$$

with $\mathbf{R}^{-1}d\mathbf{q} = d\mathbf{v}$ this becomes

$$\frac{\partial \mathbf{v}}{\partial t} + \mathbf{R}^{-1} \mathbf{A} \mathbf{R} \frac{\partial \mathbf{v}}{\partial x} = \mathbf{0}$$

or

$$\frac{\partial \mathbf{v}}{\partial t} + \Lambda \frac{\partial \mathbf{v}}{\partial x} = 0$$

which is just a set of decoupled independent advection equations for the components, i.e.,

$$\frac{\partial \mathbf{v}_m}{\partial t} + \lambda_m \frac{\partial \mathbf{v}_m}{\partial x} = 0 \quad \text{for } m = 1, \dots, M$$
(3)

(3) is a wave equation but note that in the general quasi-linear case the eigenvalues can dependent on all v_m , i.e. $\lambda_m = \lambda_m(v_1, \cdots, v_M)$ Nevertheless, an analysis as for the wave equations shows

$$\mathbf{v}_m = const.$$
 for $\frac{dx}{dt} = \lambda_m$

Conservation laws	Finite volume methods	Upwind schemes	References
000000000000			
Characteristic information			

Wavefronts

The curves $dx = \lambda_m dt$ are called wavefronts or characteristics, v_m are the characteristic variables.

The characteristics define how influence spreads in the x - t plane. A point in the x - t plane is only influenced by points at earlier times in a finite domain of dependence and influences only points in a finite range of influence.

Typical wave diagram for vector model problem.

Conservation laws	Upwind schemes	References
000000000000		
Weak and entropy solutions		

Weak solutions

Integral form (Gauss's theorem):

$$\int_{\Omega} \mathbf{q}(\mathbf{x}, t + \Delta t) \, d\mathbf{x} - \int_{\Omega} \mathbf{q}(\mathbf{x}, t) \, d\mathbf{x} \\ + \sum_{n=1}^{d} \int_{t}^{t+\Delta t} \int_{\partial\Omega} \mathbf{f}_{n}(\mathbf{q}(\mathbf{o}, t)) \, \sigma_{n}(\mathbf{o}) \, d\mathbf{o} \, dt = \int_{t}^{t+\Delta t} \int_{\Omega} \mathbf{s}(\mathbf{q}(\mathbf{x}, t)) \, d\mathbf{x}$$

Conservation laws	Upwind schemes	References
000000000000		
Weak and entropy solutions		

Weak solutions

Integral form (Gauss's theorem):

$$\int_{\Omega} \mathbf{q}(\mathbf{x}, t + \Delta t) \, d\mathbf{x} - \int_{\Omega} \mathbf{q}(\mathbf{x}, t) \, d\mathbf{x} \\ + \sum_{n=1}^{d} \int_{t}^{t+\Delta t} \int_{\partial\Omega} \mathbf{f}_{n}(\mathbf{q}(\mathbf{o}, t)) \, \sigma_{n}(\mathbf{o}) \, d\mathbf{o} \, dt = \int_{t}^{t+\Delta t} \int_{\Omega} \mathbf{s}(\mathbf{q}(\mathbf{x}, t)) \, d\mathbf{x}$$

Theorem (Weak solution)

 $q_0 \in L^{\infty}_{loc}(\mathbb{R}^d, S)$. $q \in L^{\infty}_{loc}(D, S)$ is weak solution if q satisfies

Conservation laws	Upwind schemes	References
0000000000000		
Weak and entropy solutions		

Weak solutions

Integral form (Gauss's theorem):

$$\int_{\Omega} \mathbf{q}(\mathbf{x}, t + \Delta t) \, d\mathbf{x} - \int_{\Omega} \mathbf{q}(\mathbf{x}, t) \, d\mathbf{x} \\ + \sum_{n=1}^{d} \int_{t}^{t+\Delta t} \int_{\partial\Omega} \mathbf{f}_{n}(\mathbf{q}(\mathbf{o}, t)) \, \sigma_{n}(\mathbf{o}) \, d\mathbf{o} \, dt = \int_{t}^{t+\Delta t} \int_{\Omega} \mathbf{s}(\mathbf{q}(\mathbf{x}, t)) \, d\mathbf{x}$$

Theorem (Weak solution)

 $q_0 \in L^{\infty}_{loc}(\mathbb{R}^d, S)$. $q \in L^{\infty}_{loc}(D, S)$ is weak solution if q satisfies

$$\int_{0}^{\infty} \int_{\mathbb{R}^d} \left[\frac{\partial \varphi}{\partial t} \cdot \mathbf{q} + \sum_{n=1}^d \frac{\partial \varphi}{\partial x_n} \cdot \mathbf{f}_n(\mathbf{q}) - \varphi \cdot \mathbf{s}(\mathbf{q}) \right] d\mathbf{x} \, dt + \int_{\mathbb{R}^d} \varphi(\mathbf{x}, 0) \cdot \mathbf{q}_0(\mathbf{x}) \, d\mathbf{x} = 0$$

for any test function $\varphi \in \mathrm{C}^1_0(D,S)$

Conservation laws	Finite volume methods	Upwind schemes	References
000000000000000000000000000000000000000			
Weak and entropy solutions			

Consider the 1d version of (1), $\mathbf{s}(\mathbf{q}) = 0$ integrated over interval $[x, x + dx] \times [t, t + dt]$

$$\int_{x}^{x+dx} \mathbf{q}(x',t+dt)dx' - \int_{x}^{x+dx} \mathbf{q}(x',t)dx' = -\int_{t}^{t+dt} \left[\mathbf{f}(\mathbf{q}(x+dx,t')) - f(\mathbf{q}(x,t'))\right]dt'$$

Conservation laws	Upwind schemes	References
000000000000000000000000000000000000000		
Weak and entropy solutions		

Consider the 1d version of (1), $\mathbf{s}(\mathbf{q}) = 0$ integrated over interval $[x, x + dx] \times [t, t + dt]$

$$\int_{x}^{x+dx} \mathbf{q}(x',t+dt)dx' - \int_{x}^{x+dx} \mathbf{q}(x',t)dx' = -\int_{t}^{t+dt} \left[\mathbf{f}(\mathbf{q}(x+dx,t')) - \mathbf{f}(\mathbf{q}(x,t')) \right] dt'$$

Assume a discontinuity traveling with speed $S = \frac{dx}{dt} \label{eq:S}$

x

x + dx

Conservation laws	Upwind schemes	References
000000000000000000000000000000000000000		
Weak and entropy colutions		

Consider the 1d version of (1), $\mathbf{s}(\mathbf{q}) = 0$ integrated over interval $[x, x + dx] \times [t, t + dt]$

$$\int_{x}^{x+dx} \mathbf{q}(x',t+dt)dx' - \int_{x}^{x+dx} \mathbf{q}(x',t)dx' = -\int_{t}^{t+dt} \left[\mathbf{f}(\mathbf{q}(x+dx,t')) - f(\mathbf{q}(x,t'))\right]dt'$$

Assume a discontinuity traveling with speed

$$S = \frac{dx}{dt}$$

State on the left of discontinuity is index with L, on the right with R Inserting the states into (8) gives

$$(\mathbf{q}_L - \mathbf{q}_R) dx = -[\mathbf{f}(\mathbf{q}_R) - \mathbf{f}(\mathbf{q}_L)] dt$$

Conservation laws	Upwind schemes	References
000000000000000000000000000000000000000		
Weak and entropy colutions		

Consider the 1d version of (1), $\mathbf{s}(\mathbf{q}) = 0$ integrated over interval $[x, x + dx] \times [t, t + dt]$

$$\int_{x}^{x+dx} \mathbf{q}(x',t+dt)dx' - \int_{x}^{x+dx} \mathbf{q}(x',t)dx' = -\int_{t}^{t+dt} \left[\mathbf{f}(\mathbf{q}(x+dx,t')) - f(\mathbf{q}(x,t'))\right]dt'$$

Assume a discontinuity traveling with speed

$$S = \frac{dx}{dt}$$

State on the left of discontinuity is index with L, on the right with R Inserting the states into (8) gives

$$(\mathbf{q}_L - \mathbf{q}_R) dx = - [\mathbf{f}(\mathbf{q}_R) - \mathbf{f}(\mathbf{q}_L)] dt$$

Or using the above speed definition

$$S(\mathbf{q}_R - \mathbf{q}_L) = \mathbf{f}(\mathbf{q}_R) - \mathbf{f}(\mathbf{q}_L)$$

Conservation laws	Upwind schemes	References
000000000000000000000000000000000000000		
Minute and antenness and strength		

Consider the 1d version of (1), $\mathbf{s}(\mathbf{q}) = 0$ integrated over interval $[x, x + dx] \times [t, t + dt]$

$$\int_{x}^{x+dx} \mathbf{q}(x',t+dt)dx' - \int_{x}^{x+dx} \mathbf{q}(x',t)dx' = -\int_{t}^{t+dt} \left[\mathbf{f}(\mathbf{q}(x+dx,t')) - f(\mathbf{q}(x,t'))\right]dt'$$

Assume a discontinuity traveling with speed

$$S = \frac{dx}{dt}$$

State on the left of discontinuity is index with L, on the right with R Inserting the states into (8) gives

$$(\mathbf{q}_L - \mathbf{q}_R) dx = - [\mathbf{f}(\mathbf{q}_R) - \mathbf{f}(\mathbf{q}_L)] dt$$

Or using the above speed definition

$$S(\mathbf{q}_R - \mathbf{q}_L) = \mathbf{f}(\mathbf{q}_R) - \mathbf{f}(\mathbf{q}_L)$$

This is called Rankine-Hugoniot jump relation. Note the form $\mathbf{f}(\mathbf{q}_R) = \mathbf{f}(\mathbf{q}_L)$ for S = 0 from which, for instance, the shock relations for Euler equations are derived.

Conservation laws	Upwind schemes	References
0000000000000		
Weak and entropy solutions		

Select physical weak solution as $\lim_{\varepsilon \to 0} \mathbf{q}_{\varepsilon} = \mathbf{q}$ almost everywhere in D of

$$\frac{\partial \mathbf{q}_{\varepsilon}}{\partial t} + \sum_{n=1}^{d} \frac{\partial \mathbf{f}_{n}(\mathbf{q}_{\varepsilon})}{\partial x_{n}} - \varepsilon \sum_{n=1}^{d} \frac{\partial^{2} \mathbf{q}_{\varepsilon}}{\partial x_{n}^{2}} = \mathbf{s}(\mathbf{q}_{\varepsilon}), \ \mathbf{x} \in \mathbb{R}^{d}, \ t > 0$$

Conservation laws	Upwind schemes	References
000000000000		
Weak and entropy solutions		

Select physical weak solution as $\lim_{\varepsilon\to 0} \mathbf{q}_\varepsilon = \mathbf{q}$ almost everywhere in D of

$$\frac{\partial \mathbf{q}_{\varepsilon}}{\partial t} + \sum_{n=1}^{d} \frac{\partial \mathbf{f}_{n}(\mathbf{q}_{\varepsilon})}{\partial x_{n}} - \varepsilon \sum_{n=1}^{d} \frac{\partial^{2} \mathbf{q}_{\varepsilon}}{\partial x_{n}^{2}} = \mathbf{s}(\mathbf{q}_{\varepsilon}), \ \mathbf{x} \in \mathbb{R}^{d}, \ t > 0$$

Theorem (Entropy condition)

Assume existence of entropy $\eta \in C^2(S, \mathbb{R})$ and entropy fluxes $\psi_n \in C^1(S, \mathbb{R})$ that satisfy

Conservation laws	Upwind schemes	References
000000000000000000000000000000000000000		
Weak and entropy solutions		

Select physical weak solution as $\lim_{\varepsilon\to 0} \mathbf{q}_\varepsilon = \mathbf{q}$ almost everywhere in D of

$$\frac{\partial \mathbf{q}_{\varepsilon}}{\partial t} + \sum_{n=1}^{d} \frac{\partial \mathbf{f}_{n}(\mathbf{q}_{\varepsilon})}{\partial x_{n}} - \varepsilon \sum_{n=1}^{d} \frac{\partial^{2} \mathbf{q}_{\varepsilon}}{\partial x_{n}^{2}} = \mathbf{s}(\mathbf{q}_{\varepsilon}), \ \mathbf{x} \in \mathbb{R}^{d}, \ t > 0$$

Theorem (Entropy condition)

Assume existence of entropy $\eta \in C^2(S, \mathbb{R})$ and entropy fluxes $\psi_n \in C^1(S, \mathbb{R})$ that satisfy

$$\frac{\partial \eta(\mathbf{q})}{\partial \mathbf{q}}^{T} \cdot \frac{\partial \mathbf{f}_{n}(\mathbf{q})}{\partial \mathbf{q}} = \frac{\partial \psi_{n}(\mathbf{q})}{\partial \mathbf{q}}^{T}, \quad n = 1, \dots, d$$

Conservation laws	Upwind schemes	References
000000000000000000000000000000000000000		
Weak and entropy solutions		

Select physical weak solution as $\lim_{\varepsilon \to 0} \mathbf{q}_{\varepsilon} = \mathbf{q}$ almost everywhere in D of

$$\frac{\partial \mathbf{q}_{\varepsilon}}{\partial t} + \sum_{n=1}^{d} \frac{\partial \mathbf{f}_{n}(\mathbf{q}_{\varepsilon})}{\partial x_{n}} - \varepsilon \sum_{n=1}^{d} \frac{\partial^{2} \mathbf{q}_{\varepsilon}}{\partial x_{n}^{2}} = \mathbf{s}(\mathbf{q}_{\varepsilon}), \ \mathbf{x} \in \mathbb{R}^{d}, \ t > 0$$

Theorem (Entropy condition)

Assume existence of entropy $\eta \in C^2(S, \mathbb{R})$ and entropy fluxes $\psi_n \in C^1(S, \mathbb{R})$ that satisfy

$$rac{\partial \eta(\mathbf{q})}{\partial \mathbf{q}}^{T} \cdot rac{\partial \mathbf{f}_n(\mathbf{q})}{\partial \mathbf{q}} = rac{\partial \psi_n(\mathbf{q})}{\partial \mathbf{q}}^{T}, \quad n = 1, \dots, d$$

then $\lim_{\epsilon\to 0} {\bm q}_{\epsilon} = {\bm q}$ almost everywhere in D is weak solution and satisfies

$$\frac{\partial \eta(\mathbf{q})}{\partial t} + \sum_{n=1}^{d} \frac{\partial \psi_n(\mathbf{q})}{\partial x_n} \leq \frac{\partial \eta(\mathbf{q})}{\partial \mathbf{q}}^T \cdot \mathbf{s}(\mathbf{q})$$

in the sense of distributions. Proof: [Godlewski and Raviart, 1996]

Conservation laws	Upwind schemes	References
0000000000000		
Weak and entropy solutions		

Definition (Entropy solution)

Weak solution \boldsymbol{q} is called an entropy solution if \boldsymbol{q} satisfies

Conservation laws	Upwind schemes	References
000000000000000000000000000000000000000		
Weak and entropy solutions		

Definition (Entropy solution)

Weak solution ${\boldsymbol{q}}$ is called an entropy solution if ${\boldsymbol{q}}$ satisfies

$$\int_{0}^{\infty} \int_{\mathbb{R}^d} \left[\frac{\partial \varphi}{\partial t} \eta(\mathbf{q}) + \sum_{n=1}^d \frac{\partial \varphi}{\partial x_n} \psi_n(\mathbf{q}) - \varphi \frac{\partial \eta(\mathbf{q})}{\partial \mathbf{q}}^T \cdot \mathbf{s}(\mathbf{q}) \right] d\mathbf{x} \, dt + \int_{\mathbb{R}^d} \varphi(\mathbf{x}, 0) \, \eta(\mathbf{q}_0(\mathbf{x})) \, d\mathbf{x} \ge 0$$

for all entropy functions $\eta(\mathbf{q})$ and all test functions $\varphi \in \mathrm{C}^1_0(D,\mathbb{R}^+_0), \, \varphi \geq 0$

Conservation laws	Upwind schemes	References
000000000000000000000000000000000000000		
Weak and entropy solutions		

Definition (Entropy solution)

Weak solution ${\boldsymbol{q}}$ is called an entropy solution if ${\boldsymbol{q}}$ satisfies

$$\int_{0}^{\infty} \int_{\mathbb{R}^d} \left[\frac{\partial \varphi}{\partial t} \eta(\mathbf{q}) + \sum_{n=1}^d \frac{\partial \varphi}{\partial x_n} \psi_n(\mathbf{q}) - \varphi \frac{\partial \eta(\mathbf{q})}{\partial \mathbf{q}}^T \cdot \mathbf{s}(\mathbf{q}) \right] d\mathbf{x} \, dt + \int_{\mathbb{R}^d} \varphi(\mathbf{x}, 0) \, \eta(\mathbf{q}_0(\mathbf{x})) \, d\mathbf{x} \ge 0$$

for all entropy functions $\eta({\bf q})$ and all test functions $\varphi\in {\rm C}_0^1(D,\mathbb{R}_0^+),\,\varphi\geq 0$

Theorem (Jump conditions)

An entropy solution q is a classical solution $q \in C^1(D,S)$ almost everywhere and satisfies the Rankine-Hugoniot (RH) jump condition

$$\left(\mathbf{q}^{+}-\mathbf{q}^{-}\right)\sigma_{t}+\sum_{n=1}^{d}\left(\mathbf{f}_{n}(\mathbf{q}^{+})-\mathbf{f}_{n}(\mathbf{q}^{-})\right)\sigma_{n}=\mathbf{0}$$

Conservation laws	Upwind schemes	References
000000000000000000000000000000000000000		
Weak and entropy solutions		

Definition (Entropy solution)

Weak solution \mathbf{q} is called an entropy solution if \mathbf{q} satisfies

$$\int_{0}^{\infty} \int_{\mathbb{R}^d} \left[\frac{\partial \varphi}{\partial t} \eta(\mathbf{q}) + \sum_{n=1}^d \frac{\partial \varphi}{\partial x_n} \psi_n(\mathbf{q}) - \varphi \frac{\partial \eta(\mathbf{q})}{\partial \mathbf{q}}^T \cdot \mathbf{s}(\mathbf{q}) \right] d\mathbf{x} \, dt + \int_{\mathbb{R}^d} \varphi(\mathbf{x}, 0) \, \eta(\mathbf{q}_0(\mathbf{x})) \, d\mathbf{x} \ge 0$$

for all entropy functions $\eta(\mathbf{q})$ and all test functions $arphi \in \mathrm{C}_0^1(D,\mathbb{R}^+_0), \, arphi \geq 0$

Theorem (Jump conditions)

An entropy solution q is a classical solution $q \in C^1(D,S)$ almost everywhere and satisfies the Rankine-Hugoniot (RH) jump condition

$$\left(\mathbf{q}^{+}-\mathbf{q}^{-}\right)\sigma_{t}+\sum_{n=1}^{d}\left(\mathbf{f}_{n}(\mathbf{q}^{+})-\mathbf{f}_{n}(\mathbf{q}^{-})\right)\sigma_{n}=\mathbf{0}$$

and the jump inequality

$$\left(\eta(\mathbf{q}^+) - \eta(\mathbf{q}^-)\right)\sigma_t + \sum_{n=1}^d \left(\psi_n(\mathbf{q}^+) - \psi_n(\mathbf{q}^-)\right)\sigma_n \le 0$$

along discontinuities. Proof: [Godlewski and Raviart, 1996]

Conservation laws	Upwind schemes	References
000000000000000		
Characteristic form of the Euler equations		

Euler equations

$$\begin{aligned} \frac{\partial \rho}{\partial t} &+ \frac{\partial}{\partial x_n} (\rho u_n) = 0\\ \frac{\partial}{\partial t} (\rho u_k) &+ \frac{\partial}{\partial x_n} (\rho u_k u_n + \delta_{kn} p) = 0, \quad k = 1, \dots, d\\ \frac{\partial}{\partial t} (\rho E) &+ \frac{\partial}{\partial x_n} (u_n (\rho E + p)) = 0 \end{aligned}$$
Conservation laws	Upwind schemes	References
0000000000000000		
Characteristic form of the Euler equations		

Euler equations

$$\begin{aligned} \frac{\partial \rho}{\partial t} &+ \frac{\partial}{\partial x_n} (\rho u_n) = 0\\ \frac{\partial}{\partial t} (\rho u_k) &+ \frac{\partial}{\partial x_n} (\rho u_k u_n + \delta_{kn} p) = 0, \quad k = 1, \dots, d\\ \frac{\partial}{\partial t} (\rho E) &+ \frac{\partial}{\partial x_n} (u_n (\rho E + p)) = 0 \end{aligned}$$

with polytrope gas equation of state

$$p = (\gamma - 1) \left(\rho E - \frac{1}{2} \rho u_n u_n \right)$$

Conservation laws	Upwind schemes	References
0000000000000000		
Characteristic form of the Euler equations		

Euler equations

$$\begin{aligned} \frac{\partial \rho}{\partial t} &+ \frac{\partial}{\partial x_n} (\rho u_n) = 0\\ \frac{\partial}{\partial t} (\rho u_k) &+ \frac{\partial}{\partial x_n} (\rho u_k u_n + \delta_{kn} p) = 0, \quad k = 1, \dots, d\\ \frac{\partial}{\partial t} (\rho E) &+ \frac{\partial}{\partial x_n} (u_n (\rho E + p)) = 0 \end{aligned}$$

with polytrope gas equation of state

$$p = (\gamma - 1) \left(\rho E - \frac{1}{2} \rho u_n u_n \right)$$

have structure

$$\partial_t \mathbf{q}(\mathbf{x},t) + \nabla \cdot \mathbf{f}(\mathbf{q}(\mathbf{x},t)) = 0$$

Conservation laws	Upwind schemes	References
00000000000000		
Characteristic form of the Euler equations		

Characteristic form of the Euler equations

The Jacobian can be written in different forms, using

$$a^2 = \gamma \frac{p}{\rho}, \quad h = e + \frac{p}{\rho}, \quad H = h + \frac{1}{2}u^2 \quad \Rightarrow \quad H = \frac{a^2}{\gamma - 1} + \frac{1}{2}u^2$$

For

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0\\ \frac{\gamma - 3}{2}u^2 & (3 - \gamma)u & \gamma - 1\\ -uH + \frac{1}{2}(\gamma - 1)u^3 & H - (\gamma - 1)u^2 & \gamma u \end{bmatrix}$$

Conservation laws	Upwind schemes	References
00000000000000		
Characteristic form of the Euler equations		

Characteristic form of the Euler equations

The Jacobian can be written in different forms, using

$$a^2 = \gamma \frac{p}{\rho}, \quad h = e + \frac{p}{\rho}, \quad H = h + \frac{1}{2}u^2 \quad \Rightarrow \quad H = \frac{a^2}{\gamma - 1} + \frac{1}{2}u^2$$

For

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0\\ \frac{\gamma - 3}{2}u^2 & (3 - \gamma)u & \gamma - 1\\ -uH + \frac{1}{2}(\gamma - 1)u^3 & H - (\gamma - 1)u^2 & \gamma u \end{bmatrix}$$

The matrices

$$\mathbf{R} = \begin{bmatrix} 1 & 1 & 1 \\ u - a & u & u + a \\ H - ua & \frac{1}{2}u^2 & H + ua \end{bmatrix}$$

$$\mathbf{R}^{-1} = \frac{1}{2a^2} \begin{bmatrix} \frac{1}{2}(\gamma - 1)u^2 + ua & (1 - \gamma)u - a & \gamma - 1\\ 2a^2 - (\gamma - 1)u^2 & 2(\gamma - 1)u & 2(1 - \gamma)\\ \frac{1}{2}(\gamma - 1)u^2 - ua & (1 - \gamma)u + a & \gamma - 1 \end{bmatrix}$$

diagonalize A as

Conservation laws	Finite volume methods	Upwind schemes	References
000000000000000000000000000000000000000			
Characteristic form of the Euler equations			

Characteristic form of the Euler equations - II

$$\mathbf{R}^{-1} \mathbf{A} \mathbf{R} = \Lambda = \left(\begin{array}{ccc} u - a & 0 & 0 \\ 0 & u & 0 \\ 0 & 0 & u + a \end{array} \right)$$

Conservation laws	Finite volume methods	Upwind schemes	References
000000000000000000000000000000000000000			
Characteristic form of the Euler equations			

Characteristic form of the Euler equations - II

$$\mathbf{R}^{-1} \mathbf{A} \mathbf{R} = \Lambda = \left(\begin{array}{ccc} u - a & 0 & 0 \\ 0 & u & 0 \\ 0 & 0 & u + a \end{array} \right)$$

The transformation $\mathbf{R}^{-1}d\mathbf{q} = \mathbf{R}^{-1}(d\rho, d(\rho u), d(\rho E))^T$ into characteristic variables therefore leads to

$$\frac{\partial \mathbf{v}^{-}}{\partial t} + (u - a)\frac{\partial \mathbf{v}^{-}}{\partial x} = 0$$
$$\frac{\partial \mathbf{v}_{0}}{\partial t} + u\frac{\partial \mathbf{v}_{0}}{\partial x} = 0$$
$$\frac{\partial \mathbf{v}^{+}}{\partial t} + (u + a)\frac{\partial \mathbf{v}^{+}}{\partial x} = 0$$

Conservation laws	Finite volume methods	Upwind schemes	References
000000000000000000000000000000000000000			
Characteristic form of the Euler equations			

Characteristic form of the Euler equations - II

$$\mathbf{R}^{-1} \mathbf{A} \mathbf{R} = \Lambda = \left(\begin{array}{ccc} u - a & 0 & 0 \\ 0 & u & 0 \\ 0 & 0 & u + a \end{array} \right)$$

The transformation $\mathbf{R}^{-1}d\mathbf{q} = \mathbf{R}^{-1}(d\rho, d(\rho u), d(\rho E))^{T}$ into characteristic variables therefore leads to

$$\frac{\partial \mathbf{v}^{-}}{\partial t} + (u - a)\frac{\partial \mathbf{v}^{-}}{\partial x} = 0$$
$$\frac{\partial \mathbf{v}_{0}}{\partial t} + u\frac{\partial \mathbf{v}_{0}}{\partial x} = 0$$
$$\frac{\partial \mathbf{v}^{+}}{\partial t} + (u + a)\frac{\partial \mathbf{v}^{+}}{\partial x} = 0$$

with

$$dv^{-} = du - \frac{dp}{\rho a} = 0 \quad \text{for} \quad dx = (u - a)dt$$
$$dv_{0} = d\rho - \frac{dp}{a^{2}} = 0 \quad \text{for} \quad dx = u \, dt$$
$$dv^{+} = du + \frac{dp}{\rho a} = 0 \quad \text{for} \quad dx = (u + a)dt$$

The crossing of characteristics causes a shock wave.

Conservation laws	Finite volume methods	Upwind schemes	References
000000000000000000000000000000000000000			
Characteristic form of the Euler equations			

Rarefaction and shock waves in the x - t plane

Consider the two enclosing characteristics $b_1(t) \le x \le y \le b_2(t)$

Conservation laws	Finite volume methods	Upwind schemes	References
000000000000000000000000000000000000000			
Characteristic form of the Euler equations			

Rarefaction and shock waves in the x - t plane

Consider the two enclosing characteristics $b_1(t) \le x \le y \le b_2(t)$

Rarefaction:

$$u(x,t)\pm a(x,t) \leq u(y,t)\pm a(y,t)$$

Rarefaction and shock waves in the x - t plane

Consider the two enclosing characteristics $b_1(t) \le x \le y \le b_2(t)$

Rarefaction:

$$u(x,t)\pm a(x,t) \leq u(y,t)\pm a(y,t)$$

Shocks:

$$u(x,t)\pm a(x,t) \geq u(y,t)\pm a(y,t)$$

which gives for the shock speed

$$u_L \pm a_L \ge S \ge u_R \pm a_R$$

Conservation laws	Upwind schemes	References
00000000000000		
Navier-Stokes equations		

$$\begin{split} \frac{\partial \rho}{\partial t} &+ \frac{\partial}{\partial x_n} (\rho u_n) = 0\\ \frac{\partial}{\partial t} (\rho u_k) &+ \frac{\partial}{\partial x_n} (\rho u_k u_n + \delta_{kn} p - \tau_{kn}) = 0 , \quad k = 1, \dots, d\\ \frac{\partial}{\partial t} (\rho E) &+ \frac{\partial}{\partial x_n} (u_n (\rho E + p) + q_n - \tau_{nj} u_j) = 0 \end{split}$$

Conservation laws	Upwind schemes	References
000000000000000		
Navier-Stokes equations		

$$\begin{split} \frac{\partial \rho}{\partial t} &+ \frac{\partial}{\partial x_n} (\rho u_n) = 0\\ \frac{\partial}{\partial t} (\rho u_k) &+ \frac{\partial}{\partial x_n} (\rho u_k u_n + \delta_{kn} p - \tau_{kn}) = 0, \quad k = 1, \dots, d\\ \frac{\partial}{\partial t} (\rho E) &+ \frac{\partial}{\partial x_n} (u_n (\rho E + p) + q_n - \tau_{nj} u_j) = 0 \end{split}$$

with stress tensor

$$\tau_{kn} = \mu \Big(\frac{\partial u_n}{\partial x_k} + \frac{\partial u_k}{\partial x_n} \Big) - \frac{2}{3} \mu \frac{\partial u_j}{\partial x_j} \delta_{kn}$$

and heat conduction

$$q_n = -\lambda \frac{\partial T}{\partial x_n}$$

Conservation laws	Finite volume methods	Upwind schemes	References
000000000000000			
Navier-Stokes equations			

$$\begin{split} \frac{\partial \rho}{\partial t} &+ \frac{\partial}{\partial x_n} (\rho u_n) = 0\\ \frac{\partial}{\partial t} (\rho u_k) &+ \frac{\partial}{\partial x_n} (\rho u_k u_n + \delta_{kn} p - \tau_{kn}) = 0 , \quad k = 1, \dots, d\\ \frac{\partial}{\partial t} (\rho E) &+ \frac{\partial}{\partial x_n} (u_n (\rho E + p) + q_n - \tau_{nj} u_j) = 0 \end{split}$$

with stress tensor

$$\tau_{kn} = \mu \Big(\frac{\partial u_n}{\partial x_k} + \frac{\partial u_k}{\partial x_n} \Big) - \frac{2}{3} \mu \frac{\partial u_j}{\partial x_j} \delta_{kn}$$

and heat conduction

$$q_n = -\lambda \frac{\partial T}{\partial x_n}$$

have structure

$$\partial_t \mathbf{q}(\mathbf{x},t) +
abla \cdot \mathbf{f}(\mathbf{q}(\mathbf{x},t)) +
abla \cdot \mathbf{h}(\mathbf{q}(\mathbf{x},t),
abla \mathbf{q}(\mathbf{x},t)) = 0$$

Conservation laws	Upwind schemes	References
000000000000000		
Navier-Stokes equations		

$$\begin{split} \frac{\partial \rho}{\partial t} &+ \frac{\partial}{\partial x_n} (\rho u_n) = 0\\ \frac{\partial}{\partial t} (\rho u_k) &+ \frac{\partial}{\partial x_n} (\rho u_k u_n + \delta_{kn} p - \tau_{kn}) = 0 , \quad k = 1, \dots, d\\ \frac{\partial}{\partial t} (\rho E) &+ \frac{\partial}{\partial x_n} (u_n (\rho E + p) + q_n - \tau_{nj} u_j) = 0 \end{split}$$

with stress tensor

$$\tau_{kn} = \mu \Big(\frac{\partial u_n}{\partial x_k} + \frac{\partial u_k}{\partial x_n} \Big) - \frac{2}{3} \mu \frac{\partial u_j}{\partial x_j} \delta_{kn}$$

and heat conduction

$$q_n = -\lambda \frac{\partial T}{\partial x_n}$$

have structure

$$\partial_t \mathbf{q}(\mathbf{x},t) +
abla \cdot \mathbf{f}(\mathbf{q}(\mathbf{x},t)) +
abla \cdot \mathbf{h}(\mathbf{q}(\mathbf{x},t),
abla \mathbf{q}(\mathbf{x},t)) = 0$$

Type can be either hyperbolic or parabolic

Conservation laws	Finite volume methods	Upwind schemes	References
00000000000000			
Navier-Stokes equations			

Navier-Stokes equations for multiple species

For multiple species with chemical reaction, the Navier-Stokes equations would be extended to

$$\frac{\partial \rho_i}{\partial t} + \frac{\partial}{\partial x_n} (\rho_i u_n + \rho \nu_{in}) = W_i \dot{\omega}_i, \qquad i = 1, \dots, N$$
$$\frac{\partial}{\partial t} (\rho u_k) + \frac{\partial}{\partial x_n} (\rho u_k u_n + \delta_{kn} p - \tau_{kn}) = 0, \qquad k = 1, \dots, d$$
$$\frac{\partial}{\partial t} (\rho E) + \frac{\partial}{\partial x_n} (u_n (\rho E + p) + q_n + \rho \sum_j h_j \nu_{jn} - \tau_{nj} u_j) = 0$$

with diffusivities

$$\nu_{in} = D_i \frac{\partial Y_i}{\partial x_n}$$

of species i into the mixture (note difference to binary diffusivities).

Conservation laws	Finite volume methods	Upwind schemes	References
0000000000000			
Navier-Stokes equations			

Navier-Stokes equations for multiple species

For multiple species with chemical reaction, the Navier-Stokes equations would be extended to

$$\frac{\partial \rho_i}{\partial t} + \frac{\partial}{\partial x_n} (\rho_i u_n + \rho \nu_{in}) = W_i \dot{\omega}_i, \qquad i = 1, \dots, N$$
$$\frac{\partial}{\partial t} (\rho u_k) + \frac{\partial}{\partial x_n} (\rho u_k u_n + \delta_{kn} p - \tau_{kn}) = 0, \qquad k = 1, \dots, d$$
$$\frac{\partial}{\partial t} (\rho E) + \frac{\partial}{\partial x_n} (u_n (\rho E + p) + q_n + \rho \sum_j h_j \nu_{jn} - \tau_{nj} u_j) = 0$$

with diffusivities

$$\nu_{in} = D_i \frac{\partial Y_i}{\partial x_n}$$

of species i into the mixture (note difference to binary diffusivities). The equation of state

$$p = \sum_{i} \rho_i R_i T$$

still contains the temperature, which complicates the analysis.

Conservation laws	Finite volume methods	Upwind schemes	References
00000000000000			
Navier-Stokes equations			

Navier-Stokes equations for multiple species

For multiple species with chemical reaction, the Navier-Stokes equations would be extended to

$$\frac{\partial \rho_i}{\partial t} + \frac{\partial}{\partial x_n} (\rho_i u_n + \rho \nu_{in}) = W_i \dot{\omega}_i, \qquad i = 1, \dots, N$$
$$\frac{\partial}{\partial t} (\rho u_k) + \frac{\partial}{\partial x_n} (\rho u_k u_n + \delta_{kn} p - \tau_{kn}) = 0, \qquad k = 1, \dots, d$$
$$\frac{\partial}{\partial t} (\rho E) + \frac{\partial}{\partial x_n} (u_n (\rho E + p) + q_n + \rho \sum_j h_j \nu_{jn} - \tau_{nj} u_j) = 0$$

with diffusivities

$$\nu_{in} = D_i \frac{\partial Y_i}{\partial x_n}$$

of species i into the mixture (note difference to binary diffusivities). The equation of state

$$p = \sum_{i} \rho_i R_i T$$

still contains the temperature, which complicates the analysis. The structure is

$$\partial_t \mathbf{q}(\mathbf{x},t) + \nabla \cdot \mathbf{f}(\mathbf{q}(\mathbf{x},t)) + \nabla \cdot \mathbf{h}(\mathbf{q}(\mathbf{x},t),\nabla \mathbf{q}(\mathbf{x},t)) = \mathbf{s}(\mathbf{q}(\mathbf{x},t))$$

Conservation laws	Finite volume methods	Upwind schemes	References

Outline

Conservation laws

Mathematical background Characteristic information Weak and entropy solutions Characteristic form of the Euler equations Navier-Stokes equations

Finite volume methods

Basics of finite difference methods Splitting methods, second derivatives

Upwind schemes

The linear Riemann problem Flux-difference splitting Flux-vector splitting

Conservation laws	Finite volume methods	Upwind schemes	References
	00000		
Basics of finite difference methods			

Assume $\partial_t \mathbf{q} + \partial_x \mathbf{f}(\mathbf{q}) + \partial_x \mathbf{h}(\mathbf{q}(\cdot, \partial_x \mathbf{q})) = \mathbf{s}(\mathbf{q})$

Conservation laws	Finite volume methods	Upwind schemes	References
	00000		
Basics of finite difference methods			

Assume $\partial_t \mathbf{q} + \partial_x \mathbf{f}(\mathbf{q}) + \partial_x \mathbf{h}(\mathbf{q}(\cdot, \partial_x \mathbf{q})) = \mathbf{s}(\mathbf{q})$

Time discretization $t_n = n\Delta t$, discrete volumes $I_j = [x_j - \frac{1}{2}\Delta x, x_j + \frac{1}{2}\Delta x] =: [x_{j-1/2}, x_{j+1/2}]$

Conservation laws	Finite volume methods	Upwind schemes	References
	00000		
Basics of finite difference methods			

Assume
$$\partial_t \mathbf{q} + \partial_x \mathbf{f}(\mathbf{q}) + \partial_x \mathbf{h}(\mathbf{q}(\cdot, \partial_x \mathbf{q})) = \mathbf{s}(\mathbf{q})$$

Time discretization $t_n = n\Delta t$, discrete volumes
 $l_j = [x_j - \frac{1}{2}\Delta x, x_j + \frac{1}{2}\Delta x] =: [x_{j-1/2}, x_{j+1/2}]$
Using approximations $\mathbf{Q}_j(t) \approx \frac{1}{|l_j|} \int_{l_j} \mathbf{q}(\mathbf{x}, t) dx$, $\mathbf{s}(\mathbf{Q}_j(t)) \approx \frac{1}{|l_j|} \int_{l_j} \mathbf{s}(\mathbf{q}(\mathbf{x}, t)) dx$

and numerical fluxes

$$\mathsf{F}\left(\mathsf{Q}_{j}(t),\mathsf{Q}_{j+1}(t)\right) \approx \mathsf{f}(\mathsf{q}(x_{j+1/2},t)), \quad \mathsf{H}\left(\mathsf{Q}_{j}(t),\mathsf{Q}_{j+1}(t)\right) \approx \mathsf{h}(\mathsf{q}(x_{j+1/2},t),\nabla\mathsf{q}(x_{j+1/2},t))$$

Conservation laws	Finite volume methods	Upwind schemes	References
	00000		
Basics of finite difference methods			

Assume
$$\partial_t \mathbf{q} + \partial_x \mathbf{f}(\mathbf{q}) + \partial_x \mathbf{h}(\mathbf{q}(\cdot, \partial_x \mathbf{q})) = \mathbf{s}(\mathbf{q})$$

Time discretization $t_n = n\Delta t$, discrete volumes
 $l_j = [x_j - \frac{1}{2}\Delta x, x_j + \frac{1}{2}\Delta x] =: [x_{j-1/2}, x_{j+1/2}]$
Using approximations $\mathbf{Q}_j(t) \approx \frac{1}{|l_j|} \int_{l_j} \mathbf{q}(\mathbf{x}, t) dx$, $\mathbf{s}(\mathbf{Q}_j(t)) \approx \frac{1}{|l_j|} \int_{l_j} \mathbf{s}(\mathbf{q}(\mathbf{x}, t)) dx$

and numerical fluxes

$$\begin{split} & \mathsf{F}\left(\mathsf{Q}_{j}(t),\mathsf{Q}_{j+1}(t)\right) \approx \mathsf{f}(\mathsf{q}(x_{j+1/2},t)), \quad \mathsf{H}\left(\mathsf{Q}_{j}(t),\mathsf{Q}_{j+1}(t)\right) \approx \mathsf{h}(\mathsf{q}(x_{j+1/2},t),\nabla\mathsf{q}(x_{j+1/2},t)) \\ & \text{ yields after integration (Gauss theorem)} \end{split}$$

$$\begin{aligned} \mathbf{Q}_{j}(t_{n+1}) &= \mathbf{Q}_{j}(t_{n}) - \frac{1}{\Delta x} \int_{t_{n}}^{t_{n+1}} \left[\mathbf{F} \left(\mathbf{Q}_{j}(t), \mathbf{Q}_{j+1}(t) \right) - \mathbf{F} \left(\mathbf{Q}_{j-1}(t), \mathbf{Q}_{j}(t) \right) \right] dt - \\ & \frac{1}{\Delta x} \int_{t_{n}}^{t_{n+1}} \left[\mathbf{H} \left(\mathbf{Q}_{j}(t), \mathbf{Q}_{j+1}(t) \right) - \mathbf{H} \left(\mathbf{Q}_{j-1}(t), \mathbf{Q}_{j}(t) \right) \right] dt + \int_{t_{n}}^{t_{n+1}} \mathbf{s}(\mathbf{Q}_{j}(t)) dt \end{aligned}$$

Conservation laws	Finite volume methods	Upwind schemes	References
	00000		
Basics of finite difference methods			

Assume
$$\partial_t \mathbf{q} + \partial_x \mathbf{f}(\mathbf{q}) + \partial_x \mathbf{h}(\mathbf{q}(\cdot, \partial_x \mathbf{q})) = \mathbf{s}(\mathbf{q})$$

Time discretization $t_n = n\Delta t$, discrete volumes
 $I_j = [x_j - \frac{1}{2}\Delta x, x_j + \frac{1}{2}\Delta x] =: [x_{j-1/2}, x_{j+1/2}]$
Using approximations $\mathbf{Q}_j(t) \approx \frac{1}{|I_j|} \int_{I_j} \mathbf{q}(\mathbf{x}, t) dx$, $\mathbf{s}(\mathbf{Q}_j(t)) \approx \frac{1}{|I_j|} \int_{I_j} \mathbf{s}(\mathbf{q}(\mathbf{x}, t)) dx$

and numerical fluxes

$$\begin{split} \mathbf{F}\left(\mathbf{Q}_{j}(t),\mathbf{Q}_{j+1}(t)\right) &\approx \mathbf{f}(\mathbf{q}(x_{j+1/2},t)), \quad \mathbf{H}\left(\mathbf{Q}_{j}(t),\mathbf{Q}_{j+1}(t)\right) \approx \mathbf{h}(\mathbf{q}(x_{j+1/2},t),\nabla\mathbf{q}(x_{j+1/2},t)) \\ \text{yields after integration (Gauss theorem)} \end{split}$$

$$\begin{aligned} \mathbf{Q}_{j}(t_{n+1}) &= \mathbf{Q}_{j}(t_{n}) - \frac{1}{\Delta x} \int_{t_{n}}^{t_{n+1}} \left[\mathbf{F}\left(\mathbf{Q}_{j}(t), \mathbf{Q}_{j+1}(t)\right) - \mathbf{F}\left(\mathbf{Q}_{j-1}(t), \mathbf{Q}_{j}(t)\right) \right] dt - \\ & \frac{1}{\Delta x} \int_{t_{n}}^{t_{n+1}} \left[\mathbf{H}\left(\mathbf{Q}_{j}(t), \mathbf{Q}_{j+1}(t)\right) - \mathbf{H}\left(\mathbf{Q}_{j-1}(t), \mathbf{Q}_{j}(t)\right) \right] dt + \int_{t_{n}}^{t_{n+1}} \mathbf{s}(\mathbf{Q}_{j}(t)) dt \end{aligned}$$

For instance:

$$\begin{split} \mathbf{Q}_{j}^{n+1} &= \mathbf{Q}_{j}^{n} - \frac{\Delta t}{\Delta x} \left[\mathbf{F} \left(\mathbf{Q}_{j}^{n}, \mathbf{Q}_{j+1}^{n} \right) - \mathbf{F} \left(\mathbf{Q}_{j-1}^{n}, \mathbf{Q}_{j}^{n} \right) \right] - \\ & \frac{\Delta t}{\Delta x} \left[\mathbf{H} \left(\mathbf{Q}_{j}^{n}, \mathbf{Q}_{j+1}^{n} \right) - \mathbf{H} \left(\mathbf{Q}_{j-1}^{n}, \mathbf{Q}_{j}^{n} \right) \right] + \Delta t \mathbf{s}(\mathbf{Q}_{j}^{n}) \, dt \end{split}$$

Conservation laws	Finite volume methods	Upwind schemes	References
	0000		
Basics of finite difference methods			

(2s + 1)-point difference scheme of the form

$$\mathbf{Q}_{j}^{n+1} = \mathcal{H}^{(\Delta t)}(\mathbf{Q}_{j-s}^{n},\ldots,\mathbf{Q}_{j+s}^{n})$$

Conservation laws	Finite volume methods	Upwind schemes	References
	0000		
Basics of finite difference methods			

(2s+1)-point difference scheme of the form

$$\mathbf{Q}_{j}^{n+1} = \mathcal{H}^{(\Delta t)}(\mathbf{Q}_{j-s}^{n},\ldots,\mathbf{Q}_{j+s}^{n})$$

Definition (Stability)

For each time τ there is a constant C_S and a value $n_0 \in \mathbb{N}$ such that $\|\mathcal{H}^{(\Delta t)}(\mathbf{Q}^n)\| \leq C_S$ for all $n\Delta t \leq \tau$, $n < n_0$

Conservation laws	Finite volume methods	Upwind schemes	References
	0000		
Basics of finite difference methods			

(2s + 1)-point difference scheme of the form

$$\mathbf{Q}_{j}^{n+1} = \mathcal{H}^{(\Delta t)}(\mathbf{Q}_{j-s}^{n},\ldots,\mathbf{Q}_{j+s}^{n})$$

Definition (Stability)

For each time τ there is a constant C_S and a value $n_0 \in \mathbb{N}$ such that $\|\mathcal{H}^{(\Delta t)}(\mathbf{Q}^n)\| \leq C_S$ for all $n\Delta t \leq \tau$, $n < n_0$

Definition (Consistency)

If the local truncation error

$$\mathcal{L}^{(\Delta t)}(\mathsf{x},t) := rac{1}{\Delta t} \left[\mathsf{q}(\mathsf{x},t+\Delta t) - \mathcal{H}^{(\Delta t)}(\mathsf{q}(\cdot,t))
ight]$$

satisfies $\|\mathcal{L}^{(\Delta t)}(\cdot,t)\|
ightarrow 0$ as $\Delta t
ightarrow 0$

Conservation laws	Finite volume methods	Upwind schemes	References
	0000		
Basics of finite difference methods			

(2s+1)-point difference scheme of the form

$$\mathbf{Q}_{j}^{n+1} = \mathcal{H}^{(\Delta t)}(\mathbf{Q}_{j-s}^{n},\ldots,\mathbf{Q}_{j+s}^{n})$$

Definition (Stability)

For each time τ there is a constant C_S and a value $n_0 \in \mathbb{N}$ such that $\|\mathcal{H}^{(\Delta t)}(\mathbf{Q}^n)\| \leq C_S$ for all $n\Delta t \leq \tau$, $n < n_0$

Definition (Consistency)

If the local truncation error

$$\mathcal{L}^{(\Delta t)}(\mathsf{x},t) \coloneqq rac{1}{\Delta t} \left[\mathsf{q}(\mathsf{x},t+\Delta t) - \mathcal{H}^{(\Delta t)}(\mathsf{q}(\cdot,t))
ight]$$

satisfies $\|\mathcal{L}^{(\Delta t)}(\cdot,t)\|
ightarrow 0$ as $\Delta t
ightarrow 0$

Definition (Convergence)

If the global error $\mathcal{E}^{(\Delta t)}(\mathbf{x},t) := \mathbf{Q}(\mathbf{x},t) - \mathbf{q}(\mathbf{x},t)$ satisfies $\|\mathcal{E}^{(\Delta t)}(\cdot,t)\| \to 0$ as $\Delta t \to 0$ for all admissible initial data $\mathbf{q}_0(\mathbf{x})$

Conservation laws	Finite volume methods	Upwind schemes	References
	00000		
Basics of finite difference methods			

Definition (Order of accuracy)

 $\mathcal{H}(\cdot)$ is accurate of order o if for all sufficiently smooth initial data $\mathbf{q}_0(\mathbf{x})$, there is a constant C_L , such that the local truncation error satisfies $\|\mathcal{L}^{(\Delta t)}(\cdot, t)\| \leq C_L \Delta t^o$ for all $\Delta t < \Delta t_0$, $t \leq \tau$

Conservation laws	Finite volume methods	Upwind schemes	References
	00000		
Basics of finite difference methods			

Definition (Order of accuracy)

 $\mathcal{H}(\cdot)$ is accurate of order o if for all sufficiently smooth initial data $\mathbf{q}_0(\mathbf{x})$, there is a constant C_L , such that the local truncation error satisfies $\|\mathcal{L}^{(\Delta t)}(\cdot, t)\| \leq C_L \Delta t^o$ for all $\Delta t < \Delta t_0$, $t \leq \tau$

Definition (Conservative form)

If $\mathcal{H}(\cdot)$ can be written in the form

$$\mathbf{Q}_{j}^{n+1} = \mathbf{Q}_{j}^{n} - \frac{\Delta t}{\Delta x} \left(\mathbf{F}(\mathbf{Q}_{j-s+1}^{n}, \dots, \mathbf{Q}_{j+s}^{n}) - \mathbf{F}(\mathbf{Q}_{j-s}^{n}, \dots, \mathbf{Q}_{j+s-1}^{n}) \right)$$

Conservation laws	Finite volume methods	Upwind schemes	References
	00000		
Basics of finite difference methods			

Definition (Order of accuracy)

 $\mathcal{H}(\cdot)$ is accurate of order o if for all sufficiently smooth initial data $\mathbf{q}_0(\mathbf{x})$, there is a constant C_L , such that the local truncation error satisfies $\|\mathcal{L}^{(\Delta t)}(\cdot, t)\| \leq C_L \Delta t^o$ for all $\Delta t < \Delta t_0$, $t \leq \tau$

Definition (Conservative form)

If $\mathcal{H}(\cdot)$ can be written in the form

$$\mathbf{Q}_{j}^{n+1} = \mathbf{Q}_{j}^{n} - \frac{\Delta t}{\Delta x} \left(\mathbf{F}(\mathbf{Q}_{j-s+1}^{n}, \dots, \mathbf{Q}_{j+s}^{n}) - \mathbf{F}(\mathbf{Q}_{j-s}^{n}, \dots, \mathbf{Q}_{j+s-1}^{n}) \right)$$

A conservative scheme satisfies

$$\sum_{j \in \mathbb{Z}} \mathbf{Q}_j^{n+1} = \sum_{j \in \mathbb{Z}} \mathbf{Q}_j^n$$

Conservation laws	Finite volume methods	Upwind schemes	References
	00000		
Basics of finite difference methods			

Definition (Order of accuracy)

 $\mathcal{H}(\cdot)$ is accurate of order o if for all sufficiently smooth initial data $\mathbf{q}_0(\mathbf{x})$, there is a constant C_L , such that the local truncation error satisfies $\|\mathcal{L}^{(\Delta t)}(\cdot, t)\| \leq C_L \Delta t^o$ for all $\Delta t < \Delta t_0$, $t \leq \tau$

Definition (Conservative form)

If $\mathcal{H}(\cdot)$ can be written in the form

$$\mathbf{Q}_{j}^{n+1} = \mathbf{Q}_{j}^{n} - \frac{\Delta t}{\Delta x} \left(\mathbf{F}(\mathbf{Q}_{j-s+1}^{n}, \dots, \mathbf{Q}_{j+s}^{n}) - \mathbf{F}(\mathbf{Q}_{j-s}^{n}, \dots, \mathbf{Q}_{j+s-1}^{n}) \right)$$

A conservative scheme satisfies

$$\sum_{j\,\in\mathbb{Z}} {f Q}_j^{n+1} = \sum_{j\,\in\mathbb{Z}} {f Q}_j^n$$

Definition (Consistency of a conservative method)

If the numerical flux satisfies $\textbf{F}(\textbf{q},\ldots,\textbf{q})=\textbf{f}(\textbf{q})$ for all $\textbf{q}\in S$

Conservation laws	Finite volume methods	Upwind schemes	References
	00000		
Splitting methods, second derivatives			
<u> </u>			

Solve homogeneous PDE and ODE successively!

$$\begin{aligned} \mathcal{H}^{(\Delta t)} : & \partial_t \mathbf{q} + \nabla \cdot \mathbf{f}(\mathbf{q}) = 0 , \quad \text{IC: } \mathbf{Q}(t_m) \stackrel{\Delta t}{\Longrightarrow} \tilde{\mathbf{Q}} \\ \mathcal{S}^{(\Delta t)} : & \partial_t \mathbf{q} = \mathbf{s}(\mathbf{q}) , \quad \text{IC: } \tilde{\mathbf{Q}} \stackrel{\Delta t}{\Longrightarrow} \mathbf{Q}(t_m + \Delta t) \end{aligned}$$

Conservation laws	Finite volume methods	Upwind schemes	References
	00000		
Splitting methods, second derivatives			
<u> </u>			

Solve homogeneous PDE and ODE successively!

$$\begin{aligned} \mathcal{H}^{(\Delta t)} : & \partial_t \mathbf{q} + \nabla \cdot \mathbf{f}(\mathbf{q}) = 0 , \quad \text{IC: } \mathbf{Q}(t_m) \stackrel{\Delta t}{\Longrightarrow} \tilde{\mathbf{Q}} \\ \mathcal{S}^{(\Delta t)} : & \partial_t \mathbf{q} = \mathbf{s}(\mathbf{q}) , \quad \text{IC: } \tilde{\mathbf{Q}} \stackrel{\Delta t}{\Longrightarrow} \mathbf{Q}(t_m + \Delta t) \end{aligned}$$

1st-order Godunov splitting: $\mathbf{Q}(t_m + \Delta t) = S^{(\Delta t)} \mathcal{H}^{(\Delta t)}(\mathbf{Q}(t_m))$,

Conservation laws	Finite volume methods	Upwind schemes	References
	00000		
Splitting methods, second derivatives			
<u> </u>			

Solve homogeneous PDE and ODE successively!

$$\begin{aligned} \mathcal{H}^{(\Delta t)} : & \partial_t \mathbf{q} + \nabla \cdot \mathbf{f}(\mathbf{q}) = 0 , \quad \text{IC: } \mathbf{Q}(t_m) \stackrel{\Delta t}{\Longrightarrow} \tilde{\mathbf{Q}} \\ \mathcal{S}^{(\Delta t)} : & \partial_t \mathbf{q} = \mathbf{s}(\mathbf{q}) , \quad \text{IC: } \tilde{\mathbf{Q}} \stackrel{\Delta t}{\Longrightarrow} \mathbf{Q}(t_m + \Delta t) \end{aligned}$$

1st-order Godunov splitting: $\mathbf{Q}(t_m + \Delta t) = S^{(\Delta t)} \mathcal{H}^{(\Delta t)}(\mathbf{Q}(t_m))$, 2nd-order Strang splitting : $\mathbf{Q}(t_m + \Delta t) = S^{(\frac{1}{2}\Delta t)} \mathcal{H}^{(\Delta t)} S^{(\frac{1}{2}\Delta t)}(\mathbf{Q}(t_m))$

Conservation laws	Finite volume methods	Upwind schemes	References
	00000		
Splitting methods, second derivatives			
<u> </u>			

Solve homogeneous PDE and ODE successively!

$$\begin{aligned} \mathcal{H}^{(\Delta t)} : & \partial_t \mathbf{q} + \nabla \cdot \mathbf{f}(\mathbf{q}) = 0 , \quad \text{IC: } \mathbf{Q}(t_m) \stackrel{\Delta t}{\Longrightarrow} \tilde{\mathbf{Q}} \\ \mathcal{S}^{(\Delta t)} : & \partial_t \mathbf{q} = \mathbf{s}(\mathbf{q}) , \quad \text{IC: } \tilde{\mathbf{Q}} \stackrel{\Delta t}{\Longrightarrow} \mathbf{Q}(t_m + \Delta t) \end{aligned}$$

1st-order Godunov splitting: $\mathbf{Q}(t_m + \Delta t) = S^{(\Delta t)} \mathcal{H}^{(\Delta t)}(\mathbf{Q}(t_m))$, 2nd-order Strang splitting : $\mathbf{Q}(t_m + \Delta t) = S^{(\frac{1}{2}\Delta t)} \mathcal{H}^{(\Delta t)} S^{(\frac{1}{2}\Delta t)}(\mathbf{Q}(t_m))$

1st-order dimensional splitting for
$$\mathcal{H}^{(\cdot)}$$
:
 $\mathcal{X}_{1}^{(\Delta t)}: \quad \partial_{t}\mathbf{q} + \partial_{x_{1}}\mathbf{f}_{1}(\mathbf{q}) = 0 , \quad \text{IC: } \mathbf{Q}(t_{m}) \stackrel{\Delta t}{\Longrightarrow} \quad \tilde{\mathbf{Q}}^{1/2}$
 $\mathcal{X}_{2}^{(\Delta t)}: \quad \partial_{t}\mathbf{q} + \partial_{x_{2}}\mathbf{f}_{2}(\mathbf{q}) = 0 , \quad \text{IC: } \tilde{\mathbf{Q}}^{1/2} \stackrel{\Delta t}{\Longrightarrow} \quad \tilde{\mathbf{Q}}$
[Toro, 1999]

Conservation laws	Finite volume methods	Upwind schemes	References
	00000		
Splitting methods, second derivatives			

Conservative scheme for diffusion equation

Consider $\partial_t q - c\Delta q = 0$ with $c \in \mathbb{R}^+$
Conservation laws	Finite volume methods	Upwind schemes	References
	00000		
Splitting methods, second derivatives			

Consider $\partial_t q - c\Delta q = 0$ with $c \in \mathbb{R}^+$, which is readily discretized as

$$Q_{jk}^{n+1} = Q_{jk}^{n} + c \frac{\Delta t}{\Delta x_1^2} \left(Q_{j+1,k}^n - 2Q_{jk}^n + Q_{j-1,k}^n \right) + c \frac{\Delta t}{\Delta x_2^2} \left(Q_{j,k+1}^n - 2Q_{jk}^n + Q_{j,k-1}^n \right)$$

Conservation laws	Finite volume methods	Upwind schemes	References
	00000		
Splitting methods, second derivatives			

Consider $\partial_t q - c\Delta q = 0$ with $c \in \mathbb{R}^+$, which is readily discretized as $Q_{jk}^{n+1} = Q_{jk}^n + c \frac{\Delta t}{\Delta x_1^2} \left(Q_{j+1,k}^n - 2Q_{jk}^n + Q_{j-1,k}^n \right) + c \frac{\Delta t}{\Delta x_2^2} \left(Q_{j,k+1}^n - 2Q_{jk}^n + Q_{j,k-1}^n \right)$

or conservatively

$$Q_{jk}^{n+1} = Q_{jk}^{n} + c \frac{\Delta t}{\Delta x_1} \left(H_{j+\frac{1}{2},k}^1 - H_{j-\frac{1}{2},k}^1 \right) + c \frac{\Delta t}{\Delta x_2} \left(H_{j,k+\frac{1}{2}}^2 - H_{j,k-\frac{1}{2}}^2 \right)$$

Conservation laws	Finite volume methods	Upwind schemes	References
	00000		
Splitting methods, second derivatives			

Consider $\partial_t q - c\Delta q = 0$ with $c \in \mathbb{R}^+$, which is readily discretized as $Q_{jk}^{n+1} = Q_{jk}^n + c \frac{\Delta t}{\Delta x_1^2} \left(Q_{j+1,k}^n - 2Q_{jk}^n + Q_{j-1,k}^n \right) + c \frac{\Delta t}{\Delta x_2^2} \left(Q_{j,k+1}^n - 2Q_{jk}^n + Q_{j,k-1}^n \right)$

or conservatively

$$Q_{jk}^{n+1} = Q_{jk}^{n} + c \frac{\Delta t}{\Delta x_1} \left(H_{j+\frac{1}{2},k}^1 - H_{j-\frac{1}{2},k}^1 \right) + c \frac{\Delta t}{\Delta x_2} \left(H_{j,k+\frac{1}{2}}^2 - H_{j,k-\frac{1}{2}}^2 \right)$$

Von Neumann stability analysis: Insert single eigenmode $\hat{Q}(t)e^{ik_1x_1}e^{ik_2x_2}$ into discretization

$$\begin{split} \hat{Q}^{n+1} &= \hat{Q}^{n} + C_1 \left(\hat{Q}^n e^{ik_1 \Delta x_1} - 2\hat{Q}^n + \hat{Q}^n e^{-ik_1 \Delta x_1} \right) + C_2 \left(\hat{Q}^n e^{ik_2 \Delta x_2} - 2\hat{Q}^n + \hat{Q}^n e^{-ik_2 \Delta x_2} \right) \\ \text{with } C_{\iota} &= c \frac{\Delta t}{\Delta x_{\iota}^2}, \ \iota = 1, 2, \end{split}$$

Conservation laws	Finite volume methods	Upwind schemes	References
	00000		
Splitting methods, second derivatives			

Consider $\partial_t q - c\Delta q = 0$ with $c \in \mathbb{R}^+$, which is readily discretized as $Q_{jk}^{n+1} = Q_{jk}^n + c \frac{\Delta t}{\Delta x_1^2} \left(Q_{j+1,k}^n - 2Q_{jk}^n + Q_{j-1,k}^n \right) + c \frac{\Delta t}{\Delta x_2^2} \left(Q_{j,k+1}^n - 2Q_{jk}^n + Q_{j,k-1}^n \right)$

or conservatively

$$Q_{jk}^{n+1} = Q_{jk}^{n} + c \frac{\Delta t}{\Delta x_1} \left(H_{j+\frac{1}{2},k}^1 - H_{j-\frac{1}{2},k}^1 \right) + c \frac{\Delta t}{\Delta x_2} \left(H_{j,k+\frac{1}{2}}^2 - H_{j,k-\frac{1}{2}}^2 \right)$$

Von Neumann stability analysis: Insert single eigenmode $\hat{Q}(t)e^{ik_1x_1}e^{ik_2x_2}$ into discretization

$$\begin{split} \hat{Q}^{n+1} &= \hat{Q}^n + C_1 \left(\hat{Q}^n e^{ik_1 \Delta x_1} - 2\hat{Q}^n + \hat{Q}^n e^{-ik_1 \Delta x_1} \right) + C_2 \left(\hat{Q}^n e^{ik_2 \Delta x_2} - 2\hat{Q}^n + \hat{Q}^n e^{-ik_2 \Delta x_2} \right) \\ \text{with } C_{\iota} &= c \frac{\Delta t}{\Delta x_{\iota}^2}, \ \iota = 1, 2, \text{ which gives after inserting } e^{ik_{\iota} x_{\iota}} = \cos(k_{\iota} x_{\iota}) + i \sin(k_{\iota} x_{\iota}) \\ \hat{Q}^{n+1} &= \hat{Q}^n \left(1 + 2C_1 (\cos(k_1 \Delta x_1) - 1) + 2C_2 (\cos(k_2 \Delta x_2) - 1) \right) \end{split}$$

Conservation laws	Finite volume methods	Upwind schemes	References
	00000		
Splitting methods, second derivatives			

Consider $\partial_t q - c\Delta q = 0$ with $c \in \mathbb{R}^+$, which is readily discretized as $Q_{jk}^{n+1} = Q_{jk}^n + c \frac{\Delta t}{\Delta x_1^2} \left(Q_{j+1,k}^n - 2Q_{jk}^n + Q_{j-1,k}^n \right) + c \frac{\Delta t}{\Delta x_2^2} \left(Q_{j,k+1}^n - 2Q_{jk}^n + Q_{j,k-1}^n \right)$

or conservatively

$$Q_{jk}^{n+1} = Q_{jk}^{n} + c \frac{\Delta t}{\Delta x_1} \left(H_{j+\frac{1}{2},k}^1 - H_{j-\frac{1}{2},k}^1 \right) + c \frac{\Delta t}{\Delta x_2} \left(H_{j,k+\frac{1}{2}}^2 - H_{j,k-\frac{1}{2}}^2 \right)$$

Von Neumann stability analysis: Insert single eigenmode $\hat{Q}(t)e^{ik_1x_1}e^{ik_2x_2}$ into discretization

$$\begin{split} \hat{Q}^{n+1} &= \hat{Q}^n + C_1 \left(\hat{Q}^n e^{ik_1 \Delta x_1} - 2\hat{Q}^n + \hat{Q}^n e^{-ik_1 \Delta x_1} \right) + C_2 \left(\hat{Q}^n e^{ik_2 \Delta x_2} - 2\hat{Q}^n + \hat{Q}^n e^{-ik_2 \Delta x_2} \right) \\ \text{with } C_{\iota} &= c \frac{\Delta t}{\Delta x_{\iota}^2}, \ \iota = 1, 2, \text{ which gives after inserting } e^{ik_{\iota} x_{\iota}} = \cos(k_{\iota} x_{\iota}) + i \sin(k_{\iota} x_{\iota}) \\ \hat{Q}^{n+1} &= \hat{Q}^n \left(1 + 2C_1 (\cos(k_1 \Delta x_1) - 1) + 2C_2 (\cos(k_2 \Delta x_2) - 1) \right) \end{split}$$

Stability requires

$$|1+2C_1(\cos(k_1\Delta x_1)-1)+2C_2(\cos(k_2\Delta x_2)-1)| \le 1$$

Conservation laws	Finite volume methods	Upwind schemes	References
	0000		
Splitting methods, second derivatives			

Consider $\partial_t q - c\Delta q = 0$ with $c \in \mathbb{R}^+$, which is readily discretized as $Q_{jk}^{n+1} = Q_{jk}^n + c \frac{\Delta t}{\Delta x_1^2} \left(Q_{j+1,k}^n - 2Q_{jk}^n + Q_{j-1,k}^n \right) + c \frac{\Delta t}{\Delta x_2^2} \left(Q_{j,k+1}^n - 2Q_{jk}^n + Q_{j,k-1}^n \right)$

or conservatively

$$Q_{jk}^{n+1} = Q_{jk}^{n} + c \frac{\Delta t}{\Delta x_1} \left(H_{j+\frac{1}{2},k}^1 - H_{j-\frac{1}{2},k}^1 \right) + c \frac{\Delta t}{\Delta x_2} \left(H_{j,k+\frac{1}{2}}^2 - H_{j,k-\frac{1}{2}}^2 \right)$$

Von Neumann stability analysis: Insert single eigenmode $\hat{Q}(t)e^{ik_1x_1}e^{ik_2x_2}$ into discretization

$$\begin{split} \hat{Q}^{n+1} &= \hat{Q}^n + C_1 \left(\hat{Q}^n e^{ik_1 \Delta x_1} - 2\hat{Q}^n + \hat{Q}^n e^{-ik_1 \Delta x_1} \right) + C_2 \left(\hat{Q}^n e^{ik_2 \Delta x_2} - 2\hat{Q}^n + \hat{Q}^n e^{-ik_2 \Delta x_2} \right) \\ \text{with } C_{\iota} &= c \frac{\Delta t}{\Delta x_{\iota}^2}, \ \iota = 1, 2, \text{ which gives after inserting } e^{ik_{\iota} x_{\iota}} = \cos(k_{\iota} x_{\iota}) + i \sin(k_{\iota} x_{\iota}) \\ \hat{Q}^{n+1} &= \hat{Q}^n \left(1 + 2C_1 (\cos(k_1 \Delta x_1) - 1) + 2C_2 (\cos(k_2 \Delta x_2) - 1) \right) \end{split}$$

Stability requires

$$|1 + 2C_1(\cos(k_1\Delta x_1) - 1) + 2C_2(\cos(k_2\Delta x_2) - 1)| \le 1$$

i.e.

$$|1 - 4C_1 - 4C_2| \le 1$$

from which we derive the stability condition

$$0 \le c \left(\frac{\Delta t}{\Delta x_1^2} + \frac{\Delta t}{\Delta x_2^2}\right) \le \frac{1}{2}$$

Conservation laws		Upwind schemes
000000000000	00000	000000000

Outline

Conservation laws

Mathematical background Characteristic information Weak and entropy solutions Characteristic form of the Euler equations Navier-Stokes equations

Finite volume methods

Basics of finite difference methods Splitting methods, second derivatives

Upwind schemes

The linear Riemann problem Flux-difference splitting Flux-vector splitting

Conservation laws	Finite volume methods	Upwind schemes	References
		• 00 0000000	
The linear Riemann problem			

The Riemann problem in the linear case

Consider the linear hyperbolic equation (i.e. A = const.)

$$\frac{\partial}{\partial t}\mathbf{q}(x,t) + \mathbf{A}\frac{\partial}{\partial x}\mathbf{q}(x,t) = 0$$

Assume (for simplicity) that **A** has *M* distinct real eigenvalues $\lambda_1 < \ldots < \lambda_M$ with *M* linear independent right eigenvectors \mathbf{r}_m .

Conservation laws	Finite volume methods	Upwind schemes	References
		• 00 0000000	
The linear Riemann problem			

The Riemann problem in the linear case

Consider the linear hyperbolic equation (i.e. $\mathbf{A} = const.$)

$$\frac{\partial}{\partial t}\mathbf{q}(x,t) + \mathbf{A}\frac{\partial}{\partial x}\mathbf{q}(x,t) = 0$$

Assume (for simplicity) that **A** has *M* distinct real eigenvalues $\lambda_1 < \ldots < \lambda_M$ with *M* linear independent right eigenvectors \mathbf{r}_m .

We can readily apply the characteristic transformation $\mathbf{R}^{-1}\mathbf{q} = \mathbf{v}$ to obtain

$$\frac{\partial \mathbf{v}}{\partial t} + \mathbf{\Lambda} \frac{\partial \mathbf{v}}{\partial x} = \mathbf{0}$$

or

$$\frac{\partial v_m}{\partial t} + \lambda_m \frac{\partial v_m}{\partial x} = 0 \qquad \text{for all} \quad m = 1, \dots, M$$

Conservation laws	Finite volume methods	Upwind schemes	References
		000000000	
The linear Riemann problem			

The Riemann problem in the linear case

Consider the linear hyperbolic equation (i.e. $\mathbf{A} = const.$)

$$\frac{\partial}{\partial t}\mathbf{q}(x,t) + \mathbf{A}\frac{\partial}{\partial x}\mathbf{q}(x,t) = 0$$

Assume (for simplicity) that **A** has *M* distinct real eigenvalues $\lambda_1 < \ldots < \lambda_M$ with *M* linear independent right eigenvectors \mathbf{r}_m .

We can readily apply the characteristic transformation $\mathbf{R}^{-1}\mathbf{q} = \mathbf{v}$ to obtain

$$\frac{\partial \mathbf{v}}{\partial t} + \mathbf{\Lambda} \frac{\partial \mathbf{v}}{\partial x} = \mathbf{0}$$

or

$$\frac{\partial v_m}{\partial t} + \lambda_m \frac{\partial v_m}{\partial x} = 0 \qquad \text{for all} \quad m = 1, \dots, M$$

Each characteristic variable v_m changes only across the characteristic line associated to λ_m .

Since the entire problem is linear, we can simply sum up all these jumps Δv_m successively to connect the RP states \mathbf{v}_L , \mathbf{v}_R in characteristic variables.

Conservation laws	Finite volume methods	Upwind schemes	References
		0000000000	
The linear Riemann problem			

The Riemann problem in the linear case - II

Example of a linear 3 PDE system:

Introducing the jumps

$$\Delta \mathbf{v}_{1} = [v_{R1} - v_{L1}, 0, 0]^{T}$$
$$\Delta \mathbf{v}_{2} = [0, v_{R2} - v_{L2}, 0]^{T}$$
$$\Delta \mathbf{v}_{3} = [0, 0, v_{R3} - v_{L3}]^{T}$$

the solution reads

Conservation laws	Finite volume methods	Upwind schemes	References
		000000000	
The linear Riemann problem			

The Riemann problem in the linear case - II

Example of a linear 3 PDE system:

Introducing the jumps

 $\Delta \mathbf{v}_{1} = [v_{R1} - v_{L1}, 0, 0]^{T}$ $\Delta \mathbf{v}_{2} = [0, v_{R2} - v_{L2}, 0]^{T}$ $\Delta \mathbf{v}_{3} = [0, 0, v_{R3} - v_{L3}]^{T}$

the solution reads

$$\mathbf{v}\left(\frac{x}{t}\right) = \begin{cases} \mathbf{v}_{L} = \mathbf{v}_{R} - \Delta\mathbf{v}_{3} - \Delta\mathbf{v}_{2} - \Delta\mathbf{v}_{1} & x/t < \lambda_{3} \\ \mathbf{v}_{L} + \Delta\mathbf{v}_{3} = \mathbf{v}_{R} - \Delta\mathbf{v}_{2} - \Delta\mathbf{v}_{1} & \lambda_{3} < x/t < \lambda_{2} \\ \mathbf{v}_{L} + \Delta\mathbf{v}_{3} + \Delta\mathbf{v}_{2} = \mathbf{v}_{R} - \Delta\mathbf{v}_{1} & \lambda_{2} < x/t < \lambda_{1} \\ \mathbf{v}_{L} + \Delta\mathbf{v}_{3} + \Delta\mathbf{v}_{2} + \Delta\mathbf{v}_{1} = \mathbf{v}_{R} & \lambda_{1} < x/t \end{cases}$$

Conservation laws	Finite volume methods	Upwind schemes	References
		000000000	
The linear Riemann problem			

The Riemann problem in the linear case - III

or using the transformation $\mathbf{q} = \mathbf{R}\mathbf{v}$ and $\mathbf{R}\Delta\mathbf{v}_m = r_m\Delta v_m$

$$\mathbf{q}\left(\frac{x}{t}\right) = \begin{cases} \mathbf{q}_{L} = \mathbf{q}_{R} - \mathbf{r}_{3}\Delta v_{3} - \mathbf{r}_{2}\Delta v_{2} - \mathbf{r}_{1}\Delta v_{1} & x/t < \lambda_{3} \\ \mathbf{q}_{L} + \mathbf{r}_{3}\Delta v_{3} = \mathbf{q}_{R} - \mathbf{r}_{2}\Delta v_{2} - \mathbf{r}_{1}\Delta v_{1} & \lambda_{3} < x/t < \lambda_{2} \\ \mathbf{q}_{L} + \mathbf{r}_{3}\Delta v_{3} + \mathbf{r}_{2}\Delta v_{2} = \mathbf{q}_{R} - \mathbf{r}_{1}\Delta v_{1} & \lambda_{2} < x/t < \lambda_{1} \\ \mathbf{q}_{L} + \mathbf{r}_{3}\Delta v_{3} + \mathbf{r}_{2}\Delta v_{2} + \mathbf{r}_{1}\Delta v_{1} = \mathbf{q}_{R} & \lambda_{1} < x/t \end{cases}$$

Conservation laws	Finite volume methods	Upwind schemes	References
		000000000	
The linear Riemann problem			

The Riemann problem in the linear case - III

or using the transformation $\mathbf{q} = \mathbf{R}\mathbf{v}$ and $\mathbf{R}\Delta\mathbf{v}_m = r_m\Delta v_m$

$$\mathbf{q}\left(\frac{x}{t}\right) = \begin{cases} \mathbf{q}_{L} = \mathbf{q}_{R} - \mathbf{r}_{3}\Delta v_{3} - \mathbf{r}_{2}\Delta v_{2} - \mathbf{r}_{1}\Delta v_{1} & x/t < \lambda_{3} \\ \mathbf{q}_{L} + \mathbf{r}_{3}\Delta v_{3} = \mathbf{q}_{R} - \mathbf{r}_{2}\Delta v_{2} - \mathbf{r}_{1}\Delta v_{1} & \lambda_{3} < x/t < \lambda_{2} \\ \mathbf{q}_{L} + \mathbf{r}_{3}\Delta v_{3} + \mathbf{r}_{2}\Delta v_{2} = \mathbf{q}_{R} - \mathbf{r}_{1}\Delta v_{1} & \lambda_{2} < x/t < \lambda_{1} \\ \mathbf{q}_{L} + \mathbf{r}_{3}\Delta v_{3} + \mathbf{r}_{2}\Delta v_{2} + \mathbf{r}_{1}\Delta v_{1} = \mathbf{q}_{R} & \lambda_{1} < x/t \end{cases}$$

Multiplying with ${\bf A}$ and using ${\bf A}{\bf r}_m=\lambda_m{\bf r}_m$ gives

$$\mathbf{Aq}\left(\frac{x}{t}\right) = \begin{cases} \mathbf{Aq}_{L} = \mathbf{Aq}_{R} - \mathbf{r}_{3}\lambda_{3}\Delta v_{3} - \mathbf{r}_{2}\lambda_{2}\Delta v_{2} - \mathbf{r}_{1}\lambda_{1}\Delta v_{1} & x/t < \lambda_{3} \\ \mathbf{Aq}_{L} + \mathbf{r}_{3}\lambda_{3}\Delta v_{3} = \mathbf{Aq}_{R} - \mathbf{r}_{2}\lambda_{2}\Delta v_{2} - \mathbf{r}_{1}\lambda_{1}\Delta v_{1} & \lambda_{3} < x/t < \lambda_{2} \\ \mathbf{Aq}_{L} + \mathbf{r}_{3}\lambda_{3}\Delta v_{3} + \mathbf{r}_{2}\lambda_{2}\Delta v_{2} = \mathbf{Aq}_{R} - \mathbf{r}_{1}\lambda_{1}\Delta v_{1} & \lambda_{2} < x/t < \lambda_{1} \\ \mathbf{Aq}_{L} + \mathbf{r}_{3}\lambda_{3}\Delta v_{3} + \mathbf{r}_{2}\lambda_{2}\Delta v_{2} + \mathbf{r}_{1}\lambda_{1}\Delta v_{1} = \mathbf{Aq}_{R} & \lambda_{1} < x/t \end{cases}$$

Conservation laws	Finite volume methods	Upwind schemes	References
		000000000	
The linear Riemann problem			

The Riemann problem in the linear case - III

or using the transformation $\mathbf{q} = \mathbf{R}\mathbf{v}$ and $\mathbf{R}\Delta\mathbf{v}_m = r_m\Delta v_m$

$$\mathbf{q}\left(\frac{x}{t}\right) = \begin{cases} \mathbf{q}_{L} = \mathbf{q}_{R} - \mathbf{r}_{3}\Delta v_{3} - \mathbf{r}_{2}\Delta v_{2} - \mathbf{r}_{1}\Delta v_{1} & x/t < \lambda_{3} \\ \mathbf{q}_{L} + \mathbf{r}_{3}\Delta v_{3} = \mathbf{q}_{R} - \mathbf{r}_{2}\Delta v_{2} - \mathbf{r}_{1}\Delta v_{1} & \lambda_{3} < x/t < \lambda_{2} \\ \mathbf{q}_{L} + \mathbf{r}_{3}\Delta v_{3} + \mathbf{r}_{2}\Delta v_{2} = \mathbf{q}_{R} - \mathbf{r}_{1}\Delta v_{1} & \lambda_{2} < x/t < \lambda_{1} \\ \mathbf{q}_{L} + \mathbf{r}_{3}\Delta v_{3} + \mathbf{r}_{2}\Delta v_{2} + \mathbf{r}_{1}\Delta v_{1} = \mathbf{q}_{R} & \lambda_{1} < x/t \end{cases}$$

Multiplying with **A** and using $\mathbf{Ar}_m = \lambda_m \mathbf{r}_m$ gives

$$\mathbf{A}\mathbf{q}\begin{pmatrix}\mathbf{x}\\t\end{pmatrix} = \begin{cases} \mathbf{A}\mathbf{q}_{L} = \mathbf{A}\mathbf{q}_{R} - \mathbf{r}_{3}\lambda_{3}\Delta v_{3} - \mathbf{r}_{2}\lambda_{2}\Delta v_{2} - \mathbf{r}_{1}\lambda_{1}\Delta v_{1} & x/t < \lambda_{3} \\ \mathbf{A}\mathbf{q}_{L} + \mathbf{r}_{3}\lambda_{3}\Delta v_{3} = \mathbf{A}\mathbf{q}_{R} - \mathbf{r}_{2}\lambda_{2}\Delta v_{2} - \mathbf{r}_{1}\lambda_{1}\Delta v_{1} & \lambda_{3} < x/t < \lambda_{2} \\ \mathbf{A}\mathbf{q}_{L} + \mathbf{r}_{3}\lambda_{3}\Delta v_{3} + \mathbf{r}_{2}\lambda_{2}\Delta v_{2} = \mathbf{A}\mathbf{q}_{R} - \mathbf{r}_{1}\lambda_{1}\Delta v_{1} & \lambda_{2} < x/t < \lambda_{1} \\ \mathbf{A}\mathbf{q}_{L} + \mathbf{r}_{3}\lambda_{3}\Delta v_{3} + \mathbf{r}_{2}\lambda_{2}\Delta v_{2} + \mathbf{r}_{1}\lambda_{1}\Delta v_{1} & \lambda_{1} < x/t \end{cases}$$

This allows direct evaluation of the flux at x=0.

$$\mathbf{F}(\mathbf{q}_{L},\mathbf{q}_{R}) := \mathbf{f}(\mathbf{q}(0,t)) = \mathbf{A} \, \mathbf{q}(0,t)$$

Conservation laws	Upwind schemes	References
	0000000000	
Elux-difference splitting		

Linear upwind schemes

Consider Riemann problem

$$rac{\partial}{\partial t}\mathbf{q}(x,t) + \mathbf{A}rac{\partial}{\partial x}\mathbf{q}(x,t) = \mathbf{0}, \ x \in \mathbb{R}, \ t > 0$$

Conservation laws	Finite volume methods	Upwind schemes	References
		000000000	
Flux-difference splitting			

Flux difference splitting

Godunov-type scheme with $\Delta \mathbf{Q}_{j+1/2}^n = \mathbf{Q}_{j+1}^n - \mathbf{Q}_{j}^n$

$$\mathbf{Q}_{j}^{n+1} = \mathbf{Q}_{j}^{n} - \frac{\Delta t}{\Delta x} \left(\mathbf{A}^{-} \Delta \mathbf{Q}_{j+1/2}^{n} + \mathbf{A}^{+} \Delta \mathbf{Q}_{j-1/2}^{n} \right)$$

Conservation laws	Finite volume methods	Upwind schemes	References
		000000000	
Flux-difference splitting			

Flux difference splitting

Godunov-type scheme with $\Delta \mathbf{Q}_{j+1/2}^n = \mathbf{Q}_{j+1}^n - \mathbf{Q}_j^n$

$$\mathbf{Q}_{j}^{n+1} = \mathbf{Q}_{j}^{n} - \frac{\Delta t}{\Delta x} \left(\mathbf{A}^{-} \Delta \mathbf{Q}_{j+1/2}^{n} + \mathbf{A}^{+} \Delta \mathbf{Q}_{j-1/2}^{n} \right)$$

Use linearization $\bar{\mathbf{f}}(\bar{\mathbf{q}}) = \hat{\mathbf{A}}(\mathbf{q}_L, \mathbf{q}_R)\bar{\mathbf{q}}$ and construct scheme for nonlinear problem as

$$\mathbf{Q}_{j}^{n+1} = \mathbf{Q}_{j}^{n} - \frac{\Delta t}{\Delta x} \left(\hat{\mathbf{A}}^{-}(\mathbf{Q}_{j}^{n},\mathbf{Q}_{j+1}^{n}) \Delta \mathbf{Q}_{j+\frac{1}{2}}^{n} + \hat{\mathbf{A}}^{+}(\mathbf{Q}_{j-1}^{n},\mathbf{Q}_{j}^{n}) \Delta \mathbf{Q}_{j-\frac{1}{2}}^{n} \right)$$

Conservation laws	Finite volume methods	Upwind schemes	References
		000000000	
Flux-difference splitting			

Flux difference splitting

Godunov-type scheme with $\Delta \mathbf{Q}_{j+1/2}^n = \mathbf{Q}_{j+1}^n - \mathbf{Q}_j^n$

$$\mathbf{Q}_{j}^{n+1} = \mathbf{Q}_{j}^{n} - \frac{\Delta t}{\Delta x} \left(\mathbf{A}^{-} \Delta \mathbf{Q}_{j+1/2}^{n} + \mathbf{A}^{+} \Delta \mathbf{Q}_{j-1/2}^{n} \right)$$

Use linearization $\bar{\mathbf{f}}(\bar{\mathbf{q}}) = \hat{\mathbf{A}}(\mathbf{q}_L, \mathbf{q}_R)\bar{\mathbf{q}}$ and construct scheme for nonlinear problem as

$$\mathbf{Q}_{j}^{n+1} = \mathbf{Q}_{j}^{n} - \frac{\Delta t}{\Delta x} \left(\hat{\mathbf{A}}^{-}(\mathbf{Q}_{j}^{n},\mathbf{Q}_{j+1}^{n}) \Delta \mathbf{Q}_{j+\frac{1}{2}}^{n} + \hat{\mathbf{A}}^{+}(\mathbf{Q}_{j-1}^{n},\mathbf{Q}_{j}^{n}) \Delta \mathbf{Q}_{j-\frac{1}{2}}^{n} \right)$$

stability condition

$$\max_{j \in \mathbb{Z}} |\hat{\lambda}_{m,j+\frac{1}{2}}| \frac{\Delta t}{\Delta x} \leq 1 , \quad \text{for all } m = 1, \dots, M$$

[LeVeque, 1992]

Conservation laws	Finite volume methods	Upwind schemes	References
		000000000	
Flux-difference splitting			

Choosing $\hat{\mathbf{A}}(\mathbf{q}_L, \mathbf{q}_R)$ [Roe, 1981]:

Conservation laws	Finite volume methods	Upwind schemes	References
		0000000000	
Flux-difference splitting			

Choosing $\hat{\mathbf{A}}(\mathbf{q}_L, \mathbf{q}_R)$ [Roe, 1981]: (i) $\hat{\mathbf{A}}(\mathbf{q}_L, \mathbf{q}_R)$ has real eigenvalues

Conservation laws	Finite volume methods	Upwind schemes	References
		0000000000	
Flux-difference splitting			

Choosing $\hat{\mathbf{A}}(\mathbf{q}_{L}, \mathbf{q}_{R})$ [Roe, 1981]: (i) $\hat{\mathbf{A}}(\mathbf{q}_{L}, \mathbf{q}_{R})$ has real eigenvalues (ii) $\hat{\mathbf{A}}(\mathbf{q}_{L}, \mathbf{q}_{R}) \rightarrow \frac{\partial \mathbf{f}(\mathbf{q})}{\partial \mathbf{q}}$ as $\mathbf{q}_{L}, \mathbf{q}_{R} \rightarrow \mathbf{q}$

Conservation laws	Finite volume methods	Upwind schemes	References
		0000000000	
Flux-difference splitting			
	_		

Choosing $\hat{\mathbf{A}}(\mathbf{q}_{L}, \mathbf{q}_{R})$ [Roe, 1981]: (i) $\hat{\mathbf{A}}(\mathbf{q}_{L}, \mathbf{q}_{R})$ has real eigenvalues (ii) $\hat{\mathbf{A}}(\mathbf{q}_{L}, \mathbf{q}_{R}) \rightarrow \frac{\partial \mathbf{f}(\mathbf{q})}{\partial \mathbf{q}}$ as $\mathbf{q}_{L}, \mathbf{q}_{R} \rightarrow \mathbf{q}$ (iii) $\hat{\mathbf{A}}(\mathbf{q}_{L}, \mathbf{q}_{R}) \Delta \mathbf{q} = \mathbf{f}(\mathbf{q}_{R}) - \mathbf{f}(\mathbf{q}_{L})$

Conservation laws	Finite volume methods	Upwind schemes	References
		0000000000	
Flux-difference splitting			

Choosing
$$\hat{\mathbf{A}}(\mathbf{q}_{L}, \mathbf{q}_{R})$$
 [Roe, 1981]:
(i) $\hat{\mathbf{A}}(\mathbf{q}_{L}, \mathbf{q}_{R})$ has real eigenvalues
(ii) $\hat{\mathbf{A}}(\mathbf{q}_{L}, \mathbf{q}_{R}) \rightarrow \frac{\partial \mathbf{f}(\mathbf{q})}{\partial \mathbf{q}}$ as $\mathbf{q}_{L}, \mathbf{q}_{R} \rightarrow \mathbf{q}$
(iii) $\hat{\mathbf{A}}(\mathbf{q}_{L}, \mathbf{q}_{R}) \Delta \mathbf{q} = \mathbf{f}(\mathbf{q}_{R}) - \mathbf{f}(\mathbf{q}_{L})$
 t_{n}

Wave decomposition:
$$\Delta \mathbf{q} = \mathbf{q}_r - \mathbf{q}_l = \sum_m a_m \, \hat{\mathbf{r}}_m$$

$$\begin{aligned} \mathbf{F}(\mathbf{q}_{L},\mathbf{q}_{R}) &= \mathbf{f}(\mathbf{q}_{L}) + \sum_{\hat{\lambda}_{m} < 0} \hat{\lambda}_{m} \ \mathbf{a}_{m} \ \hat{\mathbf{r}}_{m} = \mathbf{f}(\mathbf{q}_{R}) - \sum_{\hat{\lambda}_{m} \ge 0} \hat{\lambda}_{m} \ \mathbf{a}_{m} \ \hat{\mathbf{r}}_{m} \\ &= \frac{1}{2} \left(\mathbf{f}(\mathbf{q}_{L}) + \mathbf{f}(\mathbf{q}_{R}) - \sum_{m} |\hat{\lambda}_{m}| \ \mathbf{a}_{m} \ \hat{\mathbf{r}}_{m} \right) \end{aligned}$$

Conservation laws	Finite volume methods	Upwind schemes	References
		0000000000	
T1 1100 1101			

The Roe solver for Euler equations

For Euler equations, the following non-apparent average defines the Roe method: The average for \boldsymbol{u} and \boldsymbol{H} read

$$\hat{u} := \frac{\sqrt{\rho_L}u_L + \sqrt{\rho_R}u_R}{\sqrt{\rho_L} + \sqrt{\rho_R}}, \qquad \hat{H} := \frac{\sqrt{\rho_L}H_L + \sqrt{\rho_R}H_R}{\sqrt{\rho_L} + \sqrt{\rho_R}}$$

The average of the density is

$$\hat{\rho} = \frac{\sqrt{\rho_L}\rho_R + \sqrt{\rho_R}\rho_L}{\sqrt{\rho_L} + \sqrt{\rho_R}} = \sqrt{\rho_L\rho_R}$$

Conservation laws	Finite volume methods	Upwind schemes	References
		0000000000	
EL LINC LINC			

The Roe solver for Euler equations

For Euler equations, the following non-apparent average defines the Roe method: The average for u and H read

$$\hat{u} := \frac{\sqrt{\rho_L}u_L + \sqrt{\rho_R}u_R}{\sqrt{\rho_L} + \sqrt{\rho_R}}, \qquad \hat{H} := \frac{\sqrt{\rho_L}H_L + \sqrt{\rho_R}H_R}{\sqrt{\rho_L} + \sqrt{\rho_R}}$$

The average of the density is

$$\hat{\rho} = \frac{\sqrt{\rho_L}\rho_R + \sqrt{\rho_R}\rho_L}{\sqrt{\rho_L} + \sqrt{\rho_R}} = \sqrt{\rho_L\rho_R}$$

and the averaged speed of sound is

$$\hat{\pmb{\mathsf{a}}} := \left((\gamma-1)(\hat{\pmb{\mathsf{H}}}-rac{1}{2}\hat{\pmb{u}}^2)
ight)^{1/2}$$

The eigenvectors read

$$\hat{\mathbf{r}}_1 = \left[\begin{array}{c} 1\\ \hat{u} - \hat{\mathbf{a}}\\ \hat{H} - \hat{u}\hat{\mathbf{a}} \end{array} \right], \quad \hat{\mathbf{r}}_2 = \left[\begin{array}{c} 1\\ \hat{u}\\ \hat{u}^2/_2 \end{array} \right], \quad \hat{\mathbf{r}}_3 = \left[\begin{array}{c} 1\\ \hat{u} + \hat{\mathbf{a}}\\ \hat{H} + \hat{u}\hat{\mathbf{a}} \end{array} \right]$$

 Conservation laws
 Finite volume methods
 Upwind schemes
 References

 000000000000
 00000
 000000
 00

 Functificence splitting
 V

The Roe solver for Euler equations

For Euler equations, the following non-apparent average defines the Roe method: The average for \boldsymbol{u} and \boldsymbol{H} read

$$\hat{u} := \frac{\sqrt{\rho_L}u_L + \sqrt{\rho_R}u_R}{\sqrt{\rho_L} + \sqrt{\rho_R}}, \qquad \hat{H} := \frac{\sqrt{\rho_L}H_L + \sqrt{\rho_R}H_R}{\sqrt{\rho_L} + \sqrt{\rho_R}}$$

The average of the density is

$$\hat{\rho} = \frac{\sqrt{\rho_L}\rho_R + \sqrt{\rho_R}\rho_L}{\sqrt{\rho_L} + \sqrt{\rho_R}} = \sqrt{\rho_L\rho_R}$$

and the averaged speed of sound is

$$\hat{\pmb{\mathsf{a}}} := \left((\gamma-1)(\hat{\pmb{\mathsf{H}}}-rac{1}{2}\hat{\pmb{u}}^2)
ight)^{1/2}$$

The eigenvectors read

$$\hat{\mathbf{r}}_1 = \left[\begin{array}{c} 1\\ \hat{u} - \hat{a}\\ \hat{H} - \hat{u}\hat{a} \end{array} \right], \quad \hat{\mathbf{r}}_2 = \left[\begin{array}{c} 1\\ \hat{u}\\ \hat{u}^2/_2 \end{array} \right], \quad \hat{\mathbf{r}}_3 = \left[\begin{array}{c} 1\\ \hat{u} + \hat{a}\\ \hat{H} + \hat{u}\hat{a} \end{array} \right]$$

and the characteristic wave strengths are

$$\Delta v_1 = \mathbf{a}_1 = \frac{\Delta p - \hat{\rho} \hat{\mathbf{a}} \Delta u}{2 \hat{\mathbf{a}}^2} , \qquad \Delta v_2 = \mathbf{a}_2 = \Delta \rho - \frac{\Delta p}{\hat{\mathbf{a}}^2}, \qquad \Delta v_3 = \mathbf{a}_3 = \frac{\Delta p + \hat{\rho} \hat{\mathbf{a}} \Delta u}{2 \hat{\mathbf{a}}^2}$$

Conservation laws	Upwind schemes	Reference
	0000000000	
Flux-difference splitting		

Harten-Lax-Van Leer (HLL) approximate Riemann solver

$$\bar{\mathbf{q}}(x,t) = \begin{cases} \mathbf{q}_L, & x < \mathbf{s}_L t \\ \mathbf{q}^*, & s_L t \le x \le s_R t \\ \mathbf{q}_R, & x > \mathbf{s}_R t \end{cases}$$

Harton Lov V	/an Look (HLL) ann	rovimate Diamann	coluor
Flux-difference splitting			
		000000000000	
Conservation laws	Finite volume methods	Upwind schemes	Reference

Harten-Lax-Van Leer (HLL) approximate Riemann solver

$$\mathbf{F}_{HLL}(\mathbf{q}_{L},\mathbf{q}_{R}) = \begin{cases} \mathbf{f}_{L}\mathbf{f}_{R}\mathbf{$$

$$\mathbf{F}_{HLL}(\mathbf{q}_{L},\mathbf{q}_{R}) = \begin{cases} \mathbf{f}(\mathbf{q}_{L}), & 0 < s_{L}, \\ \frac{s_{R}\mathbf{f}(\mathbf{q}_{L}) - s_{L}\mathbf{f}(\mathbf{q}_{R}) + s_{L}s_{R}(\mathbf{q}_{R} - \mathbf{q}_{L})}{s_{R} - s_{L}}, & s_{L} \leq 0 \leq s_{R}, \\ \mathbf{f}(\mathbf{q}_{R}), & 0 > s_{R}, \end{cases}$$

Euler equations:

$$s_L = \min(u_{1,L} - c_L, u_{1,R} - c_R), \quad s_R = \max(u_{1,L} + c_I, u_{1,R} + c_R)$$

[Toro, 1999], HLLC: [Toro et al., 1994]

Conservation laws	Upwind schemes	References
	00000000000	
Flux-vector splitting		

Flux vector splitting

Splitting

$$f(q) = f^+(q) + f^-(q)$$

Conservation laws	Upwind schemes	References
	00000000000	
Flux-vector splitting		

Flux vector splitting

Splitting

$$\mathbf{f}(\mathbf{q}) = \mathbf{f}^+(\mathbf{q}) + \mathbf{f}^-(\mathbf{q})$$

derived under restriction $\hat{\lambda}_m^+ \geq 0$ and $\hat{\lambda}_m^- \leq 0$ for all $m = 1, \dots, M$ for

$$\hat{A}^+(q) = \frac{\partial f^+(q)}{\partial q} \,, \quad \hat{A}^-(q) = \frac{\partial f^-(q)}{\partial q} \,.$$

Conservation laws	Upwind schemes	References
	00000000000	
Flux-vector splitting		

Flux vector splitting

Splitting

plus reproduction of regular upwinding

$$\begin{array}{rcl} \mathbf{f}^+(\mathbf{q}) &=& \mathbf{f}(\mathbf{q})\,, & \mathbf{f}^-(\mathbf{q}) &=& \mathbf{0} & \text{if} & \lambda_m \geq \mathbf{0} & \text{for all} & m=1,\ldots,M\\ \mathbf{f}^+(\mathbf{q}) &=& \mathbf{0}\,, & \mathbf{f}^-(\mathbf{q}) &=& \mathbf{f}(\mathbf{q}) & \text{if} & \lambda_m \leq \mathbf{0} & \text{for all} & m=1,\ldots,M \end{array}$$

Then use

$$\mathbf{F}(\mathbf{q}_L,\mathbf{q}_R) = \mathbf{f}^+(\mathbf{q}_L) + \mathbf{f}^-(\mathbf{q}_R)$$

Conservation laws	Upwind schemes	References
	00000000000	
Flux-vector splitting		

Required $\mathbf{f}(\mathbf{q}) = \mathbf{A}(\mathbf{q}) \mathbf{q}$

Conservation laws	Upwind schemes	References
	00000000000	
Flux-vector splitting		
• · · · ·		

Required $\mathbf{f}(\mathbf{q}) = \mathbf{A}(\mathbf{q}) \mathbf{q}$

$$egin{aligned} &\lambda_m^+ = rac{1}{2} \left(\lambda_m + |\lambda_m|
ight) &\lambda_m^- = rac{1}{2} \left(\lambda_m - |\lambda_m|
ight) \ &\mathbf{A}^+(\mathbf{q}) := \mathbf{R}(\mathbf{q}) \, \mathbf{\Lambda}^+(\mathbf{q}) \, \mathbf{R}^{-1}(\mathbf{q}) \,, &\mathbf{A}^-(\mathbf{q}) := \mathbf{R}(\mathbf{q}) \, \mathbf{\Lambda}^-(\mathbf{q}) \, \mathbf{R}^{-1}(\mathbf{q}) \end{aligned}$$

Conservation laws	Upwind schemes	References
	00000000000	
Flux-vector splitting		

Required
$$\mathbf{f}(\mathbf{q}) = \mathbf{A}(\mathbf{q}) \mathbf{q}$$

$$\lambda_m^+ = \frac{1}{2} \left(\lambda_m + |\lambda_m| \right) \qquad \lambda_m^- = \frac{1}{2} \left(\lambda_m - |\lambda_m| \right)$$
$$\mathbf{A}^+(\mathbf{q}) := \mathbf{R}(\mathbf{q}) \, \mathbf{\Lambda}^+(\mathbf{q}) \, \mathbf{R}^{-1}(\mathbf{q}) , \qquad \mathbf{A}^-(\mathbf{q}) := \mathbf{R}(\mathbf{q}) \, \mathbf{\Lambda}^-(\mathbf{q}) \, \mathbf{R}^{-1}(\mathbf{q})$$

Gives

$$\mathsf{f}(\mathsf{q})=\mathsf{A}^+(\mathsf{q})\,\mathsf{q}+\mathsf{A}^-(\mathsf{q})\,\mathsf{q}$$

and the numerical flux

$$\mathsf{F}(\mathsf{q}_L,\mathsf{q}_R) = \mathsf{A}^+(\mathsf{q}_L)\,\mathsf{q}_L + \mathsf{A}^-(\mathsf{q}_R)\,\mathsf{q}_R$$

Conservation laws	Upwind schemes	References
	00000000000	
Flux-vector splitting		

Required
$$\mathbf{f}(\mathbf{q}) = \mathbf{A}(\mathbf{q}) \mathbf{q}$$

$$\lambda_m^+ = \frac{1}{2} \left(\lambda_m + |\lambda_m| \right) \qquad \lambda_m^- = \frac{1}{2} \left(\lambda_m - |\lambda_m| \right)$$
$$\mathbf{A}^+(\mathbf{q}) := \mathbf{R}(\mathbf{q}) \, \mathbf{\Lambda}^+(\mathbf{q}) \, \mathbf{R}^{-1}(\mathbf{q}) , \qquad \mathbf{A}^-(\mathbf{q}) := \mathbf{R}(\mathbf{q}) \, \mathbf{\Lambda}^-(\mathbf{q}) \, \mathbf{R}^{-1}(\mathbf{q})$$

Gives

$$\mathsf{f}(\mathsf{q})=\mathsf{A}^+(\mathsf{q})\,\mathsf{q}+\mathsf{A}^-(\mathsf{q})\,\mathsf{q}$$

and the numerical flux

$$\mathbf{F}(\mathbf{q}_L,\mathbf{q}_R) = \mathbf{A}^+(\mathbf{q}_L)\,\mathbf{q}_L + \mathbf{A}^-(\mathbf{q}_R)\,\mathbf{q}_R$$

Jacobians of the split fluxes are identical to $\boldsymbol{A}^{\pm}(\boldsymbol{q})$ only in linear case

$$rac{\partial \mathsf{f}^{\pm}(\mathsf{q})}{\partial \mathsf{q}} = rac{\partial \left(\mathsf{A}^{\pm}(\mathsf{q})\,\mathsf{q}
ight)}{\partial \mathsf{q}} = \mathsf{A}^{\pm}(\mathsf{q}) + rac{\partial \mathsf{A}^{\pm}(\mathsf{q})}{\partial \mathsf{q}}\,\mathsf{q}$$

Further methods: Van Leer FVS [Toro, 1999], AUSM [Wada and Liou, 1997]

Conservation laws	Finite volume methods	Upwind schemes	References
		0000000000	
Elux-vector splitting			

For Euler equations, f(q) = A(q) q holds true. We also know all matrices $R^{-1}AR = \Lambda$.

Conservation laws	Upwind schemes	References
	0000000000	
Elux-vector splitting		

For Euler equations, $\mathbf{f}(\mathbf{q}) = \mathbf{A}(\mathbf{q}) \mathbf{q}$ holds true. We also know all matrices $\mathbf{R}^{-1}\mathbf{A}\mathbf{R} = \mathbf{\Lambda}$. **Approach 1**: Introduce $\lambda_m^+ = \frac{1}{2}(\lambda_m + |\lambda_m|)$, $\lambda_m^- = \frac{1}{2}(\lambda_m - |\lambda_m|)$ and compute \mathbf{A}^+ and \mathbf{A}^- directly.

Conservation laws	Upwind schemes	References
	0000000000	
Elux-vector splitting		

For Euler equations, $\mathbf{f}(\mathbf{q}) = \mathbf{A}(\mathbf{q}) \mathbf{q}$ holds true. We also know all matrices $\mathbf{R}^{-1}\mathbf{A}\mathbf{R} = \mathbf{\Lambda}$. **Approach 1**: Introduce $\lambda_m^+ = \frac{1}{2}(\lambda_m + |\lambda_m|)$, $\lambda_m^- = \frac{1}{2}(\lambda_m - |\lambda_m|)$ and compute \mathbf{A}^+ and \mathbf{A}^- directly.

Approach 2: Analyze sign of eigenvalues:

u < -a: All eigenvalues are negative: u - a < u < u + a < 0

$$\mathbf{f}^{-}(\mathbf{q}) = \left[\rho u, \rho u^{2} + p, \rho u H\right]^{T}, \qquad \mathbf{f}^{+}(\mathbf{q}) = 0$$

Conservation laws	Upwind schemes	References
	0000000000	
Elux-vector splitting		

For Euler equations, $\mathbf{f}(\mathbf{q}) = \mathbf{A}(\mathbf{q}) \mathbf{q}$ holds true. We also know all matrices $\mathbf{R}^{-1}\mathbf{A}\mathbf{R} = \mathbf{\Lambda}$. **Approach 1**: Introduce $\lambda_m^+ = \frac{1}{2}(\lambda_m + |\lambda_m|)$, $\lambda_m^- = \frac{1}{2}(\lambda_m - |\lambda_m|)$ and compute \mathbf{A}^+ and \mathbf{A}^- directly.

Approach 2: Analyze sign of eigenvalues:

u < -a: All eigenvalues are negative: u - a < u < u + a < 0

$$\mathbf{f}^{-}(\mathbf{q}) = \left[\rho u, \rho u^{2} + \boldsymbol{p}, \rho u H\right]^{T}, \qquad \mathbf{f}^{+}(\mathbf{q}) = 0$$

u > a: All eigenvalues are positive: 0 < u - a < u < u + a

$$\mathbf{f}^{-}(\mathbf{q}) = 0, \qquad \mathbf{f}^{+}(\mathbf{q}) = \left[\rho u, \rho u^{2} + \boldsymbol{p}, \rho u H\right]^{T}$$

Conservation laws	Upwind schemes	References
	0000000000	
Elux-vector splitting		

For Euler equations, $\mathbf{f}(\mathbf{q}) = \mathbf{A}(\mathbf{q}) \mathbf{q}$ holds true. We also know all matrices $\mathbf{R}^{-1}\mathbf{A}\mathbf{R} = \mathbf{\Lambda}$. **Approach 1**: Introduce $\lambda_m^+ = \frac{1}{2}(\lambda_m + |\lambda_m|)$, $\lambda_m^- = \frac{1}{2}(\lambda_m - |\lambda_m|)$ and compute \mathbf{A}^+ and \mathbf{A}^- directly.

Approach 2: Analyze sign of eigenvalues:

u < -a: All eigenvalues are negative: u - a < u < u + a < 0

$$\mathbf{f}^{-}(\mathbf{q}) = \left[\rho u, \rho u^{2} + \rho, \rho u H\right]^{T}, \qquad \mathbf{f}^{+}(\mathbf{q}) = 0$$

u > a: All eigenvalues are positive: 0 < u - a < u < u + a

$$\mathbf{f}^{-}(\mathbf{q}) = \mathbf{0}, \qquad \mathbf{f}^{+}(\mathbf{q}) = \left[\rho u, \rho u^{2} + \boldsymbol{p}, \rho u H\right]^{T}$$

 $-a \leq u \leq a$: We find $u-a \leq 0$ and $u+a \geq 0$ are always satisfied. For u < 0, we need to evaluate

$$\mathbf{f}^{-}(\mathbf{q}) = \mathbf{R} \begin{bmatrix} u - a & 0 & 0 \\ 0 & u & 0 \\ 0 & 0 & 0 \end{bmatrix} \mathbf{R}^{-1} \mathbf{q}, \qquad \mathbf{f}^{+}(\mathbf{q}) = \mathbf{R} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & u + a \end{bmatrix} \mathbf{R}^{-1} \mathbf{q}$$

For $u \ge 0$, we need to evaluate

$$\mathbf{f}^{-}(\mathbf{q}) = \mathbf{R} \begin{bmatrix} u - a & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \mathbf{R}^{-1}\mathbf{q}, \qquad \mathbf{f}^{+}(\mathbf{q}) = \mathbf{R} \begin{bmatrix} 0 & 0 & 0 \\ 0 & u & 0 \\ 0 & 0 & u + a \end{bmatrix} \mathbf{R}^{-1}\mathbf{q}$$

Conservation laws	Upwind schemes	References	
		••	
References			
References I			

- [Godlewski and Raviart, 1996] Godlewski, E. and Raviart, P.-A. (1996). Numerical approximation of hyperbolic systems of conservation laws. Springer Verlag, New York.
- [Kröner, 1997] Kröner, D. (1997). Numerical schemes for conservation laws. John Wiley & Sons and B. G. Teubner, New York, Leipzig.
- [LeVeque, 1992] LeVeque, R. J. (1992). Numerical methods for conservation laws. Birkhäuser, Basel.
- [Majda, 1984] Majda, A. (1984). Compressible fluid flow and systems of conservation laws in several space variables. Applied Mathematical Sciences Vol. 53. Springer-Verlag, New York.
- [Roe, 1981] Roe, P. L. (1981). Approximate Riemann solvers, parameter vectors and difference schemes. J. Comput. Phys., 43:357–372.
- [Toro, 1999] Toro, E. F. (1999). *Riemann solvers and numerical methods for fluid dynamics*. Springer-Verlag, Berlin, Heidelberg, 2nd edition.
- [Toro et al., 1994] Toro, E. F., Spruce, M., and Speares, W. (1994). Restoration of the contact surface in the HLL-Riemann solver. *Shock Waves*, 4:25–34.

Conservation laws	Finite volume methods	Upwind schemes	References
			••
References			
References II			

[Wada and Liou, 1997] Wada, Y. and Liou, M.-S. (1997). An accurate and robust flux splitting scheme for shock and contact discontinuities. *SIAM J. Sci. Comp.*, 18(3):633–657.