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Mathematical background

Hyperbolic Conservation Laws

∂

∂t
q(x, t) +

d∑
n=1

∂

∂xn
fn(q(x, t)) = 0 , D ⊂ {(x, t) ∈ Rd × R+

0 } (1)

q = q(x, t) ∈ S ⊂ RM - vector of state, fn(q) ∈ C1(S ,RM ) - flux functions,
s(q) ∈ C1(S ,RM ) - source term

Definition (Hyperbolicity)

A(q, ν) = ν1A1(q) + · · ·+ νd Ad (q) with An(q) = ∂fn(q)/∂q has M real
eigenvalues λ1(q, ν) ≤ ... ≤ λM (q, ν) and M linear independent right
eigenvectors rm(q, ν).

If fn(q) is nonlinear, classical solutions
q(x, t) ∈ C1(D, S) do not generally exist, not
even for q0(x) ∈ C1(Rd , S) [Majda, 1984],
[Godlewski and Raviart, 1996],
[Kröner, 1997]

Example: Euler equations
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Characteristic information

Characteristic variables

Consider the first-order partial differential equation

∂q

∂t
+ A(q)

∂q

∂x
= 0 (2)

For A = const. Eq. (2) is called linear, for A = A(q(x , t)) it is called
quasi-linear. For a hyperbolic system, A is diagonalizable as

R−1A R = Λ

R is the matrix of right eigenvectors (column-wise)

R = ( r1| · · · |rM )

and Λ the diagonal matrix of eigenvalues

Λ =

 λ1 0 0

0
. . . 0

0 0 λM


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Characteristic information

Characteristic variables - II

Multiplying (2) with R−1 gives

R−1 ∂q

∂t
+ R−1A

∂q

∂x
= 0

with R−1dq = dv this becomes

∂v

∂t
+ R−1AR

∂v

∂x
= 0

or
∂v

∂t
+ Λ

∂v

∂x
= 0

which is just a set of decoupled independent advection equations for the
components, i.e.,

∂vm

∂t
+ λm

∂vm

∂x
= 0 for m = 1, . . . ,M (3)

(3) is a wave equation but note that in the general quasi-linear case the
eigenvalues can dependent on all vm , i.e. λm = λm(v1, · · · , vM ) Nevertheless,
an analysis as for the wave equations shows

vm = const. for
dx

dt
= λm

Fundamentals 6
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Characteristic information

Wavefronts

The curves dx = λm dt are called wavefronts or characteristics, vm are the
characteristic variables.
The characteristics define how influence spreads in the x − t plane. A point in
the x − t plane is only influenced by points at earlier times in a finite domain of
dependence and influences only points in a finite range of influence.

Typical wave diagram for vector model problem.

Fundamentals 7
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Weak and entropy solutions

Weak solutions

Integral form (Gauss’s theorem):∫
Ω

q(x, t + ∆t) dx−
∫
Ω

q(x, t) dx

+
d∑

n=1

t+∆t∫
t

∫
∂Ω

fn(q(o, t))σn(o) do dt =

t+∆t∫
t

∫
Ω

s(q(x, t)) dx

Theorem (Weak solution)

q0 ∈ L∞loc (Rd ,S). q ∈ L∞loc (D, S) is weak solution if q satisfies

∞∫
0

∫
Rd

[
∂ϕ

∂t
· q +

d∑
n=1

∂ϕ

∂xn
· fn(q)− ϕ · s(q)

]
dx dt+

∫
Rd

ϕ(x, 0)·q0(x) dx = 0

for any test function ϕ ∈ C1
0(D,S)

Fundamentals 8
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Weak and entropy solutions

Rankine-Hugoniot relations

Consider the 1d version of (1), s(q) = 0 integrated over interval [x , x + dx]× [t, t + dt]

x+dx∫
x

q(x ′, t + dt)dx ′ −
x+dx∫
x

q(x ′, t)dx ′ = −
t+dt∫
t

[
f(q(x + dx , t′))− f (q(x , t′))

]
dt′

Assume a discontinuity traveling with
speed

S =
dx

dt

State on the left of discontinuity is index
with L, on the right with R Inserting the
states into (8) gives

(qL − qR ) dx = − [f(qR )− f(qL)] dt

Or using the above speed definition

S(qR − qL) = f(qR )− f(qL)

This is called Rankine-Hugoniot jump relation. Note the form f(qR ) = f(qL) for S = 0

from which, for instance, the shock relations for Euler equations are derived.

Fundamentals 9
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Weak and entropy solutions

Entropy solutions

Select physical weak solution as lim
ε→0

qε = q almost everywhere in D of

∂qε
∂t

+
d∑

n=1

∂fn(qε)

∂xn
− ε

d∑
n=1

∂2qε
∂x2

n
= s(qε) , x ∈ Rd , t > 0

Theorem (Entropy condition)

Assume existence of entropy η ∈ C2(S ,R) and entropy fluxes ψn ∈ C1(S ,R)
that satisfy

∂η(q)

∂q

T

· ∂fn(q)

∂q
=
∂ψn(q)

∂q

T

, n = 1, . . . , d

then lim
ε→0

qε = q almost everywhere in D is weak solution and satisfies

∂η(q)

∂t
+

d∑
n=1

∂ψn(q)

∂xn
≤ ∂η(q)

∂q

T

· s(q)

in the sense of distributions. Proof: [Godlewski and Raviart, 1996]

Fundamentals 10
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in the sense of distributions. Proof: [Godlewski and Raviart, 1996]
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Weak and entropy solutions

Entropy solutions II

Definition (Entropy solution)

Weak solution q is called an entropy solution if q satisfies

∞∫
0

∫
Rd

[
∂ϕ

∂t
η(q) +

d∑
n=1

∂ϕ

∂xn
ψn(q)− ϕ

∂η(q)

∂q

T

· s(q)

]
dx dt +

∫
Rd

ϕ(x, 0) η(q0(x)) dx ≥ 0

for all entropy functions η(q) and all test functions ϕ ∈ C1
0(D,R+

0 ), ϕ ≥ 0

Theorem (Jump conditions)

An entropy solution q is a classical solution q ∈ C1(D,S) almost everywhere and
satisfies the Rankine-Hugoniot (RH) jump condition

(q+ − q−)σt +
d∑

n=1

(
fn(q+)− fn(q−)

)
σn = 0

and the jump inequality

(η(q+)− η(q−))σt +
d∑

n=1

(
ψn(q+)− ψn(q−)

)
σn ≤ 0

along discontinuities. Proof: [Godlewski and Raviart, 1996]
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Characteristic form of the Euler equations

Euler equations

∂ρ

∂t
+

∂

∂xn

(
ρun

)
= 0

∂

∂t

(
ρuk

)
+

∂

∂xn

(
ρukun + δknp

)
= 0 , k = 1, . . . , d

∂

∂t

(
ρE
)

+
∂

∂xn

(
un(ρE + p)

)
= 0

with polytrope gas equation of state

p = (γ − 1)
(
ρE − 1

2
ρunun

)
have structure

∂tq(x, t) +∇ · f(q(x, t)) = 0

Fundamentals 12
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Characteristic form of the Euler equations

Characteristic form of the Euler equations

The Jacobian can be written in different forms, using

a2 = γ
p

ρ
, h = e +

p

ρ
, H = h +

1

2
u2 ⇒ H =

a2

γ − 1
+

1

2
u2

For

A =


0 1 0

γ − 3

2
u2 (3− γ)u γ − 1

−uH +
1

2
(γ − 1) u3 H − (γ − 1) u2 γu



The matrices

R =

 1 1 1
u − a u u + a

H − ua 1
2

u2 H + ua



R−1 =
1

2a2


1
2

(γ − 1)u2 + ua (1− γ) u − a γ − 1

2a2 − (γ − 1)u2 2(γ − 1) u 2(1− γ)

1
2

(γ − 1)u2 − ua (1− γ) u + a γ − 1


diagonalize A as
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Characteristic form of the Euler equations

Characteristic form of the Euler equations - II

R−1 A R = Λ =

 u − a 0 0
0 u 0
0 0 u + a



The transformation R−1dq = R−1(dρ, d (ρu) , d (ρE))T into characteristic
variables therefore leads to

∂v−

∂t
+ (u − a)

∂v−

∂x
= 0

∂v0

∂t
+ u

∂v0

∂x
= 0

∂v+

∂t
+ (u + a)

∂v+

∂x
= 0

with

dv− = du − dp

ρa
= 0 for dx = (u − a)dt

dv0 = dρ− dp

a2
= 0 for dx = u dt

dv + = du +
dp

ρa
= 0 for dx = (u + a)dt

The crossing of characteristics
causes a shock wave.

Fundamentals 14
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Characteristic form of the Euler equations

Rarefaction and shock waves in the x − t plane

Consider the two enclosing characteristics b1(t) ≤ x ≤ y ≤ b2(t)

Rarefaction:

u(x , t)±a(x , t) ≤ u(y , t)±a(y , t)

Shocks:

u(x , t)±a(x , t) ≥ u(y , t)±a(y , t)

which gives for the shock speed

uL ± aL ≥ S ≥ uR ± aR

Fundamentals 15
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Navier-Stokes equations

Navier-Stokes equations

∂ρ

∂t
+

∂

∂xn

(
ρun

)
= 0

∂

∂t

(
ρuk

)
+

∂

∂xn

(
ρuk un + δknp − τkn

)
= 0 , k = 1, . . . , d

∂

∂t

(
ρE
)

+
∂

∂xn

(
un(ρE + p) + qn − τnj uj

)
= 0

with stress tensor

τkn = µ
(∂un

∂xk
+
∂uk

∂xn

)
− 2

3
µ
∂uj

∂xj
δkn

and heat conduction

qn = −λ∂T

∂xn

have structure

∂tq(x, t) +∇ · f(q(x, t)) +∇ · h(q(x, t),∇q(x, t)) = 0

Type can be either hyperbolic or parabolic

Fundamentals 16
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Navier-Stokes equations

Navier-Stokes equations for multiple species

For multiple species with chemical reaction, the Navier-Stokes equations would
be extended to

∂ρi

∂t
+

∂

∂xn
(ρi un + ρνin) = Wi ω̇i , i = 1, . . . ,N

∂

∂t
(ρuk ) +

∂

∂xn
(ρuk un + δknp − τkn) = 0 , k = 1, . . . , d

∂

∂t
(ρE) +

∂

∂xn
(un(ρE + p) + qn + ρ

∑
j

hjνjn − τnj uj ) = 0

with diffusivities

νin = Di
∂Yi

∂xn

of species i into the mixture (note difference to binary diffusivities).

The
equation of state

p =
∑

i

ρi Ri T

still contains the temperature, which complicates the analysis. The structure is

∂tq(x, t) +∇ · f(q(x, t)) +∇ · h(q(x, t),∇q(x, t)) = s(q(x, t))

Fundamentals 17
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Basics of finite difference methods

Derivation

Assume ∂t q + ∂x f(q) + ∂x h(q(·, ∂x q)) = s(q)

Time discretization tn = n∆t, discrete volumes
Ij = [xj − 1

2
∆x , xj + 1

2
∆x[=: [xj−1/2, xj+1/2[

Using approximations Qj (t) ≈
1

|Ij |

∫
Ij

q(x, t) dx , s(Qj (t)) ≈
1

|Ij |

∫
Ij

s(q(x, t)) dx

and numerical fluxes

F
(
Qj (t),Qj+1(t)

)
≈ f(q(xj+1/2, t)), H

(
Qj (t),Qj+1(t)

)
≈ h(q(xj+1/2, t),∇q(xj+1/2, t))

yields after integration (Gauss theorem)

Qj (tn+1) = Qj (tn)−
1

∆x

tn+1∫

tn

[F (Qj (t),Qj+1(t))− F (Qj−1(t),Qj (t))] dt−

1

∆x

tn+1∫

tn

[H (Qj (t),Qj+1(t))− H (Qj−1(t),Qj (t))] dt +

tn+1∫

tn

s(Qj (t)) dt

For instance:

Qn+1
j = Qn

j −
∆t

∆x

[
F
(

Qn
j ,Qn

j+1

)
− F

(
Qn

j−1,Qn
j

)]
−

∆t

∆x

[
H
(

Qn
j ,Qn

j+1

)
− H

(
Qn

j−1,Qn
j

)]
+ ∆ts(Qn

j ) dt

Fundamentals 19
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Basics of finite difference methods

Some classical definitions

(2s + 1)-point difference scheme of the form

Qn+1
j = H(∆t)(Qn

j−s , . . . ,Q
n
j+s )

Definition (Stability)

For each time τ there is a constant CS and a value n0 ∈ N such that
‖H(∆t)(Qn)‖ ≤ CS for all n∆t ≤ τ , n < n0

Definition (Consistency)

If the local truncation error

L(∆t)(x, t) :=
1

∆t

[
q(x, t + ∆t)−H(∆t)(q(·, t))

]
satisfies ‖L(∆t)(·, t)‖ → 0 as ∆t → 0

Definition (Convergence)

If the global error E (∆t)(x, t) := Q(x, t)− q(x, t) satisfies ‖E (∆t)(·, t)‖ → 0 as
∆t → 0 for all admissible initial data q0(x)
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Basics of finite difference methods

Some classical definitions II

Definition (Order of accuracy)

H(·) is accurate of order o if for all sufficiently smooth initial data q0(x), there
is a constant CL, such that the local truncation error satisfies
‖L(∆t)(·, t)‖ ≤ CL∆to for all ∆t < ∆t0 , t ≤ τ

Definition (Conservative form)

If H(·) can be written in the form

Qn+1
j = Qn

j −
∆t

∆x

(
F(Qn

j−s+1, . . . ,Q
n
j+s )− F(Qn

j−s , . . . ,Q
n
j+s−1)

)
A conservative scheme satisfies∑

j ∈Z

Qn+1
j =

∑
j ∈Z

Qn
j

Definition (Consistency of a conservative method)

If the numerical flux satisfies F(q, . . . , q) = f(q) for all q ∈ S
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Splitting methods, second derivatives

Splitting methods

Solve homogeneous PDE and ODE successively!

H(∆t) : ∂tq +∇ · f(q) = 0 , IC: Q(tm)
∆t
=⇒ Q̃

S(∆t) : ∂tq = s(q) , IC: Q̃
∆t
=⇒ Q(tm + ∆t)

1st-order Godunov splitting: Q(tm + ∆t) = S(∆t)H(∆t)(Q(tm)),

2nd-order Strang splitting : Q(tm + ∆t) = S( 1
2 ∆t)H(∆t)S( 1

2 ∆t)(Q(tm))

1st-order dimensional splitting for H(·):

X (∆t)
1 : ∂tq + ∂x1 f1(q) = 0 , IC: Q(tm)

∆t
=⇒ Q̃1/2

X (∆t)
2 : ∂tq + ∂x2 f2(q) = 0 , IC: Q̃1/2 ∆t

=⇒ Q̃

[Toro, 1999]
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Splitting methods, second derivatives

Conservative scheme for diffusion equation

Consider ∂t q − c∆q = 0 with c ∈ R+

, which is readily discretized as

Qn+1
jk = Qn

jk + c
∆t

∆x2
1

(
Qn

j+1,k − 2Qn
jk + Qn

j−1,k

)
+ c

∆t

∆x2
2

(
Qn

j,k+1 − 2Qn
jk + Qn

j,k−1

)
or conservatively

Qn+1
jk = Qn

jk + c
∆t

∆x1

(
H1

j+ 1
2
,k
− H1

j− 1
2
,k

)
+ c

∆t

∆x2

(
H2

j,k+ 1
2

− H2
j,k− 1

2

)
Von Neumann stability analysis: Insert single eigenmode Q̂(t)e ik1x1 e ik2x2 into
discretization

Q̂n+1 = Q̂n+C1

(
Q̂ne ik1∆x1 − 2Q̂n + Q̂ne−ik1∆x1

)
+C2

(
Q̂ne ik2∆x2 − 2Q̂n + Q̂ne−ik2∆x2

)
with Cι = c ∆t

∆x2
ι
, ι = 1, 2, which gives after inserting e ikιxι = cos(kιxι) + i sin(kιxι)

Q̂n+1 = Q̂n (1 + 2C1(cos(k1∆x1)− 1) + 2C2(cos(k2∆x2)− 1))

Stability requires

|1 + 2C1(cos(k1∆x1)− 1) + 2C2(cos(k2∆x2)− 1)| ≤ 1

i.e.
|1− 4C1 − 4C2| ≤ 1

from which we derive the stability condition

0 ≤ c

(
∆t

∆x2
1

+
∆t

∆x2
2

)
≤

1

2
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Splitting methods, second derivatives
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The linear Riemann problem

The Riemann problem in the linear case

Consider the linear hyperbolic equation (i.e. A = const. )

∂

∂t
q(x , t) + A

∂

∂x
q(x , t) = 0

Assume (for simplicity) that A has M distinct real eigenvalues λ1 < . . . < λM

with M linear independent right eigenvectors rm.

We can readily apply the characteristic transformation R−1q = v to obtain

∂v

∂t
+ Λ

∂v

∂x
= 0

or
∂vm

∂t
+ λm

∂vm

∂x
= 0 for all m = 1, . . . ,M

Each characteristic variable vm changes only across the characteristic line
associated to λm.

Since the entire problem is linear, we can simply sum up all these jumps ∆vm

successively to connect the RP states vL, vR in characteristic variables.

Fundamentals 25



Conservation laws Finite volume methods Upwind schemes References

The linear Riemann problem

The Riemann problem in the linear case

Consider the linear hyperbolic equation (i.e. A = const. )

∂

∂t
q(x , t) + A

∂

∂x
q(x , t) = 0

Assume (for simplicity) that A has M distinct real eigenvalues λ1 < . . . < λM

with M linear independent right eigenvectors rm.
We can readily apply the characteristic transformation R−1q = v to obtain

∂v

∂t
+ Λ

∂v

∂x
= 0

or
∂vm

∂t
+ λm

∂vm

∂x
= 0 for all m = 1, . . . ,M

Each characteristic variable vm changes only across the characteristic line
associated to λm.

Since the entire problem is linear, we can simply sum up all these jumps ∆vm

successively to connect the RP states vL, vR in characteristic variables.

Fundamentals 25



Conservation laws Finite volume methods Upwind schemes References

The linear Riemann problem

The Riemann problem in the linear case

Consider the linear hyperbolic equation (i.e. A = const. )

∂

∂t
q(x , t) + A

∂

∂x
q(x , t) = 0

Assume (for simplicity) that A has M distinct real eigenvalues λ1 < . . . < λM

with M linear independent right eigenvectors rm.
We can readily apply the characteristic transformation R−1q = v to obtain

∂v

∂t
+ Λ

∂v

∂x
= 0

or
∂vm

∂t
+ λm

∂vm

∂x
= 0 for all m = 1, . . . ,M

Each characteristic variable vm changes only across the characteristic line
associated to λm.

Since the entire problem is linear, we can simply sum up all these jumps ∆vm

successively to connect the RP states vL, vR in characteristic variables.

Fundamentals 25



Conservation laws Finite volume methods Upwind schemes References

The linear Riemann problem

The Riemann problem in the linear case - II

Example of a linear 3 PDE system:

Introducing the jumps

∆v1 = [vR1 − vL1, 0, 0]T

∆v2 = [0, vR2 − vL2, 0]T

∆v3 = [0, 0, vR3 − vL3]T

the solution reads

v
(x

t

)
=


vL = vR −∆v3 −∆v2 −∆v1 x/t < λ3

vL + ∆v3 = vR −∆v2 −∆v1 λ3 < x/t < λ2

vL + ∆v3 + ∆v2 = vR −∆v1 λ2 < x/t < λ1

vL + ∆v3 + ∆v2 + ∆v1 = vR λ1 < x/t
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The linear Riemann problem

The Riemann problem in the linear case - III

or using the transformation q = Rv and R∆vm = rm∆vm

q
(x
t

)
=


qL = qR − r3∆v3 − r2∆v2 − r1∆v1 x/t < λ3

qL + r3∆v3 = qR − r2∆v2 − r1∆v1 λ3 < x/t < λ2

qL + r3∆v3 + r2∆v2 = qR − r1∆v1 λ2 < x/t < λ1

qL + r3∆v3 + r2∆v2 + r1∆v1 = qR λ1 < x/t

Multiplying with A and using Arm = λmrm gives

Aq
(x
t

)
=


AqL = AqR − r3λ3∆v3 − r2λ2∆v2 − r1λ1∆v1 x/t < λ3

AqL + r3λ3∆v3 = AqR − r2λ2∆v2 − r1λ1∆v1 λ3 < x/t < λ2

AqL + r3λ3∆v3 + r2λ2∆v2 = AqR − r1λ1∆v1 λ2 < x/t < λ1

AqL + r3λ3∆v3 + r2λ2∆v2 + r1λ1∆v1 = AqR λ1 < x/t

This allows direct evaluation of the flux at x=0.

F(q
L
,q

R
) := f(q(0, t)) = A q(0, t)
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Flux-difference splitting

Linear upwind schemes

Consider Riemann problem

∂

∂t
q(x , t)+A

∂

∂x
q(x , t) = 0 , x ∈ R , t > 0

Has exact solution
x

t

0

. . . . .

q
R

=
M∑

m=1

βm rmq
L

=
M∑

m=1

δm rm

β1r1 +
M∑

m=2

δm rm

M−1∑

m=1

βm rm + δM rM

q(x , t) = q
L

+
∑

λm<x/t

amrm = q
R
−

∑
λm≥x/t

amrm =
∑

λm≥x/t

δmrm +
∑

λm<x/t

βmrm

Use Riemann problem to evaluate numerical flux F(q
L
, q

R
) := f(q(0, t)) = Aq(0, t) as

F(q
L
, q

R
) = Aq

L
+
∑
λm<0

amλmrm = Aq
R
−
∑
λm≥0

amλmrm =
∑
λm≥0

δmλmrm+
∑
λm<0

βmλmrm

Use λ+
m = max(λm, 0) , λ−m = min(λm, 0)

to define Λ+ := diag(λ+
1 , . . . , λ

+
M ) , Λ− := diag(λ−1 , . . . , λ

−
M )

and A+ := R Λ+ R−1 , A− := R Λ− R−1 which gives

F(q
L
, q

R
) = Aq

L
+ A−∆q = Aq

R
− A+∆q = A+q

L
+ A−q

R

with ∆q = q
R
− q

L
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Flux-difference splitting

Flux difference splitting

Godunov-type scheme with ∆Qn
j+1/2 = Qn

j+1 −Qn
j

Qn+1
j = Qn

j −
∆t

∆x

(
A−∆Qn

j+1/2 + A+∆Qn
j−1/2

)

Use linearization f̄(q̄) = Â(q
L
,q

R
)q̄ and construct scheme for nonlinear

problem as

Qn+1
j = Qn

j −
∆t

∆x

(
Â−(Qn

j ,Q
n
j+1)∆Qn

j+ 1
2

+ Â+(Qn
j−1,Q

n
j )∆Qn

j− 1
2

)
stability condition

max
j∈Z
|λ̂m,j+ 1

2
|∆t

∆x
≤ 1 , for all m = 1, . . . ,M

[LeVeque, 1992]
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Flux-difference splitting

Roe’s approximate Riemann solver

Choosing Â(q
L
,q

R
) [Roe, 1981]:

(i) Â(q
L
,q

R
) has real eigenvalues

(ii) Â(q
L
,q

R
)→ ∂f(q)

∂q
as q

L
,q

R
→ q

(iii) Â(q
L
,q

R
)∆q = f(q

R
)− f(q

L
)

ql qr
tn

tn+1

Wave decomposition: ∆q = qr − q
l

=
∑

m

am r̂m

F(q
L
,q

R
) = f(q

L
) +

∑
λ̂m<0

λ̂m am r̂m = f(q
R

)−
∑
λ̂m≥0

λ̂m am r̂m

=
1

2

(
f(q

L
) + f(q

R
)−

∑
m

|λ̂m| am r̂m

)
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L
,q

R
)→ ∂f(q)

∂q
as q

L
,q

R
→ q

(iii) Â(q
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L
,q

R
) [Roe, 1981]:

(i) Â(q
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Flux-difference splitting

The Roe solver for Euler equations

For Euler equations, the following non-apparent average defines the Roe method:
The average for u and H read

û :=

√
ρLuL +

√
ρR uR

√
ρL +

√
ρR

, Ĥ :=

√
ρLHL +

√
ρR HR

√
ρL +

√
ρR

The average of the density is

ρ̂ =

√
ρLρR +

√
ρRρL

√
ρL +

√
ρR

=
√
ρLρR

and the averaged speed of sound is

â :=

(
(γ − 1)(Ĥ −

1

2
û2)

)1/2

The eigenvectors read

r̂1 =

 1
û − â

Ĥ − ûâ

, r̂2 =

 1
û

û2/
2

, r̂3 =

 1
û + â

Ĥ + ûâ


and the characteristic wave strengths are

∆v1 = a1 =
∆p − ρ̂â∆u

2â2
, ∆v2 = a2 = ∆ρ−

∆p

â2
, ∆v3 = a3 =

∆p + ρ̂â∆u

2â2
.
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û
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Ĥ + ûâ
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2â2
, ∆v2 = a2 = ∆ρ−

∆p

â2
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Flux-difference splitting

Harten-Lax-Van Leer (HLL) approximate Riemann solver

q⋆

q
L

q
R

tn

tn+1

s
L
tn+1 s

R
tn+1

q̄(x , t) =


q

L
, x < s

L
t

q? , s
L

t ≤ x ≤ s
R

t
q

R
, x > s

R
t

FHLL(q
L
, q

R
) =


f(q

L
) , 0 < s

L
,

s
R

f(q
L

)− s
L
f(q

R
) + s

L
s

R
(q

R
− q

L
)

s
R
− s

L

, s
L
≤ 0 ≤ s

R
,

f(q
R

) , 0 > s
R
,

Euler equations:

s
L

= min(u1,L − cL, u1,R − cR ) , s
R

= max(u1,L + cl , u1,R + cR )

[Toro, 1999], HLLC: [Toro et al., 1994]
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Flux-vector splitting

Flux vector splitting

Splitting

f(q) = f+(q) + f−(q)

derived under restriction λ̂+
m ≥ 0 and

λ̂−m ≤ 0 for all m = 1, . . . ,M for

Â+(q) =
∂f+(q)

∂q
, Â−(q) =

∂f−(q)

∂q

q
L

q
R

f−(q
L
) f+(q

L
) f−(q

R
) f+(q

R
)

F(q
L
, q

R
) = f+(q

L
) + f−(q

R
)

tl

tl+1

plus reproduction of regular upwinding

f+(q) = f(q) , f−(q) = 0 if λm ≥ 0 for all m = 1, . . . ,M
f+(q) = 0 , f−(q) = f(q) if λm ≤ 0 for all m = 1, . . . ,M

Then use
F(q

L
, q

R
) = f+(q

L
) + f−(q

R
)
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Â+(q) =
∂f+(q)

∂q
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Flux-vector splitting

Steger-Warming

Required f(q) = A(q) q

λ+
m =

1

2
(λm + |λm|) λ−m =

1

2
(λm − |λm|)

A+(q) := R(q) Λ+(q) R−1(q) , A−(q) := R(q) Λ−(q) R−1(q)

Gives
f(q) = A+(q) q + A−(q) q

and the numerical flux

F(q
L
, q

R
) = A+(q

L
) q

L
+ A−(q

R
) q

R

Jacobians of the split fluxes are identical to A±(q) only in linear case

∂f±(q)

∂q
=
∂
(
A±(q) q

)
∂q

= A±(q) +
∂A±(q)

∂q
q

Further methods: Van Leer FVS [Toro, 1999], AUSM [Wada and Liou, 1997]
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Flux-vector splitting

Steger-Warming FVS for Euler equations

For Euler equations, f(q) = A(q) q holds true. We also know all matrices R−1AR = Λ.

Approach 1: Introduce λ+
m = 1

2
(λm + |λm|) , λ−m = 1

2
(λm − |λm|) and compute A+

and A− directly.
Approach 2: Analyze sign of eigenvalues:
u < −a : All eigenvalues are negative: u − a < u < u + a < 0

f−(q) =
[
ρu, ρu2 + p, ρuH

]T
, f+(q) = 0

u > a : All eigenvalues are positive: 0 < u − a < u < u + a

f−(q) = 0, f+(q) =
[
ρu, ρu2 + p, ρuH

]T
−a ≤ u ≤ a : We find u − a ≤ 0 and u + a ≥ 0 are always satisfied. For u < 0, we
need to evaluate

f−(q) = R

 u − a 0 0
0 u 0
0 0 0

R−1q, f+(q) = R

 0 0 0
0 0 0
0 0 u + a

R−1q

For u ≥ 0, we need to evaluate

f−(q) = R

 u − a 0 0
0 0 0
0 0 0

R−1q, f+(q) = R

 0 0 0
0 u 0
0 0 u + a

R−1q
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Flux-vector splitting

Steger-Warming FVS for Euler equations

For Euler equations, f(q) = A(q) q holds true. We also know all matrices R−1AR = Λ.
Approach 1: Introduce λ+

m = 1
2

(λm + |λm|) , λ−m = 1
2

(λm − |λm|) and compute A+

and A− directly.
Approach 2: Analyze sign of eigenvalues:
u < −a : All eigenvalues are negative: u − a < u < u + a < 0

f−(q) =
[
ρu, ρu2 + p, ρuH

]T
, f+(q) = 0

u > a : All eigenvalues are positive: 0 < u − a < u < u + a

f−(q) = 0, f+(q) =
[
ρu, ρu2 + p, ρuH

]T
−a ≤ u ≤ a : We find u − a ≤ 0 and u + a ≥ 0 are always satisfied. For u < 0, we
need to evaluate
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