Lecture 6 Fluid-structure interaction simulation

Course Block-structured Adaptive Finite Volume Methods in C++

Ralf Deiterding University of Southampton Engineering and the Environment Highfield Campus, Southampton SO17 1BJ, UK

E-mail: r.deiterding@soton.ac.uk

Outline

Fluid-structure interaction

Coupling to a solid mechanics solver Implementation Rigid body motion Thin elastic and deforming thin structures Deformation from water hammer Real-world example

Outline

Fluid-structure interaction

Coupling to a solid mechanics solver Implementation Rigid body motion Thin elastic and deforming thin structures Deformation from water hammer Real-world example

Massively parallel SAMR

Performance data from AMROC

Outline

Fluid-structure interaction

Coupling to a solid mechanics solver Implementation Rigid body motion Thin elastic and deforming thin structures Deformation from water hammer Real-world example

Massively parallel SAMR

Performance data from AMROC

Construction of coupling data

- Moving boundary/interface is treated as a moving contact discontinuity and represented by level set [Fedkiw, 2002][Arienti et al., 2003]
- Efficient construction of level set from triangulated surface data with closest-point-transform (CPT) algorithm [Mauch, 2003]

Massively parallel SAMR 000000 References 0000

Construction of coupling data

- Moving boundary/interface is treated as a moving contact discontinuity and represented by level set [Fedkiw, 2002][Arienti et al., 2003]
- Efficient construction of level set from triangulated surface data with closest-point-transform (CPT) algorithm [Mauch, 2003]
- One-sided construction of mirrored ghost cell and new nodal point values

Construction of coupling data

- Moving boundary/interface is treated as a moving contact discontinuity and represented by level set [Fedkiw, 2002][Arienti et al., 2003]
- Efficient construction of level set from triangulated surface data with closest-point-transform (CPT) algorithm [Mauch, 2003]
- One-sided construction of mirrored ghost cell and new nodal point values
- Gathering of solid force and momentum information and solution of equations of motion on central node

Coupling conditions on interface Viscous fluid:

$$\begin{array}{ccc} u^{S} & = & u^{F} \\ \sigma^{S}_{nm} & = & \sigma^{F}_{nm} \end{array} \Big|_{\mathcal{I}}$$

with
$$\sigma_{nm}^{F} = -p^{F}\delta_{nm} + \Sigma_{nm}^{F}$$

Massively para 000000

References 0000

Construction of coupling data

- Moving boundary/interface is treated as a moving contact discontinuity and represented by level set [Fedkiw, 2002][Arienti et al., 2003]
- Efficient construction of level set from triangulated surface data with closest-point-transform (CPT) algorithm [Mauch, 2003]
- One-sided construction of mirrored ghost cell and new nodal point values
- Gathering of solid force and momentum information and solution of equations of motion on central node
- Stable explicit coupling possible if geometry and velocities are prescribed for compressible fluid [Specht, 2000]

$$\begin{split} u^{F} &:= u^{S}(t)|_{\mathcal{I}} \\ \text{UpdateFluid}(\Delta t) \\ \sigma^{S}_{nm} &:= \sigma^{F}_{nm}(t + \Delta t)|_{\mathcal{I}} \\ \text{UpdateSolid}(\Delta t) \\ t &:= t + \Delta t \end{split}$$

Coupling conditions on interface Viscous fluid:

$$\begin{array}{ccc} u^{S} &=& u^{F} \\ \sigma^{S}_{nm} &=& \sigma^{F}_{nm} \end{array} \Big|_{\mathcal{I}}$$

with
$$\sigma_{nm}^{F} = -p^{F}\delta_{nm} + \Sigma_{nm}^{F}$$

Construction of coupling data

- Moving boundary/interface is treated as a moving contact discontinuity and represented by level set [Fedkiw, 2002][Arienti et al., 2003]
- Efficient construction of level set from triangulated surface data with closest-point-transform (CPT) algorithm [Mauch, 2003]
- One-sided construction of mirrored ghost cell and new nodal point values
- Gathering of solid force and momentum information and solution of equations of motion on central node
- Stable explicit coupling possible if geometry and velocities are prescribed for compressible fluid [Specht, 2000]

$$\begin{split} u_n^F &:= u_n^S(t)|_{\mathcal{I}} \\ \text{UpdateFluid}(\Delta t) \\ \sigma_{nm}^S &:= -p^F(t + \Delta t)\delta_{nm}|_{\mathcal{I}} \\ \text{UpdateSolid}(\Delta t) \\ t &:= t + \Delta t \end{split}$$

Coupling conditions on interface Inviscid fluid (for FV methods):

$$\begin{array}{ccc} u_n^S &=& u_n^F \\ \sigma_{nm}^S &=& -p^F \delta_{nm} \end{array} \Big|_{\mathcal{I}}$$

- Eulerian SAMR + non-adaptive Lagrangian FEM scheme
- ▶ Exploit SAMR time step refinement for effective coupling to solid solver

- Eulerian SAMR + non-adaptive Lagrangian FEM scheme
- ▶ Exploit SAMR time step refinement for effective coupling to solid solver
 - ▶ Lagrangian simulation is called only at level $I_c \leq I_{max}$

- Eulerian SAMR + non-adaptive Lagrangian FEM scheme
- ▶ Exploit SAMR time step refinement for effective coupling to solid solver
 - Lagrangian simulation is called only at level $I_c \leq I_{max}$
 - SAMR refines solid boundary at least at level I_c
 - Additional levels can be used resolve geometric ambiguities

- Eulerian SAMR + non-adaptive Lagrangian FEM scheme
- ▶ Exploit SAMR time step refinement for effective coupling to solid solver
 - ▶ Lagrangian simulation is called only at level $I_c \leq I_{max}$
 - SAMR refines solid boundary at least at level I_c
 - Additional levels can be used resolve geometric ambiguities
- Nevertheless: Inserting sub-steps accommodates for time step reduction from the solid solver within an SAMR cycle

- Eulerian SAMR + non-adaptive Lagrangian FEM scheme
- Exploit SAMR time step refinement for effective coupling to solid solver
 - ▶ Lagrangian simulation is called only at level $I_c \leq I_{max}$
 - SAMR refines solid boundary at least at level I_c
 - Additional levels can be used resolve geometric ambiguities
- Nevertheless: Inserting sub-steps accommodates for time step reduction from the solid solver within an SAMR cycle
- Communication strategy:
 - Updated boundary info from solid solver must be received before regridding operation
 - Boundary data is sent to solid when highest level available

- Eulerian SAMR + non-adaptive Lagrangian FEM scheme
- ▶ Exploit SAMR time step refinement for effective coupling to solid solver
 - ► Lagrangian simulation is called only at level $I_c \leq I_{max}$
 - SAMR refines solid boundary at least at level I_c
 - Additional levels can be used resolve geometric ambiguities
- Nevertheless: Inserting sub-steps accommodates for time step reduction from the solid solver within an SAMR cycle
- Communication strategy:
 - Updated boundary info from solid solver must be received before regridding operation
 - Boundary data is sent to solid when highest level available
- Inter-solver communication (point-to-point or globally) managed on the fly special coupling module

SAMR algorithm for FSI coupling

```
AdvanceLevel(/)
```

```
Repeat r_l times
Set ghost cells of \mathbf{Q}^l(t)
If time to regrid?
Regrid(l)
UpdateLevel(l)
If level l + 1 exists?
Set ghost cells of \mathbf{Q}^l(t + \Delta t_l)
AdvanceLevel(l + 1)
Average \mathbf{Q}^{l+1}(t + \Delta t_l) onto \mathbf{Q}^l(t + \Delta t_l)
```

 $t := t + \Delta t_l$

SAMR algorithm for FSI coupling

```
AdvanceLevel(/)
```

```
Repeat r_l times

Set ghost cells of \mathbf{Q}^l(t)

CPT(\varphi^l, C^l, \mathcal{I}, \delta_l)

If time to regrid?

Regrid(l)

UpdateLevel(\mathbf{Q}^l, \varphi^l, C^l, \mathbf{u}^S|_{\mathcal{I}}, \Delta t_l)

If level l+1 exists?

Set ghost cells of \mathbf{Q}^l(t + \Delta t_l)

AdvanceLevel(l+1)

Average \mathbf{Q}^{l+1}(t + \Delta t_l) onto \mathbf{Q}^l(t + \Delta t_l)
```

- Call CPT algorithm before Regrid(1)
- Include also call to CPT(·) into
 Recompose(1) to ensure consistent level set data on levels that have changed

$$t := t + \Delta t_l$$

SAMR algorithm for FSI coupling

```
AdvanceLevel(/)
```

```
Repeat r_l times
   Set ghost cells of \mathbf{Q}'(t)
   CPT(\varphi', C', \mathcal{I}, \delta_l)
    If time to regrid?
          Regrid(/)
   UpdateLevel(\mathbf{Q}^{\prime}, \varphi^{\prime}, C^{\prime}, \mathbf{u}^{S}|_{\tau}, \Delta t_{l})
    If level l+1 exists?
          Set ghost cells of \mathbf{Q}^{\prime}(t + \Delta t_{l})
          AdvanceLevel(l+1)
          Average \mathbf{Q}^{l+1}(t + \Delta t_l) onto \mathbf{Q}^l(t + \Delta t_l)
    If l = l_c?
          SendInterfaceData(p^{F}(t + \Delta t_{l})|_{\tau})
           If (t + \Delta t_l) < (t_0 + \Delta t_0)?
                  ReceiveInterfaceData(\mathcal{I}, \mathbf{u}^{\mathsf{S}}|_{\tau})
    t := t + \Delta t_{l}
```

- Call CPT algorithm before Regrid(1)
- Include also call to CPT(·) into
 Recompose(1) to ensure consistent level set data on levels that have changed
- Communicate boundary data on coupling level *I_c*

Massively parallel SAMR

References 0000

SAMR algorithm for FSI coupling

AdvanceLevel(/)

Repeat r_l times Set ghost cells of $\mathbf{Q}'(t)$ $CPT(\varphi', C', \mathcal{I}, \delta_l)$ If time to regrid? Regrid(/) UpdateLevel($\mathbf{Q}', \varphi', C', \mathbf{u}^{S}|_{\tau}, \Delta t_{l}$) If level l+1 exists? Set ghost cells of $\mathbf{Q}^{\prime}(t + \Delta t_{l})$ AdvanceLevel(l+1)Average $\mathbf{Q}^{l+1}(t + \Delta t_l)$ onto $\mathbf{Q}^{l}(t + \Delta t_l)$ If $l = l_c$? SendInterfaceData($p^{F}(t + \Delta t_{l})|_{\tau}$) If $(t + \Delta t_l) < (t_0 + \Delta t_0)$? ReceiveInterfaceData($\mathcal{I}, \mathbf{u}^{\mathsf{S}}|_{\tau}$) $t := t + \Delta t_{l}$

- Call CPT algorithm before Regrid(1)
- Include also call to CPT(·) into
 Recompose(1) to ensure consistent level set data on levels that have changed
- Communicate boundary data on coupling level *l_c*

FluidStep()

 $\begin{array}{l} \Delta \tau_F := \min_{l=0,\cdots,l_{\max}} \left(R_l \cdot \ \texttt{StableFluidTimeStep}(l) \,, \ \Delta \tau_S \right) \\ \Delta t_l := \Delta \tau_F / R_l \ \texttt{for} \ l=0,\cdots,L \\ \texttt{ReceiveInterfaceData}(\mathcal{I}, \ \mathbf{u}^S|_{\mathcal{I}}) \\ \texttt{AdvanceLevel}(0) \end{array}$

with
$$R_l = \prod_{\iota=0}^l r_\iota$$

FluidStep()

$$\begin{array}{l} \Delta \tau_F := \min_{l=0,\cdots,l_{\max}} \left(R_l \cdot \ \texttt{StableFluidTimeStep(l), } \Delta \tau_S \right) \\ \Delta t_l := \Delta \tau_F / R_l \ \texttt{for} \ l=0,\cdots,L \\ \texttt{ReceiveInterfaceData}(\mathcal{I}, \ \mathbf{u}^S|_{\mathcal{I}}) \\ \texttt{AdvanceLevel(0)} \end{array}$$

SolidStep()

$$\Delta \tau_{S} := \min(K \cdot R_{l_{c}} \cdot \texttt{StableSolidTimeStep(), } \Delta \tau_{F})$$

with
$$R_l = \prod_{\iota=0}^l r_\iota$$

FluidStep()

 $\begin{array}{l} \Delta\tau_F := \min_{l=0,\cdots,l_{\max}} \left(R_l \cdot \mbox{ StableFluidTimeStep(l), } \Delta\tau_S \right) \\ \Delta t_l := \Delta\tau_F / R_l \mbox{ for } l=0,\cdots,L \\ \mbox{ ReceiveInterfaceData}(\mathcal{I}, \mbox{ } \mathbf{u}^S|_{\mathcal{I}}) \\ \mbox{ AdvanceLevel(0)} \end{array}$

SolidStep()

$$\begin{array}{l} \Delta \tau_{S} := \min\left(\mathcal{K} \cdot \mathcal{R}_{l_{c}} \cdot \text{ StableSolidTimeStep}() \text{, } \Delta \tau_{F} \right) \\ \text{Repeat } \mathcal{R}_{l_{c}} \text{ times} \\ t_{\text{end}} := t + \Delta \tau_{S} / \mathcal{R}_{l_{c}} \text{, } \Delta t := \Delta \tau_{S} / (\mathcal{K} \mathcal{R}_{l_{c}}) \end{array}$$

 Time step stays constant for R_{lc} steps, which correponds to one fluid step at level 0

with
$$R_l = \prod_{\iota=0}^l r_{\iota}$$

FluidStep()

 $\begin{array}{l} \Delta \tau_F := \min_{l=0,\cdots,l_{\max}} \left(R_l \cdot \ \texttt{StableFluidTimeStep(l), } \Delta \tau_S \right) \\ \Delta t_l := \Delta \tau_F / R_l \ \texttt{for} \ l=0,\cdots,L \\ \texttt{ReceiveInterfaceData}(\mathcal{I}, \ \mathbf{u}^S|_{\mathcal{I}}) \\ \texttt{AdvanceLevel(0)} \end{array}$

SolidStep()

$$\begin{split} \Delta \tau_{S} &:= \min\left(K \cdot R_{l_{c}} \cdot \text{ StableSolidTimeStep}(), \ \Delta \tau_{F}\right) \\ \text{Repeat } R_{l_{c}} \text{ times} \\ t_{\text{end}} &:= t + \Delta \tau_{S}/R_{l_{c}}, \ \Delta t := \Delta \tau_{S}/(KR_{l_{c}}) \\ \text{While } t < t_{\text{end}} \\ \text{SendInterfaceData}(\mathcal{I}(t), \ \vec{u}^{S}|_{\mathcal{I}}(t)) \\ \text{ReceiveInterfaceData}(p^{F}|_{\mathcal{I}}) \\ \text{UpdateSolid}(p^{F}|_{\mathcal{I}}, \ \Delta t) \\ t := t + \Delta t \\ \Delta t := \min(\text{StableSolidTimeStep}(), \ t_{\text{end}} - t) \end{split}$$

 Time step stays constant for R_{lc} steps, which correponds to one fluid step at level 0

with
$$R_l = \prod_{\iota=0}^l r_\iota$$

- Distribute both meshes seperately and copy necessary nodal values and geometry data to fluid nodes
- Setting of ghost cell values becomes strictly local operation

- Distribute both meshes seperately and copy necessary nodal values and geometry data to fluid nodes
- Setting of ghost cell values becomes strictly local operation
- Construct new nodal values strictly local on fluid nodes and transfer them back to solid nodes
- Only surface data is transfered

- Distribute both meshes seperately and copy necessary nodal values and geometry data to fluid nodes
- Setting of ghost cell values becomes strictly local operation
- Construct new nodal values strictly local on fluid nodes and transfer them back to solid nodes
- Only surface data is transfered
- Asynchronous communication ensures scalability
- Generic encapsulated implementation guarantees reusability

Massively parallel SAMP

Eulerian/Lagrangian communication module

1. Put bounding boxes around each solid processors piece of the boundary and around each fluid processors grid

Massively parallel SAMF

Eulerian/Lagrangian communication module

- Put bounding boxes around each solid processors piece of the boundary and around each fluid processors grid
- 2. Gather, exchange and broadcast of bounding box information

	10000	t	1
[]]]			

Massively parallel SAMP

Eulerian/Lagrangian communication module

- Put bounding boxes around each solid processors piece of the boundary and around each fluid processors grid
- 2. Gather, exchange and broadcast of bounding box information
- 3. Optimal point-to-point communication pattern, non-blocking

			un nun
			1
	00000000		20100100
	22222222		1000000
for the second	2000000		
	anna ann ann ann ann ann ann ann ann an		anna ann
<i></i>			
0.0000000000000000000000000000000000000		0.000000000	
Sec. Contractor	******	Sector and a sector of the	
0.000000000	1111111	0.00000000	1111111
		S A S A S A S A S A S A S A S A S A S A	
+	******		******

FSI coupling

- Coupling algorithm implemented in further derived HypSAMRSolver class
- Level set evaluation always with CPT algorithm
- Parallel communication through efficient non-blocking communication module ELC
- Time step selection for both solvers through CoupledSolver class

FSI coupling

- Coupling algorithm implemented in further derived HypSAMRSolver class
- Level set evaluation always with CPT algorithm
- Parallel communication through efficient non-blocking communication module ELC
- Time step selection for both solvers through CoupledSolver class

AMRELCGFMSolver<VectorType, FixupType, FlagType, dim > is the derived AMRSolver<>class. code/amroc/doc/html/amr/classAMRELCGFMSolver.html

- Uses the Eulerian interface of the Lagrangian communication routines code/stlib/doc/html/elc/elc__page.html
- and the closest point transform algorithm code/stlib/doc/html/cpt/cpt__page.html through the CPTLevelSet<DataType, dim >

code/amroc/doc/html/amr/classCPTLevelSet.html

Fluid-structure interaction

Rigid body motion

Massively parallel SAMR 000000

References 0000

Lift-up of a spherical body

Cylindrical body hit by Mach 3 shockwave, 2D test case by [Falcovitz et al., 1997]

Schlieren plot of density

Refinement levels

code/amroc/doc/html/apps/clawpack_2applications_2euler_22d_2SphereLiftOff_2src_2Problem_8h_source.html

Proximal bodies in hypersonic flow

Flow modeled by Euler equations for a single polytropic gas with $p=(\gamma-1)\,
ho e$

 $\partial_t \rho + \partial_{x_n}(\rho u_n) = 0 , \quad \partial_t(\rho u_k) + \partial_{x_n}(\rho u_k u_n + \delta_{kn} p) = 0 , \quad \partial_t(\rho E) + \partial_{x_n}(u_n(\rho E + p)) = 0$

Numerical approximation with

 Finite volume flux-vector splitting scheme with MUSCL reconstruction, dimensional splitting

Proximal bodies in hypersonic flow

Flow modeled by Euler equations for a single polytropic gas with $p=(\gamma-1)\,
ho e$

 $\partial_t \rho + \partial_{x_n}(\rho u_n) = 0 , \quad \partial_t(\rho u_k) + \partial_{x_n}(\rho u_k u_n + \delta_{kn} p) = 0 , \quad \partial_t(\rho E) + \partial_{x_n}(u_n(\rho E + p)) = 0$

Numerical approximation with

- Finite volume flux-vector splitting scheme with MUSCL reconstruction, dimensional splitting
- ► Spherical bodies, force computation with overlaid lattitude-longitude mesh to obtain drag and lift coefficients $C_{D,L} = \frac{2F_{D,L}}{\rho v^2 \pi r^2}$

• inflow M = 10, C_D and C_L on secondary sphere, lateral position varied, no motion

Verification and validation

Static force measurements, M = 10: [Laurence et al., 2007]

I _{max}	C _D	ΔC_D	C_L	ΔC_L
1	1.264		-0.176	
2	1.442	0.178	-0.019	0.157
3	1.423	-0.019	0.052	0.071
4	1.408	-0.015	0.087	0.035
Verification and validation

Static force measurements, M = 10: [Laurence et al., 2007]

I _{max}	C _D	ΔC_D	C_L	ΔC_L
1	1.264		-0.176	
2	1.442	0.178	-0.019	0.157
3	1.423	-0.019	0.052	0.071
4	1.408	-0.015	0.087	0.035

 Comparison with experimental results: 3 additional levels, ~ 2000 h CPU

	Experimental	Computational
C_D	1.11 ± 0.08	1.01
C_L	0.29 ± 0.05	0.28

Massively parallel SAMR 000000 References 0000

Verification and validation

Static force measurements, M = 10: [Laurence et al., 2007]

I _{max}	C _D	ΔC_D	C_L	ΔC_L
1	1.264		-0.176	
2	1.442	0.178	-0.019	0.157
3	1.423	-0.019	0.052	0.071
4	1.408	-0.015	0.087	0.035

 Comparison with experimental results: 3 additional levels, ~ 2000 h CPU

	Experimental	Computational
C_D	1.11 ± 0.08	1.01
C_L	0.29 ± 0.05	0.28

Dynamic motion, M = 4:

- Base grid 150 × 125 × 90, two additional levels with r_{1,2} = 2
- 24,704 time steps, 36,808 h CPU on 256 cores IBM BG/P

[Laurence and Deiterding, 2011]

Fluid-structure interaction Rigid body motion Schlieren graphics on refinement regions Time=0.182952

code/amroc/doc/html/apps/clawpack_2applications_2euler_23d_2Spheres_2src_2Problem_8h_source.html

Treatment of thin structures

 Thin boundary structures or lower-dimensional shells require "thickening" to apply embedded boundary method

- Thin boundary structures or lower-dimensional shells require "thickening" to apply embedded boundary method
- \blacktriangleright Unsigned distance level set function φ

Massively parallel SAMR 000000

- Thin boundary structures or lower-dimensional shells require "thickening" to apply embedded boundary method
- \blacktriangleright Unsigned distance level set function φ
- ► Treat cells with 0 < φ < d as ghost fluid cells</p>

Massively parallel SAMR 000000

- Thin boundary structures or lower-dimensional shells require "thickening" to apply embedded boundary method
- \blacktriangleright Unsigned distance level set function φ
- Treat cells with 0 < φ < d as ghost fluid cells</p>
- \blacktriangleright Leaving φ unmodified ensures correctness of $\nabla\varphi$

- Thin boundary structures or lower-dimensional shells require "thickening" to apply embedded boundary method
- \blacktriangleright Unsigned distance level set function φ
- Treat cells with 0 < φ < d as ghost fluid cells</p>

- \blacktriangleright Leaving φ unmodified ensures correctness of $\nabla\varphi$
- Use face normal in shell element to evaluate in $\Delta p = p^+ p^-$

Treatment of thin structures

- Thin boundary structures or lower-dimensional shells require "thickening" to apply embedded boundary method
- \blacktriangleright Unsigned distance level set function φ
- ► Treat cells with 0 < φ < d as ghost fluid cells</p>

- \blacktriangleright Leaving φ unmodified ensures correctness of $\nabla\varphi$
- ▶ Use face normal in shell element to evaluate in $\Delta p = p^+ p^-$
- Utilize finite difference solver using the beam equation

$$\rho_{s}hrac{\partial^{2}w}{\partial t^{2}}+EIrac{\partial^{4}w}{\partial \bar{x}^{4}}=
ho^{F}$$

to verify FSI algorithms

FSI verification by elastic vibration

- ▶ Thin steel plate (thickness $h = 1 \,\mathrm{mm}$, length 50 mm), clamped at lower end
- ▶ $\rho_s = 7600 \text{ kg/m}^3$, E = 220 GPa, $I = h^3/12$, $\nu = 0.3$
- Modeled with beam solver (101 points) and thin-shell FEM solver (325 triangles) by F. Cirak

FSI verification by elastic vibration

- Thin steel plate (thickness h = 1 mm, length 50 mm), clamped at lower end
- ▶ $\rho_s = 7600 \, \mathrm{kg/m^3}$, $E = 220 \, \mathrm{GPa}$, $I = h^3/12$, $\nu = 0.3$
- Modeled with beam solver (101 points) and thin-shell FEM solver (325 triangles) by F. Cirak
- \blacktriangleright Left: Coupling verification with constant instantenous loading by $\Delta p = 100 \, \rm kPa$

FSI verification by elastic vibration

- Thin steel plate (thickness h = 1 mm, length 50 mm), clamped at lower end
- $\rho_s = 7600 \text{ kg/m}^3$, E = 220 GPa, $I = h^3/12$, $\nu = 0.3$
- Modeled with beam solver (101 points) and thin-shell FEM solver (325 triangles) by F. Cirak
- \blacktriangleright Left: Coupling verification with constant instantenous loading by $\Delta p = 100 \, \rm kPa$
- Right: FSI verification with Mach 1.21 shockwave in air ($\gamma = 1.4$)

Test case suggested by [Giordano et al., 2005]

Forward facing step geometry, fixed walls everywhere except at inflow

SAMR base mesh 320 × 64(×2), r_{1,2} = 2

Test case suggested by [Giordano et al., 2005]

- SAMR base mesh 320 × 64(×2), r_{1,2} = 2
- Intel 3.4GHz Xeon dual processors, GB Ethernet interconnect
 - Beam-FSI: 12.25 h CPU on 3 fluid CPU + 1 solid CPU code/doc/html/capps/beam-amrcc_2VibratingBeam_2erc_2FluidProblem_Bh_source.html, code/doc/html/capps/beam-amrcc_2VibratingBeam_2erc_2StlidProblem_Bh_source.html
 - FEM-FSI: 322 h CPU on 14 fluid CPU + 2 solid CPU code/doc/tnl/capps/sfc-amroc_2VibratingPanel_zerc_2FluidProblem_6h_source.html, code/doc/tnl/capps/VibratingPanel_zerc_2FluidProblem_6h_source.html

Test case suggested by [Giordano et al., 2005]

- SAMR base mesh 320 × 64(×2), r_{1,2} = 2
- Intel 3.4GHz Xeon dual processors, GB Ethernet interconnect
 - Beam-FSI: 12.25 h CPU on 3 fluid CPU + 1 solid CPU code/doc/ttal/capps/beam-amrcc_2VibratingBeam_2erc_2FluidProblem_6h_source.html, code/doc/ttal/capps/beam-amrcc_2VibratingBeam_2erc_2SolidProblem_6h_source.html
 - FEM-FSI: 322 h CPU on 14 fluid CPU + 2 solid CPU code/doc/ttal/capps/sfc-amroc_2VibratingPanel_zerc_2FluidProblem_Bh_source.html code/doc/thal/capps/VibratingPanel_zerc_2FluidProblem_Source.html

Test case suggested by [Giordano et al., 2005]

- SAMR base mesh 320 × 64(×2), r_{1,2} = 2
- Intel 3.4GHz Xeon dual processors, GB Ethernet interconnect
 - Beam-FSI: 12.25 h CPU on 3 fluid CPU + 1 solid CPU code/doc/ttal/capps/beam-amrcc_2VibratingBeam_2erc_2FluidProblem_6h_source.html, code/doc/ttal/capps/beam-amrcc_2VibratingBeam_2erc_2SolidProblem_6h_source.html
 - FEM-FSI: 322 h CPU on 14 fluid CPU + 2 solid CPU code/doc/html/capps/sfc-mmroc_2VibratingPanel_zerc_2FluidProblem_8h_source.html, code/doc/html/capps/VibratingPanel_zerc_2FluidProblem_8h_source.html

Test case suggested by [Giordano et al., 2005]

- SAMR base mesh 320 × 64(×2), r_{1,2} = 2
- Intel 3.4GHz Xeon dual processors, GB Ethernet interconnect
 - Beam-FSI: 12.25 h CPU on 3 fluid CPU + 1 solid CPU code/doc/html/capps/beam-amrcc_2VibratingBeam_2erc_2FluidProblem_Bh_source.html, code/doc/html/capps/beam-amrcc_2VibratingBeam_2erc_2SolidProblem_Bh_source.html
 - FEM-FSI: 322 h CPU on 14 fluid CPU + 2 solid CPU code/doc/html/capps/sfc-amroc_2VibratingPanel_zerc_2FluidProblem_8h_source.html, code/doc/html/capps/VibratingPanel_zerc_2FluidProblem_8h_source.html

Detonation-driven plastic deformation

Chapman-Jouguet detonation in a tube filled with a stoichiometric ethylene and oxygen ($C_2H_4 + 3O_2$, 295 K) mixture. Euler equations with single exothermic reaction $A \longrightarrow B$

$$\begin{aligned} \partial_t \rho + \partial_{x_n}(\rho u_n) &= 0 , \quad \partial_t(\rho u_k) + \partial_{x_n}(\rho u_k u_n + \delta_{kn}p) = 0 , k = 1, \dots, d \\ \partial_t(\rho E) + \partial_{x_n}(u_n(\rho E + p)) &= 0 , \quad \partial_t(Y\rho) + \partial_{x_n}(Y\rho u_n) = \psi \end{aligned}$$

with

$$p = (\gamma - 1)(\rho E - \frac{1}{2}\rho u_n u_n - \rho Y q_0)$$
 and $\psi = -kY\rho \exp\left(\frac{-E_A\rho}{p}\right)$

Detonation-driven plastic deformation

Chapman-Jouguet detonation in a tube filled with a stoichiometric ethylene and oxygen ($C_2H_4 + 3O_2$, 295 K) mixture. Euler equations with single exothermic reaction $A \longrightarrow B$

$$\begin{aligned} \partial_t \rho + \partial_{x_n}(\rho u_n) &= 0 , \quad \partial_t(\rho u_k) + \partial_{x_n}(\rho u_k u_n + \delta_{kn}p) = 0 , k = 1, \dots, d \\ \partial_t(\rho E) + \partial_{x_n}(u_n(\rho E + p)) &= 0 , \quad \partial_t(Y\rho) + \partial_{x_n}(Y\rho u_n) = \psi \end{aligned}$$

with

$$p = (\gamma - 1)(
ho E - \frac{1}{2}
ho u_n u_n -
ho Y q_0)$$
 and $\psi = -kY
ho \exp\left(\frac{-E_A
ho}{p}\right)$

modeled with heuristic detonation model by [Mader, 1979]

$$\begin{split} &V:=\rho^{-1}, \ V_0:=\rho_0^{-1}, \ V_{\rm CJ}:=\rho_{\rm CJ} \\ &Y':=1-(V-V_0)/(V_{\rm CJ}-V_0) \\ &\text{If } 0\leq Y'\leq 1 \text{ and } Y>10^{-8} \text{ then} \\ &\text{If } Y$$

Detonation-driven plastic deformation

Chapman-Jouguet detonation in a tube filled with a stoichiometric ethylene and oxygen ($C_2H_4 + 3O_2$, 295 K) mixture. Euler equations with single exothermic reaction $A \longrightarrow B$

$$\begin{aligned} \partial_t \rho + \partial_{x_n}(\rho u_n) &= 0 , \quad \partial_t(\rho u_k) + \partial_{x_n}(\rho u_k u_n + \delta_{kn} p) = 0 , \ k = 1, \dots, d \\ \partial_t(\rho E) + \partial_{x_n}(u_n(\rho E + p)) &= 0 , \quad \partial_t(Y\rho) + \partial_{x_n}(Y\rho u_n) = \psi \end{aligned}$$

with

$$p = (\gamma - 1)(\rho E - \frac{1}{2}\rho u_n u_n - \rho Y q_0)$$
 and $\psi = -kY\rho \exp\left(\frac{-E_A\rho}{\rho}\right)$

modeled with heuristic detonation model by [Mader, 1979]

$$\begin{split} &V:=\rho^{-1}, \ V_0:=\rho_0^{-1}, \ V_{\rm CJ}:=\rho_{\rm CJ} \\ &Y':=1-(V-V_0)/(V_{\rm CJ}-V_0) \\ &\text{If } 0\leq Y'\leq 1 \text{ and } Y>10^{-8} \text{ then} \\ &\text{If } Y$$

- Fluid: VanLeer FVS
 - Detonation model with $\gamma = 1.24$, $p_{\rm CJ} = 3.3 \, {\rm MPa}$, $D_{\rm CJ} = 2376 \, {\rm m/s}$
 - AMR base level: $104 \times 80 \times 242$, $r_{1,2} = 2$, $r_3 = 4$
 - $\blacktriangleright~\sim 4\cdot 10^7$ cells instead of $7.9\cdot 10^9$ cells (uniform)
 - Tube and detonation fully refined
 - Thickening of 2D mesh: 0.81 mm on both sides (real 0.445 mm)

- Fluid: VanLeer FVS
 - Detonation model with $\gamma = 1.24$, $p_{\rm CJ} = 3.3 \, {\rm MPa}$, $D_{\rm CJ} = 2376 \, {\rm m/s}$
 - AMR base level: $104 \times 80 \times 242$, $r_{1,2} = 2$, $r_3 = 4$
 - $\blacktriangleright ~\sim 4 \cdot 10^7$ cells instead of $7.9 \cdot 10^9$ cells (uniform)
 - Tube and detonation fully refined
 - Thickening of 2D mesh: 0.81 mm on both sides (real 0.445 mm)
- Solid: thin-shell solver by F. Cirak
 - Aluminum, J2 plasticity with hardening, rate sensitivity, and thermal softening
 - Mesh: 8577 nodes, 17056 elements

- Fluid: VanLeer FVS
 - Detonation model with $\gamma = 1.24$, $p_{\rm CJ} = 3.3 \, {\rm MPa}$, $D_{\rm CJ} = 2376 \, {\rm m/s}$
 - AMR base level: $104 \times 80 \times 242$, $r_{1,2} = 2$, $r_3 = 4$
 - $\sim 4 \cdot 10^7$ cells instead of 7.9 $\cdot 10^9$ cells (uniform)
 - Tube and detonation fully refined
 - Thickening of 2D mesh: 0.81 mm on both sides (real 0.445 mm)
- Solid: thin-shell solver by F. Cirak
 - Aluminum, J2 plasticity with hardening, rate sensitivity, and thermal softening
 - Mesh: 8577 nodes, 17056 elements
- ▶ 16+2 nodes 2.2 GHz AMD Opteron quad processor, PCI-X 4x Infiniband network, \sim 4320 h CPU to t_{end} = 450 μ s

- Fluid: VanLeer FVS
 - Detonation model with $\gamma = 1.24$, $p_{\rm CJ} = 3.3 \, {\rm MPa}$, $D_{\rm CJ} = 2376 \, {\rm m/s}$
 - AMR base level: $104 \times 80 \times 242$, $r_{1,2} = 2$, $r_3 = 4$
 - $\sim 4 \cdot 10^7$ cells instead of $7.9 \cdot 10^9$ cells (uniform)
 - Tube and detonation fully refined
 - Thickening of 2D mesh: 0.81 mm on both sides (real 0.445 mm)
- Solid: thin-shell solver by F. Cirak
 - Aluminum, J2 plasticity with hardening, rate sensitivity, and thermal softening
 - Mesh: 8577 nodes, 17056 elements
- ▶ 16+2 nodes 2.2 GHz AMD Opteron quad processor, PCI-X 4x Infiniband network, \sim 4320 h CPU to t_{end} = 450 μs

 $0.032 \mathrm{ms}$

 $0.030 \ \mathrm{ms}$

- Fluid: VanLeer FVS
 - Detonation model with $\gamma = 1.24$, $p_{\rm CJ} = 3.3 \, {\rm MPa}$, $D_{\rm CJ} = 2376 \, {\rm m/s}$
 - ► AMR base level: 104 × 80 × 242, r_{1,2} = 2, r₃ = 4
 - $\sim 4 \cdot 10^7$ cells instead of $7.9 \cdot 10^9$ cells (uniform)
 - Tube and detonation fully refined
 - Thickening of 2D mesh: 0.81 mm on both sides (real 0.445 mm)
- Solid: thin-shell solver by F. Cirak
 - Aluminum, J2 plasticity with hardening, rate sensitivity, and thermal softening
 - Mesh: 8577 nodes, 17056 elements
- ▶ 16+2 nodes 2.2 GHz AMD Opteron quad processor, PCI-X 4x Infiniband network, \sim 4320 h CPU to $t_{end}=450\,\mu{\rm s}$

 $0.032~{
m ms}$

 $0.030 \mathrm{ms}$

 $0.212~\mathrm{ms}$

 $0.210~\mathrm{ms}$

Massively parallel SAMR

References 0000

Tube with flaps: results

Fluid density and diplacement in y-direction in solid

Massively parallel SAMR

References 0000

Tube with flaps: results

Fluid density and diplacement in y-direction in solid

Schlieren plot of fluid density on refinement levels

[Cirak et al., 2007] code/doc/html/capps/sfc-amroc 2TubeCJBurnFlaps

code/doc/html/capps/sfc-amroc_2TubeCJBurnFlaps_2src_2FluidProblem_8h_source.html, code/doc/html/capps/TubeCJBurnFlaps_2src_2ShellManagerSpecific_8h_source.html

Massively parallel SAMR

References 0000

Coupled fracture simulation

code/doc/html/capps/sfc-amroc_2TubeCJBurnFrac_2src_2FluidProblem_8h_source.html, code/doc/html/capps/TubeCJBurnFrac_2src_2ShellManagerSpecific_8h_source.html

Massively parallel SAMR

References 0000

Underwater explosion modeling

Volume fraction based two-component model with $\sum_{i=1}^m \alpha^i = \mathbf{1},$ that defines mixture quantities as

$$\rho = \sum_{i=1}^{m} \alpha^{i} \rho^{i} , \quad \rho u_{n} = \sum_{i=1}^{m} \alpha^{i} \rho^{i} u_{n}^{i} , \quad \rho e = \sum_{i=1}^{m} \alpha^{i} \rho^{i} e^{i}$$

Underwater explosion modeling

Volume fraction based two-component model with $\sum_{i=1}^m \alpha^i = 1$, that defines mixture quantities as

$$\rho = \sum_{i=1}^{m} \alpha^{i} \rho^{i} , \quad \rho u_{n} = \sum_{i=1}^{m} \alpha^{i} \rho^{i} u_{n}^{i} , \quad \rho e = \sum_{i=1}^{m} \alpha^{i} \rho^{i} e^{i}$$

Assuming total pressure $p = (\gamma - 1) \rho e - \gamma p_{\infty}$ and speed of sound $c = (\gamma (p + p_{\infty})/\rho)^{1/2}$ yields

$$rac{m{p}}{\gamma-1} = \sum_{i=1}^m rac{lpha^i m{p}^i}{\gamma^i-1} \ , \quad rac{\gamma m{p}_\infty}{\gamma-1} = \sum_{i=1}^m rac{lpha^i \gamma^i m{p}^i_\infty}{\gamma^i-1}$$

Massively parallel SAMR

References 0000

Underwater explosion modeling

Volume fraction based two-component model with $\sum_{i=1}^m \alpha^i = \mathbf{1}$, that defines mixture quantities as

$$\rho = \sum_{i=1}^{m} \alpha^{i} \rho^{i} , \quad \rho u_{n} = \sum_{i=1}^{m} \alpha^{i} \rho^{i} u_{n}^{i} , \quad \rho e = \sum_{i=1}^{m} \alpha^{i} \rho^{i} e^{i}$$

Assuming total pressure $p = (\gamma - 1) \rho e - \gamma p_{\infty}$ and speed of sound $c = (\gamma (p + p_{\infty})/\rho)^{1/2}$ yields

$$\frac{p}{\gamma-1} = \sum_{i=1}^{m} \frac{\alpha^{i} p^{i}}{\gamma^{i}-1} , \quad \frac{\gamma p_{\infty}}{\gamma-1} = \sum_{i=1}^{m} \frac{\alpha^{i} \gamma^{i} p_{\infty}^{i}}{\gamma^{i}-1}$$

and the overall set of equations [Shyue, 1998]

 $\partial_t \rho + \partial_{x_n}(\rho u_n) = 0 , \quad \partial_t(\rho u_k) + \partial_{x_n}(\rho u_k u_n + \delta_{k_n} \rho) = 0 , \quad \partial_t(\rho E) + \partial_{x_n}(u_n(\rho E + \rho)) = 0$

$$\frac{\partial}{\partial t}\left(\frac{1}{\gamma-1}\right) + u_n \frac{\partial}{\partial x_n}\left(\frac{1}{\gamma-1}\right) = 0, \quad \frac{\partial}{\partial t}\left(\frac{\gamma p_\infty}{\gamma-1}\right) + u_n \frac{\partial}{\partial x_n}\left(\frac{\gamma p_\infty}{\gamma-1}\right) = 0$$

Underwater explosion modeling

Volume fraction based two-component model with $\sum_{i=1}^{m} \alpha^{i} = 1$, that defines mixture quantities as

$$\rho = \sum_{i=1}^{m} \alpha^{i} \rho^{i} , \quad \rho u_{n} = \sum_{i=1}^{m} \alpha^{i} \rho^{i} u_{n}^{i} , \quad \rho e = \sum_{i=1}^{m} \alpha^{i} \rho^{i} e^{i}$$

Assuming total pressure $p = (\gamma - 1) \rho e - \gamma p_{\infty}$ and speed of sound $c = (\gamma (p + p_{\infty})/\rho)^{1/2}$ yields

$$\frac{p}{\gamma-1} = \sum_{i=1}^{m} \frac{\alpha^{i} p^{i}}{\gamma^{i}-1} , \quad \frac{\gamma p_{\infty}}{\gamma-1} = \sum_{i=1}^{m} \frac{\alpha^{i} \gamma^{i} p_{\infty}^{i}}{\gamma^{i}-1}$$

and the overall set of equations [Shyue, 1998]

 $\partial_t \rho + \partial_{x_n}(\rho u_n) = 0 , \quad \partial_t(\rho u_k) + \partial_{x_n}(\rho u_k u_n + \delta_{k_n} p) = 0 , \quad \partial_t(\rho E) + \partial_{x_n}(u_n(\rho E + p)) = 0$

$$\frac{\partial}{\partial t}\left(\frac{1}{\gamma-1}\right)+u_n\frac{\partial}{\partial x_n}\left(\frac{1}{\gamma-1}\right)=0\;,\quad \frac{\partial}{\partial t}\left(\frac{\gamma p_{\infty}}{\gamma-1}\right)+u_n\frac{\partial}{\partial x_n}\left(\frac{\gamma p_{\infty}}{\gamma-1}\right)=0$$

Oscillation free at contacts: [Abgrall and Karni, 2001][Shyue, 2006]

Approximate Riemann solver

Use HLLC approach because of robustness and positivity preservation

$$\mathbf{q}^{HLLC}(x_{1},t) = \begin{cases} \mathbf{q}_{L}, & x_{1} < s_{L}t, \\ \mathbf{q}_{L}^{\star}, & s_{L}t \leq x_{1} < s^{\star}t, \\ \mathbf{q}_{R}^{\star}, & s^{\star}t \leq x_{1} \leq s_{R}t, \\ \mathbf{q}_{R}, & x_{1} > s_{R}t, \end{cases} \qquad s_{L}^{t} \mathbf{q}_{L}^{\star} \mathbf{q}_{R}^{\star} \mathbf{s}_{R}t$$

Wave speed estimates [Davis, 1988] $s_L = \min\{u_{1,L} - c_L, u_{1,R} - c_R\}, s_R = \max\{u_{1,L} + c_L, u_{1,R} + c_R\}$

Massively parallel SAMR

References 0000

Approximate Riemann solver

Use HLLC approach because of robustness and positivity preservation

$$\mathbf{q}^{HLLC}(x_{1},t) = \begin{cases} \mathbf{q}_{L}, & x_{1} < s_{L}t, \\ \mathbf{q}_{L}^{\star}, & s_{L}t \leq x_{1} < s^{\star}t, \\ \mathbf{q}_{R}^{\star}, & s^{\star}t \leq x_{1} \leq s_{R}t, \\ \mathbf{q}_{R}, & x_{1} > s_{R}t, \end{cases} \qquad s_{L}^{t} \mathbf{q}_{L}^{\star} \qquad s_{L}^{s^{\star}t} \mathbf{q}_{R}^{\star} \mathbf{q}_{R}^{\star$$

Wave speed estimates [Davis, 1988] $s_L = \min\{u_{1,L} - c_L, u_{1,R} - c_R\}, s_R = \max\{u_{1,L} + c_L, u_{1,R} + c_R\}$ Unkown state [Toro et al., 1994]

$$s^{\star} = \frac{p_R - p_L + s_L u_{1,L}(s_L - u_{1,L}) - \rho_R u_{1,R}(s_R - u_{1,R})}{\rho_L(s_L - u_{1,L}) - \rho_R(s_R - u_{1,R})}$$

Massively parallel SAMR

References 0000

Approximate Riemann solver

Use HLLC approach because of robustness and positivity preservation

$$\mathbf{q}^{HLLC}(x_{1},t) = \begin{cases} \mathbf{q}_{L}, & x_{1} < s_{L} t, \\ \mathbf{q}_{L}^{\star}, & s_{L} t \leq x_{1} < s^{\star} t, \\ \mathbf{q}_{R}^{\star}, & s^{\star} t \leq x_{1} \leq s_{R} t, \\ \mathbf{q}_{R}, & x_{1} > s_{R} t, \end{cases} \xrightarrow{s_{L}^{\star} t = \mathbf{q}_{L}^{\star}} \mathbf{q}_{R}^{\star} \mathbf{q}_{R}^{\star} \mathbf{s}_{R} t$$

Wave speed estimates [Davis, 1988] $\textbf{s}_L = \min\{u_{1,L} - c_L, u_{1,R} - c_R\},$ $\textbf{s}_R = \max\{u_{1,L} + c_L, u_{1,R} + c_R\}$ Unkown state [Toro et al., 1994]

$$s^{\star} = \frac{p_{R} - p_{L} + s_{L}u_{1,L}(s_{L} - u_{1,L}) - \rho_{R}u_{1,R}(s_{R} - u_{1,R})}{\rho_{L}(s_{L} - u_{1,L}) - \rho_{R}(s_{R} - u_{1,R})}$$
$$\mathbf{q}_{\tau}^{\star} = \left[\eta, \eta s^{\star}, \eta u_{2}, \eta \left[\frac{(\rho E)_{\tau}}{\rho_{\tau}} + (s^{\star} - u_{1,\tau})\left(s_{\tau} + \frac{p_{\tau}}{\rho_{\tau}(s_{\tau} - u_{1,\tau})}\right)\right], \frac{1}{\gamma_{\tau} - 1}, \frac{\gamma_{\tau} p_{\infty,\tau}}{\gamma_{\tau} - 1}\right]^{T}$$
$$\eta = \rho_{\tau} \frac{s_{\tau} - u_{1,\tau}}{s_{\tau} - s^{\star}}, \quad \tau = \{L, R\}$$

Massively parallel SAMR

References 0000

Approximate Riemann solver

Use HLLC approach because of robustness and positivity preservation

$$\mathbf{q}^{HLLC}(x_{1},t) = \begin{cases} \mathbf{q}_{L}, & x_{1} < s_{L} t, \\ \mathbf{q}_{L}^{\star}, & s_{L} t \leq x_{1} < s^{\star} t, \\ \mathbf{q}_{R}^{\star}, & s^{\star} t \leq x_{1} \leq s_{R} t, \\ \mathbf{q}_{R}, & x_{1} > s_{R} t, \end{cases} \xrightarrow{s_{L}^{\star} t = \mathbf{q}_{L}^{\star}} \mathbf{q}_{R}^{\star} \mathbf{q}_{R}^{\star} \mathbf{s}_{R} t$$

Wave speed estimates [Davis, 1988] $s_L = \min\{u_{1,L} - c_L, u_{1,R} - c_R\}, s_R = \max\{u_{1,L} + c_L, u_{1,R} + c_R\}$ Unkown state [Toro et al., 1994]

$$s^{*} = \frac{\rho_{R} - \rho_{L} + s_{L}u_{1,L}(s_{L} - u_{1,L}) - \rho_{R}u_{1,R}(s_{R} - u_{1,R})}{\rho_{L}(s_{L} - u_{1,L}) - \rho_{R}(s_{R} - u_{1,R})}$$

$$\mathbf{q}_{\tau}^{\star} = \left[\eta, \eta \mathbf{s}^{\star}, \eta u_{2}, \eta \left[\frac{(\rho E)_{\tau}}{\rho_{\tau}} + (\mathbf{s}^{\star} - u_{1,\tau})\left(\mathbf{s}_{\tau} + \frac{p_{\tau}}{\rho_{\tau}(\mathbf{s}_{\tau} - u_{1,\tau})}\right)\right], \frac{1}{\gamma_{\tau} - 1}, \frac{\gamma_{\tau} p_{\infty,\tau}}{\gamma_{\tau} - 1}\right]^{\prime}$$
$$\eta = \rho_{\tau} \frac{\mathbf{s}_{\tau} - u_{1,\tau}}{\mathbf{s}_{\tau} - \mathbf{s}^{\star}}, \quad \tau = \{L, R\}$$

Evaluate waves as $\mathcal{W}_1 = \mathbf{q}_L^{\star} - \mathbf{q}_L$, $\mathcal{W}_2 = \mathbf{q}_R^{\star} - \mathbf{q}_L^{\star}$, $\mathcal{W}_3 = \mathbf{q}_R - \mathbf{q}_R^{\star}$ and $\lambda_1 = \mathbf{s}_L$, $\lambda_2 = \mathbf{s}^{\star}$, $\lambda_3 = \mathbf{s}_R$ to compute the fluctuations $\mathcal{A}^-\Delta = \sum_{\lambda_\nu < 0} \lambda_\nu \mathcal{W}_\nu$, $\mathcal{A}^+\Delta = \sum_{\lambda_\nu \geq 0} \lambda_\nu \mathcal{W}_\nu$ for $\nu = \{1, 2, 3\}$

Overall scheme: Wave Propagation method [Shyue, 2006]
• Air:
$$\gamma^A = 1.4$$
, $p^A_{\infty} = 0$, $\rho^A = 1.29 \, \text{kg/m}^3$

• Water:
$$\gamma^W = 7.415$$
, $p_{\infty}^W = 296.2 \text{ MPa}$, $\rho^W = 1027 \text{ kg/m}^3$

• Air:
$$\gamma^A = 1.4$$
, $p_{\infty}^A = 0$, $\rho^A = 1.29 \, \text{kg}/\text{m}^3$

- $\blacktriangleright\,$ Water: $\gamma^W=7.415,~\rho^W_\infty=296.2\,{\rm MPa},~\rho^W=1027\,{\rm kg/m^3}$
- Cavitation modeling with pressure cut-off model at $p = -1 \,\mathrm{MPa}$

• Air:
$$\gamma^{A} = 1.4$$
, $p_{\infty}^{A} = 0$, $\rho^{A} = 1.29 \, \mathrm{kg} / \mathrm{m}^{3}$

- $\blacktriangleright\,$ Water: $\gamma^W=$ 7.415, $p_\infty^W=$ 296.2 MPa, $\rho^W=$ 1027 $\rm kg/m^3$
- Cavitation modeling with pressure cut-off model at $p = -1 \, \text{MPa}$
- ▶ 3D simulation of deformation of air backed aluminum plate with r = 85 mm, h = 3 mm from underwater explosion
 - \blacktriangleright Water basin [Ashani and Ghamsari, 2008] $2\,m\times1.6\,m\times2\,m$
 - \blacktriangleright Explosion modeled as energy increase ($m_{\rm C4}\cdot 6.06\,{\rm MJ/kg})$ in sphere with r=5mm
 - ▶ $\rho_s = 2719 \text{ kg/m3}$, E = 69 GPa, $\nu = 0.33$, J2 plasticity model, yield stress $\sigma_y = 217.6 \text{ MPa}$

• Air:
$$\gamma^A = 1.4$$
, $p^A_{\infty} = 0$, $\rho^A = 1.29 \, \mathrm{kg} / \mathrm{m}^3$

- $\blacktriangleright\,$ Water: $\gamma^W=$ 7.415, $p_\infty^W=$ 296.2 MPa, $\rho^W=$ 1027 $\rm kg/m^3$
- Cavitation modeling with pressure cut-off model at $p = -1 \, \text{MPa}$
- ▶ 3D simulation of deformation of air backed aluminum plate with r = 85 mm, h = 3 mm from underwater explosion
 - \blacktriangleright Water basin [Ashani and Ghamsari, 2008] $2\,m\times1.6\,m\times2\,m$
 - \blacktriangleright Explosion modeled as energy increase ($m_{\rm C4}\cdot 6.06\,{\rm MJ/kg})$ in sphere with r=5mm
 - ▶ $\rho_s = 2719 \text{ kg/m3}$, E = 69 GPa, $\nu = 0.33$, J2 plasticity model, yield stress $\sigma_y = 217.6 \text{ MPa}$
- ▶ 3D simulation of copper plate r = 32 mm, h = 0.25 mm rupturing due to water hammer
 - Water-filled shocktube 1.3 m with driver piston [Deshpande et al., 2006]
 - Piston simulated with separate level set, see [Deiterding et al., 2009] for pressure wave
 - ▶ $\rho_s = 8920 \text{ kg/m3}$, E = 130 GPa, $\nu = 0.31$, J2 plasticity model, $\sigma_y = 38.5 \text{ MPa}$, cohesive interface model, max. tensile stress $\sigma_c = 525 \text{ MPa}$

- AMR base grid $50 \times 40 \times 50$, $r_{1,2,3} = 2$, $r_4 = 4$, $l_c = 3$, highest level restricted to initial explosion center, 3rd and 4th level to plate vicinity
- Triangular mesh with 8148 elements
- Computations of 1296 coupled time steps to t_{end} = 1 ms
- 10+2 nodes 3.4 GHz Intel Xeon dual processor, ~ 130 h CPU

Maximal deflection [mm]

	-	-
	Exp.	Sim.
$20{ m g}, d = 25{ m cm}$	28.83	25.88
$30\mathrm{g}, d=30\mathrm{cm}$	30.09	27.31

- AMR base grid $50 \times 40 \times 50$, $r_{1,2,3} = 2$, $r_4 = 4$, $l_c = 3$, highest level restricted to initial explosion center, 3rd and 4th level to plate vicinity
- Triangular mesh with 8148 elements
- Computations of 1296 coupled time steps to t_{end} = 1 ms
- 10+2 nodes 3.4 GHz Intel Xeon dual processor, ~ 130 h CPU

Maximal deflection [mm]

	-	-
	Exp.	Sim.
$20{ m g}, d = 25{ m cm}$	28.83	25.88
$30\mathrm{g}, d=30\mathrm{cm}$	30.09	27.31

- AMR base mesh $374 \times 20 \times 20$, $r_{1,2} = 2$, $l_c = 2$, solid mesh: 8896 triangles
- $ightarrow \sim 1250$ coupled time steps to $t_{end} = 1\,{
 m ms}$
- 6+6 nodes 3.4 GHz Intel Xeon dual processor, ~ 800 h CPU code/doc/html/capps/ffc-mmroc_2WaterBlastFracture_2erc_2FluidProblem_Bh_source.html, code/doc/html/capps/MaterBlastFracture_2erc_2ShellManagerSpecific.Bh_source.html

$$p_0 = 64 \,\mathrm{MPa}$$

- AMR base mesh $374 \times 20 \times 20$, $r_{1,2} = 2$, $l_c = 2$, solid mesh: 8896 triangles
- $ightarrow \sim 1250$ coupled time steps to $t_{end} = 1\,{
 m ms}$
- 6+6 nodes 3.4 GHz Intel Xeon dual processor, ~ 800 h CPU code/doc/html/capps/ffc-mmroc_2WaterBlastFracture_2erc_2FluidProblem_Bh_source.html, code/doc/html/capps/MaterBlastFracture_2erc_2ShellManagerSpecific.Bh_source.html

$$p_0 = 64 \,\mathrm{MPa}$$

- AMR base mesh $374 \times 20 \times 20$, $r_{1,2} = 2$, $l_c = 2$, solid mesh: 8896 triangles
- $ightarrow \sim 1250$ coupled time steps to $t_{end} = 1\,{
 m ms}$
- 6+6 nodes 3.4 GHz Intel Xeon dual processor, ~ 800 h CPU code/doc/html/capps/ffc-mmroc_2WaterBlastFracture_2erc_2FluidProblem_Bh_source.html, code/doc/html/capps/MaterBlastFracture_2erc_2ShellManagerSpecific.8h, source.html

$$p_0 = 64 \,\mathrm{MPa}$$

- AMR base mesh $374 \times 20 \times 20$, $r_{1,2} = 2$, $l_c = 2$, solid mesh: 8896 triangles
- $ightarrow \sim 1250$ coupled time steps to $t_{end} = 1\,\mathrm{ms}$
- 6+6 nodes 3.4 GHz Intel Xeon dual processor, ~ 800 h CPU code/doc/html/capps/ffc-mmroc_2WaterBlastFracture_2erc_2FluidProblem_Bh_source.html, code/doc/html/capps/MaterBlastFracture_2erc_2ShellManagerSpecific.8h, source.html

 $p_0 = 173 \, \text{MPa}$

- $\blacktriangleright~20\,m\times40\,m\times25\,m$ seven-story building similar to [Luccioni et al., 2004]
- Spherical energy deposition $\equiv 400 \text{ kg}$ TNT, r = 0.5 m in lobby of building
- ▶ SAMR: $80 \times 120 \times 90$ base level, three additional levels $r_{1,2} = 2$, $l_{fsi} = 1$, k = 1
- \blacktriangleright Simulation with ground: 1,070 coupled time steps, 830 h CPU ($\sim 25.9\,{\rm h}$ wall time) on 31+1 cores
- ~ 8,000,000 cells instead of 55,296,000 (uniform)
- 69,709 hexahedral elements and with material parameters. [Deiterding and Wood, 2013]

	$ ho_s~[m kg/m^3]$	σ_0 [MPa]	E_T [GPa]	β	K [GPa]	G [GPa]	$\overline{\epsilon}^{p}$	p _f [MPa]
Columns	2010	50	11.2	1.0	21.72	4.67	0.02	-30
Walls	2010	25	11.2	1.0	6.22	4.67	0.01	-15

- \triangleright 20 m \times 40 m \times 25 m seven-story building similar to [Luccioni et al., 2004]
- Spherical energy deposition $\equiv 400 \text{ kg TNT}$, $r = 0.5 \,\mathrm{m}$ in lobby of building
- SAMR: 80 × 120 × 90 base level, three additional levels $r_{1,2} = 2$, $l_{fsi} = 1$, k = 1
- Simulation with ground: 1.070 coupled time steps, 830 h CPU (~ 25.9 h wall time) on 31+1 cores
- \sim 8,000,000 cells instead of 55,296,000 (uniform)
- 69,709 hexahedral elements and with material parameters. [Deiterding and Wood, 2013]

	$\rho_s [kg/m^3]$	σ_0 [MPa]	E_T [GPa]	β	K [GPa]	G [GPa]	$\overline{\epsilon}^{p}$	p _f [MPa]
Columns	2010	50	11.2	1.0	21.72	4.67	0.02	-30
Walls	2010	25	11.2	1.0	6.22	4.67	0.01	-15

$ ho_s [kg/m^3]$	σ_0 [MPa]	E_T [GPa]	β	K [GPa]	G [GPa]	$\overline{\epsilon}^{p}$	p _f [MPa
0010	= 0	44.0		01 -0		0 00	

- $\blacktriangleright~20\,\mathrm{m}\times40\,\mathrm{m}\times25\,\mathrm{m}$ seven-story building similar to [Luccioni et al., 2004]
- Spherical energy deposition $\equiv 400 \text{ kg}$ TNT, r = 0.5 m in lobby of building
- ▶ SAMR: $80 \times 120 \times 90$ base level, three additional levels $r_{1,2} = 2$, $l_{fsi} = 1$, k = 1
- \blacktriangleright Simulation with ground: 1,070 coupled time steps, 830 h CPU ($\sim 25.9 \ h$ wall time) on 31+1 cores
- ~ 8,000,000 cells instead of 55,296,000 (uniform)
- 69,709 hexahedral elements and with material parameters. [Deiterding and Wood, 2013]

	$\rho_s [kg/m^3]$	σ_0 [MPa]	E_T [GPa]	β	K [GPa]	G [GPa]	$\overline{\epsilon}^{p}$	p _f [MPa]
Columns	2010	50	11.2	1.0	21.72	4.67	0.02	-30
Walls	2010	25	11.2	1.0	6.22	4.67	0.01	-15

- \triangleright 20 m \times 40 m \times 25 m seven-story building similar to [Luccioni et al., 2004]
- Spherical energy deposition $\equiv 400 \text{ kg TNT}$, $r = 0.5 \,\mathrm{m}$ in lobby of building
- SAMR: 80 × 120 × 90 base level, three additional levels $r_{1,2} = 2$, $l_{fsi} = 1$, k = 1
- Simulation with ground: 1,070 coupled time steps, 830 h CPU (\sim 25.9 h wall time) on 31+1 cores
- \sim 8,000,000 cells instead of 55,296,000 (uniform)
- 69,709 hexahedral elements and with material parameters. [Deiterding and Wood, 2013]

	$\rho_s [kg/m^3]$	σ_0 [MPa]	E_T [GPa]	β	K [GPa]	G [GPa]	$\overline{\epsilon}^{p}$	p _f [MPa]
Columns	2010	50	11.2	1.0	21.72	4.67	0.02	-30
Walls	2010	25	11.2	1.0	6.22	4.67	0.01	-15

Columns	2010	50	11.2	1.0	21.72	4.67	0.
Walls	2010	25	11.2	1.0	6.22	4.67	0.

- \triangleright 20 m \times 40 m \times 25 m seven-story building similar to [Luccioni et al., 2004]
- Spherical energy deposition $\equiv 400 \text{ kg TNT}$, $r = 0.5 \,\mathrm{m}$ in lobby of building
- SAMR: 80 × 120 × 90 base level, three additional levels $r_{1,2} = 2$, $l_{fsi} = 1$, k = 1
- Simulation with ground: 1.070 coupled time steps, 830 h CPU (~ 25.9 h wall time) on 31+1 cores
- \sim 8,000,000 cells instead of 55,296,000 (uniform)
- 69,709 hexahedral elements and with material parameters. [Deiterding and Wood, 2013]

	$\rho_s [kg/m^3]$	σ_0 [MPa]	E_T [GPa]	β	K [GPa]	G [GPa]	$\overline{\epsilon}^{p}$	p _f [MPa]
Columns	2010	50	11.2	1.0	21.72	4.67	0.02	-30
Walls	2010	25	11.2	1.0	6.22	4.67	0.01	-15

$ ho_s [kg/m^3]$	σ_0 [MPa]	E_T [GPa]	β	K [GPa]	G [GPa]	$\overline{\epsilon}^{p}$	p _f [MPa
0010	= 0	44.0	4 0	01 -0		0 00	

- $\blacktriangleright~20\,\mathrm{m}\times40\,\mathrm{m}\times25\,\mathrm{m}$ seven-story building similar to [Luccioni et al., 2004]
- Spherical energy deposition $\equiv 400 \text{ kg}$ TNT, r = 0.5 m in lobby of building
- ▶ SAMR: $80 \times 120 \times 90$ base level, three additional levels $r_{1,2} = 2$, $l_{fsi} = 1$, k = 1
- \blacktriangleright Simulation with ground: 1,070 coupled time steps, 830 h CPU ($\sim 25.9 \ h$ wall time) on 31+1 cores
- ~ 8,000,000 cells instead of 55,296,000 (uniform)
- 69,709 hexahedral elements and with material parameters. [Deiterding and Wood, 2013]

	$\rho_s [kg/m^3]$	σ_0 [MPa]	E_T [GPa]	β	K [GPa]	G [GPa]	$\overline{\epsilon}^{p}$	p _f [MPa]
Columns	2010	50	11.2	1.0	21.72	4.67	0.02	-30
Walls	2010	25	11.2	1.0	6.22	4.67	0.01	-15

- $\blacktriangleright~20\,m\times40\,m\times25\,m$ seven-story building similar to [Luccioni et al., 2004]
- Spherical energy deposition $\equiv 400 \text{ kg}$ TNT, r = 0.5 m in lobby of building
- ▶ SAMR: $80 \times 120 \times 90$ base level, three additional levels $r_{1,2} = 2$, $l_{fsi} = 1$, k = 1
- \blacktriangleright Simulation with ground: 1,070 coupled time steps, 830 h CPU ($\sim 25.9 \ h$ wall time) on 31+1 cores
- ~ 8,000,000 cells instead of 55,296,000 (uniform)
- 69,709 hexahedral elements and with material parameters. [Deiterding and Wood, 2013]

	$\rho_s [kg/m^3]$	σ_0 [MPa]	E_T [GPa]	β	K [GPa]	G [GPa]	$\overline{\epsilon}^{p}$	p _f [MPa]
Columns	2010	50	11.2	1.0	21.72	4.67	0.02	-30
Walls	2010	25	11.2	1.0	6.22	4.67	0.01	-15

- $\blacktriangleright~20\,\mathrm{m}\times40\,\mathrm{m}\times25\,\mathrm{m}$ seven-story building similar to [Luccioni et al., 2004]
- Spherical energy deposition $\equiv 400 \text{ kg}$ TNT, r = 0.5 m in lobby of building
- ▶ SAMR: $80 \times 120 \times 90$ base level, three additional levels $r_{1,2} = 2$, $l_{fsi} = 1$, k = 1
- \blacktriangleright Simulation with ground: 1,070 coupled time steps, 830 h CPU ($\sim 25.9 \ h$ wall time) on 31+1 cores
- ~ 8,000,000 cells instead of 55,296,000 (uniform)
- 69,709 hexahedral elements and with material parameters. [Deiterding and Wood, 2013]

	$\rho_s [kg/m^3]$	σ_0 [MPa]	E_T [GPa]	β	K [GPa]	G [GPa]	$\overline{\epsilon}^{p}$	p _f [MPa]
Columns	2010	50	11.2	1.0	21.72	4.67	0.02	-30
Walls	2010	25	11.2	1.0	6.22	4.67	0.01	-15

- \triangleright 20 m \times 40 m \times 25 m seven-story building similar to [Luccioni et al., 2004]
- Spherical energy deposition $\equiv 400 \text{ kg TNT}$, $r = 0.5 \,\mathrm{m}$ in lobby of building
- SAMR: 80 × 120 × 90 base level, three additional levels $r_{1,2} = 2$, $l_{fsi} = 1$, k = 1
- Simulation with ground: 1.070 coupled time steps, 830 h CPU (~ 25.9 h wall time) on 31+1 cores
- \sim 8,000,000 cells instead of 55,296,000 (uniform)
- 69,709 hexahedral elements and with material parameters. [Deiterding and Wood, 2013]

	$\rho_s [kg/m^3]$	σ_0 [MPa]	E_T [GPa]	β	K [GPa]	G [GPa]	$\overline{\epsilon}^{p}$	p _f [MPa]
Columns	2010	50	11.2	1.0	21.72	4.67	0.02	-30
Walls	2010	25	11.2	1.0	6.22	4.67	0.01	-15

$ ho_s [kg/m^3]$	σ_0 [MPa]	E_T [GPa]	β	K [GPa]	G [GPa]	$\overline{\epsilon}^{p}$	p _f [MPa
0010	= 0	44.0		01 -0		0 00	

- \triangleright 20 m \times 40 m \times 25 m seven-story building similar to [Luccioni et al., 2004]
- Spherical energy deposition $\equiv 400 \text{ kg TNT}$, $r = 0.5 \,\mathrm{m}$ in lobby of building
- SAMR: 80 × 120 × 90 base level, three additional levels $r_{1,2} = 2$, $l_{fsi} = 1$, k = 1
- Simulation with ground: 1.070 coupled time steps, 830 h CPU (~ 25.9 h wall time) on 31+1 cores
- \sim 8,000,000 cells instead of 55,296,000 (uniform)
- 69,709 hexahedral elements and with material parameters. [Deiterding and Wood, 2013]

	$\rho_s [kg/m^3]$	σ_0 [MPa]	E_T [GPa]	β	K [GPa]	G [GPa]	$\overline{\epsilon}^{p}$	p _f [MPa]
Columns	2010	50	11.2	1.0	21.72	4.67	0.02	-30
Walls	2010	25	11.2	1.0	6.22	4.67	0.01	-15

$ ho_s [kg/m^3]$	σ_0 [MPa]	E_T [GPa]	β	K [GPa]	G [GPa]	$\overline{\epsilon}^{p}$	p _f [MPa
0010	= 0	44.0		01 -0		0 00	

- \triangleright 20 m \times 40 m \times 25 m seven-story building similar to [Luccioni et al., 2004]
- Spherical energy deposition $\equiv 400 \text{ kg TNT}$, $r = 0.5 \,\mathrm{m}$ in lobby of building
- SAMR: 80 × 120 × 90 base level, three additional levels $r_{1,2} = 2$, $l_{fsi} = 1$, k = 1
- Simulation with ground: 1.070 coupled time steps, 830 h CPU (~ 25.9 h wall time) on 31+1 cores
- \sim 8,000,000 cells instead of 55,296,000 (uniform)
- 69,709 hexahedral elements and with material parameters. [Deiterding and Wood, 2013]

	$\rho_s [kg/m^3]$	σ_0 [MPa]	E_T [GPa]	β	K [GPa]	G [GPa]	$\overline{\epsilon}^{p}$	p _f [MPa]
Columns	2010	50	11.2	1.0	21.72	4.67	0.02	-30
Walls	2010	25	11.2	1.0	6.22	4.67	0.01	-15

$ ho_s [kg/m^3]$	σ_0 [MPa]	E_T [GPa]	β	K [GPa]	G [GPa]	$\overline{\epsilon}^{p}$	p _f [MPa
0010	= 0	44.0		01 -0		0 00	

- $\blacktriangleright~20\,\mathrm{m}\times40\,\mathrm{m}\times25\,\mathrm{m}$ seven-story building similar to [Luccioni et al., 2004]
- Spherical energy deposition $\equiv 400 \text{ kg}$ TNT, r = 0.5 m in lobby of building
- ▶ SAMR: $80 \times 120 \times 90$ base level, three additional levels $r_{1,2} = 2$, $l_{fsi} = 1$, k = 1
- \blacktriangleright Simulation with ground: 1,070 coupled time steps, 830 h CPU ($\sim 25.9 \ h$ wall time) on 31+1 cores
- ~ 8,000,000 cells instead of 55,296,000 (uniform)
- 69,709 hexahedral elements and with material parameters. [Deiterding and Wood, 2013]

	$ ho_s$ [kg/m ³]	σ_0 [MPa]	E_T [GPa]	β	K [GPa]	G [GPa]	$\overline{\epsilon}^{p}$	p _f [MPa]
Columns	2010	50	11.2	1.0	21.72	4.67	0.02	-30
Walls	2010	25	11.2	1.0	6.22	4.67	0.01	-15

- $\blacktriangleright~20\,m\times40\,m\times25\,m$ seven-story building similar to [Luccioni et al., 2004]
- Spherical energy deposition \equiv 400 kg TNT, $r = 0.5 \,\mathrm{m}$ in lobby of building
- SAMR: $80 \times 120 \times 90$ base level, three additional levels $r_{1,2} = 2$, $l_{\text{fsi}} = 1$, k = 1
- \blacktriangleright Simulation with ground: 1,070 coupled time steps, 830 h CPU ($\sim 25.9 \ h$ wall time) on 31+1 cores
- ~ 8,000,000 cells instead of 55,296,000 (uniform)
- 69,709 hexahedral elements and with material parameters. [Deiterding and Wood, 2013]

	$ ho_s [kg/m^3]$	σ_0 [MPa]	E_T [GPa]	β	K [GPa]	G [GPa]	$\overline{\epsilon}^{p}$	р _f [MPa]
Columns	2010	50	11.2	1.0	21.72	4.67	0.02	-30
Walls	2010	25	11.2	1.0	6.22	4.67	0.01	-15

- $\blacktriangleright~20\,m\times40\,m\times25\,m$ seven-story building similar to [Luccioni et al., 2004]
- Spherical energy deposition = 400 kg TNT,
 r = 0.5 m in lobby of building
- SAMR: 80 × 120 × 90 base level, three additional levels r_{1,2} = 2, I_{fsi} = 1, k = 1
- \blacktriangleright Simulation with ground: 1,070 coupled time steps, 830 h CPU ($\sim 25.9 \ h$ wall time) on 31+1 cores
- ~ 8,000,000 cells instead of 55,296,000 (uniform)
- 69,709 hexahedral elements and with material parameters. [Deiterding and Wood, 2013]

	$ ho_s$ [kg/m ³]	σ_0 [MPa]	E_T [GPa]	β	K [GPa]	G [GPa]	$\overline{\epsilon}^{p}$	p _f [MPa]
Columns	2010	50	11.2	1.0	21.72	4.67	0.02	-30
Walls	2010	25	11.2	1.0	6.22	4.67	0.01	-15

Massively parallel SAME

References 0000

Massively parallel SAME

References 0000

Real-world example

Massively parallel SAM

References 0000

Massively parallel SAME

References 0000

Massively parallel SAM

References 0000

Massively parallel SAME

References 0000

Massively parallel SAMP

References 0000

Fluid-structure interaction

Massively parallel SAMP

References 0000

Blast explosion in a multistory building - II

Fluid-structure interaction

Massively parallel SAMP

References 0000

Blast explosion in a multistory building - II

 $t=48.7\,\mathrm{ms}$

Outline

Fluid-structure interaction

Coupling to a solid mechanics solver Implementation Rigid body motion Thin elastic and deforming thin structures Deformation from water hammer Real-world example

Massively parallel SAMR

Performance data from AMROC

Computation of space filling curve

Partition-Init

- Partition-Init
 - Compute aggregated workload for new grid hierarchy and project result onto level 0

- Partition-Init
 - Compute aggregated workload for new grid hierarchy and project result onto level 0
 - Construct recursively SFC-units until work in each unit is homogeneous, GuCFactor defines minimal coarseness relative to level-0 grid

- Partition-Init
 - Compute aggregated workload for new grid hierarchy and project result onto level 0
 - Construct recursively SFC-units until work in each unit is homogeneous, GuCFactor defines minimal coarseness relative to level-0 grid

- Partition-Calc
 - 1. Compute entire workload and new work for each processor

- Partition-Init
 - Compute aggregated workload for new grid hierarchy and project result onto level 0
 - Construct recursively SFC-units until work in each unit is homogeneous, GuCFactor defines minimal coarseness relative to level-0 grid

- Partition-Calc
 - 1. Compute entire workload and new work for each processor
 - 2. Go sequentially through SFC-ordered list of partitioning units and assign units to processors, refine partition if necessary and possible

- Partition-Init
 - Compute aggregated workload for new grid hierarchy and project result onto level 0
 - Construct recursively SFC-units until work in each unit is homogeneous, GuCFactor defines minimal coarseness relative to level-0 grid

- Partition-Calc
 - 1. Compute entire workload and new work for each processor
 - 2. Go sequentially through SFC-ordered list of partitioning units and assign units to processors, refine partition if necessary and possible

- Partition-Init
 - Compute aggregated workload for new grid hierarchy and project result onto level 0
 - Construct recursively SFC-units until work in each unit is homogeneous, GuCFactor defines minimal coarseness relative to level-0 grid

- Partition-Calc
 - 1. Compute entire workload and new work for each processor
 - 2. Go sequentially through SFC-ordered list of partitioning units and assign units to processors, refine partition if necessary and possible

- Partition-Init
 - Compute aggregated workload for new grid hierarchy and project result onto level 0
 - Construct recursively SFC-units until work in each unit is homogeneous, GuCFactor defines minimal coarseness relative to level-0 grid

- Partition-Calc
 - 1. Compute entire workload and new work for each processor
 - 2. Go sequentially through SFC-ordered list of partitioning units and assign units to processors, refine partition if necessary and possible
- Ensure scalability of Partition-Init by creating SFC-units strictly local
- Currently still use of MPI_allgather() to create globally identical input for Partition-Calc (can be a bottleneck for weak scalability)

Partitioning example

DB: trace8__0.vtk

Cylinders of spheres in supersonic flow

- Predict force on secondary body
- Right: 200x160 base mesh, 3 Levels, factors 2,2,2, 8 CPUs

[Laurence et al., 2007]

First performance assessment

- Test run on 2.2 GHz AMD Opteron quad-core cluster connected with Infiniband
- Cartesian test configuration
- Spherical blast wave, Euler equations, 3rd order WENO scheme, 3-step Runge-Kutta update
- AMR base grid 64³, r_{1,2} = 2, 89 time steps on coarsest level
- With embedded boundary method: 96 time steps on coarsest level
- Redistribute in parallel every 2nd base level step
- Uniform grid $256^3 = 16.8 \cdot 10^6$ cells

Level	Grids	Cells
0	115	262,144
1	373	1,589,808
2	2282	5,907,064
Grid and cells used on 16 CPUs		

Cost of SAMR and ghost-fluid method

- Flux correction is negligible
- Clustering is negligible (already local approach). For the complexities of a scalable global clustering algorithm see [Gunney et al., 2007]

CPUs	16	32	64
Time per step	32.44s	18.63s	11.87s
Uniform	59.65s	29.70s	15.15s
Integration	73.46%	64.69%	50.44%
Flux Correction	1.30%	1.49%	2.03%
Boundary Setting	13.72%	16.60%	20.44%
Regridding	10.43%	15.68%	24.25%
Clustering	0.34%	0.32%	0.26%
Output	0.29%	0.53%	0.92%
Misc.	0.46%	0.44%	0.47%

Fluid-structure interaction

Cost of SAMR and ghost-fluid method

- Flux correction is negligible
- Clustering is negligible (already local approach). For the complexities of a scalable global clustering algorithm see [Gunney et al., 2007]
- Costs for GFM constant around ~ 36%
- Main costs: Regrid(1) operation and ghost cell synchronization

CPUs	16	32	64
Time per step	32.44s	18.63s	11.87s
Uniform	59.65s	29.70s	15.15s
Integration	73.46%	64.69%	50.44%
Flux Correction	1.30%	1.49%	2.03%
Boundary Setting	13.72%	16.60%	20.44%
Regridding	10.43%	15.68%	24.25%
Clustering	0.34%	0.32%	0.26%
Output	0.29%	0.53%	0.92%
Misc.	0.46%	0.44%	0.47%
CPUs	16	32	64
Time per step	43.97s	25.24s	16.21s
Uniform	69.09s	35.94s	18.24s
Integration	59.09%	49.93%	40.20%
Flux Correction	0.82%	0.80%	1.14%
Boundary Setting	19.22%	25.58%	28.98%
Regridding	7.21%	9.15%	13.46%
Clustering	0.25%	0.23%	0.21%
GFM Find Cells	2.04%	1.73%	1.38%
GFM Interpolation	6.01%	10.39%	7.92%
GFM Overhead	0.54%	0.47%	0.37%
GFM Calculate	0.70%	0.60%	0.48%
Output	0.23%	0.52%	0.74%
Misc.	0.68%	0.62%	0.58%

AMROC scalability tests

Basic test configuration

- Spherical blast wave, Euler equations, 3D wave propagation method
- AMR base grid 32³ with r_{1,2} = 2, 4. 5 time steps on coarsest level
- Uniform grid 256³ = 16.8 · 10⁶ cells, 19 time steps
- Flux correction deactivated
- No volume I/O operations
- Tests run IBM BG/P (mode VN)

AMROC scalability tests

Basic test configuration

- Spherical blast wave, Euler equations, 3D wave propagation method
- AMR base grid 32³ with r_{1,2} = 2, 4. 5 time steps on coarsest level
- Uniform grid 256³ = 16.8 · 10⁶ cells, 19 time steps
- Flux correction deactivated
- No volume I/O operations
- Tests run IBM BG/P (mode VN)

Weak scalability test

- Reproduction of configuration each 64 CPUs
- ▶ On 1024 CPUs: $128 \times 64 \times 64$ base grid, > 33,500 Grids, ~ $61 \cdot 10^6$ cells, uniform $1024 \times 512 \times 512 = 268 \cdot 10^6$ cells

Level	Grids	Cells
0	606	32,768
1	575	135,312
2	910	3,639,040

Strong scalability test

► 64 × 32 × 32 base grid, uniform 512 × 256 × 256 = 33.6 · 10⁶ cells

Level	Grids	Cells
0	1709	65,536
1	1735	271,048
2	2210	7,190,208

Weak scalability test

Breakdown of time per step with SAMR

Weak scalability test

Costs for Syncing basically constant

Weak scalability test

- Costs for Syncing basically constant
- Partitioning, Recompose, Misc (origin not clear) increase
- 1024 required usage of -DUAL option due to usage of global lists data structures in Partition-Calc and Recompose

References 0000

Strong scalability test

Breakdown of time per step with SAMR

References 0000

Strong scalability test

- Uniform code has basically linear scalability (explicit method)
- SAMR visibly looses efficiency for > 512 CPU, or 15,000 finite volume cells per CPU

Massively parallel SAMR

References 0000

Strong scalability test - II

Breakdown of time per step with SAMR

Massively parallel SAMR

References 0000

Strong scalability test - II

Perfect scaling of Integration, reasonable scaling of Syncing

Massively parallel SAMR

References 0000

Strong scalability test - II

- Perfect scaling of Integration, reasonable scaling of Syncing
- Strong scalability of Partition needs to be addressed (eliminate global lists)

References I

- [Abgrall and Karni, 2001] Abgrall, R. and Karni, S. (2001). Computations of compressible multifluids. J. Comput. Phys., 169:594–523.
- [Arienti et al., 2003] Arienti, M., Hung, P., Morano, E., and Shepherd, J. E. (2003). A level set approach to Eulerian-Lagrangian coupling. J. Comput. Phys., 185:213–251.
- [Ashani and Ghamsari, 2008] Ashani, J. Z. and Ghamsari, A. K. (2008). Theoretical and experimental analysis of plastic response of isotropic circular plates subjected to underwater explosion loading. *Mat.-wiss. u. Werkstofftechn.*, 39(2):171–175.
- [Cirak et al., 2007] Cirak, F., Deiterding, R., and Mauch, S. P. (2007). Large-scale fluid-structure interaction simulation of viscoplastic and fracturing thin shells subjected to shocks and detonations. *Computers & Structures*, 85(11-14):1049–1065.
- [Davis, 1988] Davis, S. F. (1988). Simplified second-order Godunov-type methods. SIAM J. Sci. Stat. Comp., 9:445–473.

Defense en ll		
References		
		••••
Fluid-structure interaction	Massively parallel SAMR	References

References II

- [Deiterding et al., 2009] Deiterding, R., Cirak, F., and Mauch, S. P. (2009). Efficient fluid-structure interaction simulation of viscoplastic and fracturing thin-shells subjected to underwater shock loading. In Hartmann, S., Meister, A., Schäfer, M., and Turek, S., editors, Int. Workshop on Fluid-Structure Interaction. Theory, Numerics and Applications, Herrsching am Ammersee 2008, pages 65–80. kassel university press GmbH.
- [Deiterding and Wood, 2013] Deiterding, R. and Wood, S. L. (2013). Parallel adaptive fluid-structure interaction simulations of explosions impacting on building structures. *Computers & Fluids*, 88:719–729.
- [Deshpande et al., 2006] Deshpande, V. S., Heaver, A., and Fleck, N. A. (2006). An underwater shock simulator. *Royal Society of London Proceedings Series A*, 462(2067):1021–1041.
- [Falcovitz et al., 1997] Falcovitz, J., Alfandary, G., and Hanoch, G. (1997). A two-dimensional conservation laws scheme for compressible flows with moving boundaries. J. Comput. Phys., 138:83–102.

References III

- [Fedkiw, 2002] Fedkiw, R. P. (2002). Coupling an Eulerian fluid calculation to a Lagrangian solid calculation with the ghost fluid method. J. Comput. Phys., 175:200–224.
- [Giordano et al., 2005] Giordano, J., Jourdan, G., Burtschell, Y., Medale, M., Zeitoun, D. E., and Houas, L. (2005). Shock wave impacts on deforming panel, an application of fluid-structure interaction. *Shock Waves*, 14(1-2):103–110.
- [Gunney et al., 2007] Gunney, B. T., Wissink, A. M., and Hysoma, D. A. (2007). Parallel clustering algorithms for structured AMR. J. Parallel and Distributed Computing, 66(11):1419–1430.
- [Laurence and Deiterding, 2011] Laurence, S. J. and Deiterding, R. (2011). Shock-wave surfing. J. Fluid Mech., 676:369-431.
- [Laurence et al., 2007] Laurence, S. J., Deiterding, R., and Hornung, H. G. (2007). Proximal bodies in hypersonic flows. *J. Fluid Mech.*, 590:209–237.
- [Luccioni et al., 2004] Luccioni, B. M., Ambrosini, R. D., and Danesi, R. F. (2004). Analysis of building collapse under blast loads. *Engineering & Structures*, 26:63–71.

References IV

- [Mader, 1979] Mader, C. L. (1979). *Numerical modeling of detonations*. University of California Press, Berkeley and Los Angeles, California.
- [Mauch, 2003] Mauch, S. P. (2003). Efficient Algorithms for Solving Static Hamilton-Jacobi Equations. PhD thesis, California Institute of Technology.
- [Shyue, 1998] Shyue, K.-M. (1998). An efficient shock-capturing algorithm for compressible multicomponent problems. J. Comput. Phys., 142:208–242.
- [Shyue, 2006] Shyue, K.-M. (2006). A volume-fraction based algorithm for hybrid barotropic and non-barotropic two-fluid flow problems. *Shock Waves*, 15:407–423.
- [Specht, 2000] Specht, U. (2000). Numerische Simulation mechanischer Wellen an Fluid-Festkörper-Mediengrenzen. Number 398 in VDI Reihe 7. VDU Verlag, Düsseldorf.
- [Toro et al., 1994] Toro, E. F., Spruce, M., and Speares, W. (1994). Restoration of the contact surface in the HLL-Riemann solver. *Shock Waves*, 4:25–34.