Adaptive lattice Boltzmann method	Aerodynamics cases	Fluid-structure coupling	Wind turbine wake aerodynamics	References

Lecture 7 Lattice Boltzmann methods

Course Block-structured Adaptive Finite Volume Methods in C++

Ralf Deiterding University of Southampton Engineering and the Environment Highfield Campus, Southampton SO17 1BJ, UK

E-mail: r.deiterding@soton.ac.uk

Adaptive lattice Boltzmann method	Aerodynamics cases		Wind turbine wake aerodynamics	References
000000000	00000	0000	000000000000000	00
A				

Adaptive lattice Boltzmann method

Construction principles Adaptive mesh refinement for LBM Implementation Verification

Adaptive lattice Boltzmann method	Aerodynamics cases	Fluid-structure coupling	Wind turbine wake aerodynamics	References

Adaptive lattice Boltzmann method

Construction principles Adaptive mesh refinement for LBM Implementation Verification

Realistic aerodynamics computations

Vehicle geometries

Adaptive lattice Boltzmann method	Aerodynamics cases	Fluid-structure coupling	Wind turbine wake aerodynamics	References 00

Adaptive lattice Boltzmann method

Construction principles Adaptive mesh refinement for LBM Implementation Verification

Realistic aerodynamics computations

Vehicle geometries

Fluid-structure coupling

Rigid body dynamics Validation simulations

Adaptive lattice Boltzmann method	Aerodynamics cases 00000	Fluid-structure coupling 0000	Wind turbine wake aerodynamics	References 00

Adaptive lattice Boltzmann method

Construction principles Adaptive mesh refinement for LBM Implementation Verification

Realistic aerodynamics computations

Vehicle geometries

Fluid-structure coupling

Rigid body dynamics Validation simulations

Wind turbine wake aerodynamics

Mexico benchmark Simulation of wind turbine wakes Wake interaction prediction

Adaptive lattice Boltzmann method	Aerodynamics cases	Fluid-structure coupling	Wind turbine wake aerodynamics	References

Adaptive lattice Boltzmann method

Construction principles Adaptive mesh refinement for LBM Implementation Verification

Realistic aerodynamics computations

Vehicle geometries

Fluid-structure coupling

Rigid body dynamics Validation simulations

Wind turbine wake aerodynamics

Mexico benchmark Simulation of wind turbine wakes Wake interaction prediction

Adaptive lattice Boltzmann method	Aerodynamics cases	Fluid-structure coupling	Wind turbine wake aerodynamics	References
00000000				
Construction principles				

Is based on solving the Boltzmann equation with a simplified collision operator

$$\partial_t f + \mathbf{u} \cdot \nabla f = \omega (f^{eq} - f)$$

- $\operatorname{Kn} = I_f / L \ll 1$, where I_f is replaced with Δx
- Weak compressibility and small Mach number assumed
- Assume a simplified phase space

Adaptive lattice Boltzmann method	Aerodynamics cases	Fluid-structure coupling	Wind turbine wake aerodynamics	References
00000000				
Construction principles				

Is based on solving the Boltzmann equation with a simplified collision operator

$$\partial_t f + \mathbf{u} \cdot \nabla f = \omega (f^{eq} - f)$$

• $\text{Kn} = l_f / L \ll 1$, where l_f is replaced with Δx

Weak compressibility and small Mach number assumed

Assume a simplified phase space

Equation is approximated with a splitting approach.

1.) Transport step solves $\partial_t f_{\alpha} + \mathbf{e}_{\alpha} \cdot \nabla f_{\alpha} = 0$ Operator: \mathcal{T} : $\tilde{f}_{\alpha}(\mathbf{x} + \mathbf{e}_{\alpha}\Delta t, t + \Delta t) = f_{\alpha}(\mathbf{x}, t)$

Adaptive lattice Boltzmann method	Aerodynamics cases	Fluid-structure coupling	Wind turbine wake aerodynamics	References
•••••				
Construction principles				

Is based on solving the Boltzmann equation with a simplified collision operator

$$\partial_t f + \mathbf{u} \cdot \nabla f = \omega (f^{eq} - f)$$

• $\text{Kn} = l_f / L \ll 1$, where l_f is replaced with Δx

Weak compressibility and small Mach number assumed

Assume a simplified phase space

Equation is approximated with a splitting approach.

1.) Transport step solves
$$\partial_t f_\alpha + \mathbf{e}_\alpha \cdot \nabla f_\alpha = 0$$

Operator: \mathcal{T} : $\tilde{f}_\alpha(\mathbf{x} + \mathbf{e}_\alpha \Delta t, t + \Delta t) = f_\alpha(\mathbf{x}, t)$
 $\rho(\mathbf{x}, t) = \sum_{\alpha=0}^8 f_\alpha(\mathbf{x}, t), \quad \rho(\mathbf{x}, t) u_i(\mathbf{x}, t) = \sum_{\alpha=0}^8 \mathbf{e}_{\alpha i} f_\alpha(\mathbf{x}, t)$

Adaptive lattice Boltzmann method	Aerodynamics cases	Fluid-structure coupling	Wind turbine wake aerodynamics	References
00000000				
Construction principles				

Is based on solving the Boltzmann equation with a simplified collision operator

$$\partial_t f + \mathbf{u} \cdot \nabla f = \omega (f^{eq} - f)$$

• $\operatorname{Kn} = I_f / L \ll 1$, where I_f is replaced with Δx

Weak compressibility and small Mach number assumed

Assume a simplified phase space

Equation is approximated with a splitting approach.

1.) Transport step solves
$$\partial_t f_\alpha + \mathbf{e}_\alpha \cdot \nabla f_\alpha = 0$$

Operator: \mathcal{T} : $\tilde{f}_\alpha(\mathbf{x} + \mathbf{e}_\alpha \Delta t, t + \Delta t) = f_\alpha(\mathbf{x}, t)$
 $\rho(\mathbf{x}, t) = \sum_{\alpha=0}^8 f_\alpha(\mathbf{x}, t), \quad \rho(\mathbf{x}, t) u_i(\mathbf{x}, t) = \sum_{\alpha=0}^8 \mathbf{e}_{\alpha i} f_\alpha(\mathbf{x}, t)$

Discrete velocities:

 $\mathbf{e}_0=(0,0), \mathbf{e}_1=(1,0)c, \mathbf{e}_2=(-1,0)c, \mathbf{e}_3=(0,1)c, \mathbf{e}_4=(1,1)c, ...$

Adaptive lattice Boltzmann method	Aerodynamics cases	Fluid-structure coupling	Wind turbine wake aerodynamics	References
00000000				
Construction principles				

Is based on solving the Boltzmann equation with a simplified collision operator

$$\partial_t f + \mathbf{u} \cdot \nabla f = \omega (f^{eq} - f)$$

• $\operatorname{Kn} = I_f / L \ll 1$, where I_f is replaced with Δx

Weak compressibility and small Mach number assumed

Assume a simplified phase space

Equation is approximated with a splitting approach.

1.) Transport step solves
$$\partial_t f_{\alpha} + \mathbf{e}_{\alpha} \cdot \nabla f_{\alpha} = 0$$

Operator: \mathcal{T} : $\tilde{f}_{\alpha}(\mathbf{x} + \mathbf{e}_{\alpha}\Delta t, t + \Delta t) = f_{\alpha}(\mathbf{x}, t)$
 $\rho(\mathbf{x}, t) = \sum_{\alpha=0}^{8} f_{\alpha}(\mathbf{x}, t), \quad \rho(\mathbf{x}, t)u_i(\mathbf{x}, t) = \sum_{\alpha=0}^{8} \mathbf{e}_{\alpha i} f_{\alpha}(\mathbf{x}, t)$

Discrete velocities:

$$\begin{split} \mathbf{e}_0 &= (0,0), \mathbf{e}_1 = (1,0)c, \mathbf{e}_2 = (-1,0)c, \mathbf{e}_3 = (0,1)c, \mathbf{e}_4 = (1,1)c, ... \\ c &= \frac{\Delta x}{\Delta t}, \text{ Physical speed of sound: } c_s = \frac{c}{\sqrt{3}} \end{split}$$

Approximation of Boltzmann equation

Is based on solving the Boltzmann equation with a simplified collision operator

$$\partial_t f + \mathbf{u} \cdot \nabla f = \omega (f^{eq} - f)$$

- $\text{Kn} = l_f / L \ll 1$, where l_f is replaced with Δx
- Weak compressibility and small Mach number assumed
- Assume a simplified phase space

Equation is approximated with a splitting approach.

1.) Transport step solves
$$\partial_t f_{\alpha} + \mathbf{e}_{\alpha} \cdot \nabla f_{\alpha} = 0$$

Operator: \mathcal{T} : $\tilde{f}_{\alpha}(\mathbf{x} + \mathbf{e}_{\alpha}\Delta t, t + \Delta t) = f_{\alpha}(\mathbf{x}, t)$
 $\rho(\mathbf{x}, t) = \sum_{\alpha=0}^{18} f_{\alpha}(\mathbf{x}, t), \quad \rho(\mathbf{x}, t) u_i(\mathbf{x}, t) = \sum_{\alpha=0}^{18} \mathbf{e}_{\alpha i} f_{\alpha}(\mathbf{x}, t)$

Discrete velocities:

$$\mathbf{e}_{\alpha} = \begin{cases} 0, & \alpha = 0, \\ (\pm 1, 0, 0)c, (0, \pm 1, 0)c, (0, 0, \pm 1)c, & \alpha = 1, \dots, 6, \\ (\pm 1, \pm 1, 0)c, (\pm 1, 0, \pm 1)c, (0, \pm 1, \pm 1)c, & \alpha = 7, \dots, 18, \end{cases}$$

Adaptive lattice Boltzmann method	Aerodynamics cases	Fluid-structure coupling	Wind turbine wake aerodynamics	References
00000000				
Construction principles				

2.) Collision step solves $\partial_t f_{\alpha} = \omega (f_{\alpha}^{eq} - f_{\alpha})$ Operator C:

$$f_{\alpha}(\cdot,t+\Delta t)=\tilde{f}_{\alpha}(\cdot,t+\Delta t)+\omega_{L}\Delta t\left(\tilde{f}_{\alpha}^{eq}(\cdot,t+\Delta t)-\tilde{f}_{\alpha}(\cdot,t+\Delta t)\right)$$

aptive lattice Boltzmann method	Aerodynamics cases	Fluid-structure coupling	Wind turbine wake aerodynamics	References
0000000				
nstruction principles				

2.) Collision step solves $\partial_t f_{\alpha} = \omega (f_{\alpha}^{eq} - f_{\alpha})$ Operator C:

$$f_lpha(\cdot,t+\Delta t)= ilde{f}_lpha(\cdot,t+\Delta t)+\omega_L\Delta t\left(ilde{f}^{eq}_lpha(\cdot,t+\Delta t)- ilde{f}_lpha(\cdot,t+\Delta t)
ight)$$

with equilibrium function

$$f_{\alpha}^{eq}(\rho,\mathbf{u}) = \rho t_{\alpha} \left[1 + \frac{3\mathbf{e}_{\alpha}\mathbf{u}}{c^2} + \frac{9(\mathbf{e}_{\alpha}\mathbf{u})^2}{2c^4} - \frac{3u^2}{2c^2} \right]$$

with $t_{\alpha} = \frac{1}{9} \left\{ 4, 1, 1, 1, \frac{1}{4}, \frac{1}{4}, 1, \frac{1}{4}, \frac{1}{4} \right\}$ Pressure $\delta p = \sum_{\alpha} f_{\alpha}^{eq} c_s^2 = \rho c_s^2$. Dev. stress $\Sigma_{ij} = \left(1 - \frac{\omega_L \Delta t}{2}\right) \sum_{\alpha} \mathbf{e}_{\alpha i} \mathbf{e}_{\alpha j} (f_{\alpha}^{eq} - f_{\alpha})$

aptive lattice Boltzmann method	Aerodynamics cases	Fluid-structure coupling	Wind turbine wake aerodynamics	References
0000000				
struction principles				

2.) Collision step solves $\partial_t f_\alpha = \omega (f_\alpha^{eq} - f_\alpha)$ Operator C:

$$f_lpha(\cdot,t+\Delta t)= ilde{f}_lpha(\cdot,t+\Delta t)+\omega_L\Delta t\left(ilde{f}^{eq}_lpha(\cdot,t+\Delta t)- ilde{f}_lpha(\cdot,t+\Delta t)
ight)$$

with equilibrium function

$$\begin{split} f_{\alpha}^{eq}(\rho,\mathbf{u}) &= \rho t_{\alpha} \left[1 + \frac{3\mathbf{e}_{\alpha}\mathbf{u}}{c^{2}} + \frac{9(\mathbf{e}_{\alpha}\mathbf{u})^{2}}{2c^{4}} - \frac{3\mathbf{u}^{2}}{2c^{2}} \right] \\ \text{with } t_{\alpha} &= \frac{1}{9} \left\{ 3, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{1}{4}$$

Ρ

Ada

ptive lattice Boltzmann method	Aerodynamics cases	Fluid-structure coupling	Wind turbine wake aerodynamics	References
000000				
struction principles				

2.) Collision step solves $\partial_t f_{\alpha} = \omega (f_{\alpha}^{eq} - f_{\alpha})$ Operator C:

$$f_lpha(\cdot,t+\Delta t)= ilde{f}_lpha(\cdot,t+\Delta t)+\omega_L\Delta t\left(ilde{f}^{eq}_lpha(\cdot,t+\Delta t)- ilde{f}_lpha(\cdot,t+\Delta t)
ight)$$

with equilibrium function

$$f_{\alpha}^{eq}(\rho,\mathbf{u}) = \rho t_{\alpha} \left[1 + \frac{3\mathbf{e}_{\alpha}\mathbf{u}}{c^2} + \frac{9(\mathbf{e}_{\alpha}\mathbf{u})^2}{2c^4} - \frac{3\mathbf{u}^2}{2c^2} \right]$$

with $t_{\alpha} = \frac{1}{9} \left\{ 3, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac$

Ada

otive lattice Boltzmann method	Aerodynamics cases	Fluid-structure coupling	Wind turbine wake aerodynamics	References
000000				
truction principles				

2.) Collision step solves $\partial_t f_{\alpha} = \omega (f_{\alpha}^{eq} - f_{\alpha})$ Operator C:

$$f_{lpha}(\cdot,t+\Delta t)= ilde{f}_{lpha}(\cdot,t+\Delta t)+\omega_L\Delta t\left(ilde{f}^{eq}_{lpha}(\cdot,t+\Delta t)- ilde{f}_{lpha}(\cdot,t+\Delta t)
ight)$$

with equilibrium function

$$f_{\alpha}^{eq}(\rho,\mathbf{u}) = \rho t_{\alpha} \left[1 + \frac{3\mathbf{e}_{\alpha}\mathbf{u}}{c^2} + \frac{9(\mathbf{e}_{\alpha}\mathbf{u})^2}{2c^4} - \frac{3\mathbf{u}^2}{2c^2} \right]$$

with $t_{\alpha} = \frac{1}{9} \left\{ 3, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac$

Using the third-order equilibrium function

$$f_{\alpha}^{eq}(\rho,\mathbf{u}) = \rho t_{\alpha} \left[1 + \frac{3\mathbf{e}_{\alpha}\mathbf{u}}{c^2} + \frac{9(\mathbf{e}_{\alpha}\mathbf{u})^2}{2c^4} - \frac{3\mathbf{u}^2}{2c^2} + \frac{\mathbf{e}_{\alpha}\mathbf{u}}{3c^2} \left(\frac{9(\mathbf{e}_{\alpha}\mathbf{u})^2}{2c^4} - \frac{3\mathbf{u}^2}{2c^2} \right) \right]$$

allows higher flow velocities.

Ada

Relation to Navier-Stokes equations

Inserting a Chapman-Enskog expansion, that is,

$$f_{\alpha} = f_{\alpha}(0) + \epsilon f_{\alpha}(1) + \epsilon^2 f_{\alpha}(2) + ...$$

and using

$$\frac{\partial}{\partial t} = \epsilon \frac{\partial}{\partial t_1} + \epsilon^2 \frac{\partial}{\partial t_2} + ..., \qquad \nabla = \epsilon \nabla_1 + \epsilon^2 \nabla_2 + ...$$

into the LBM and summing over α one can show that the continuity and moment equations are recoverd to $O(\epsilon^2)$ [Hou et al., 1996]

$$\partial_t \rho + \nabla \cdot (\rho \mathbf{u}) = \mathbf{0}$$

 $\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla \rho + \nu \nabla^2 \mathbf{u}$

 Adaptive lattice Boltzmann method
 Aerodynamics cases
 Fluid-structure coupling
 Wind turbine wake aerodynamics
 References

 OO●OOOOO
 OO●OO
 OO●OOOOOOO
 OO
 O

Relation to Navier-Stokes equations

Inserting a Chapman-Enskog expansion, that is,

$$f_{\alpha} = f_{\alpha}(0) + \epsilon f_{\alpha}(1) + \epsilon^2 f_{\alpha}(2) + ...$$

and using

$$\frac{\partial}{\partial t} = \epsilon \frac{\partial}{\partial t_1} + \epsilon^2 \frac{\partial}{\partial t_2} + ..., \qquad \nabla = \epsilon \nabla_1 + \epsilon^2 \nabla_2 + ...$$

into the LBM and summing over α one can show that the continuity and moment equations are recoverd to $O(\epsilon^2)$ [Hou et al., 1996]

$$\partial_t \rho + \nabla \cdot (\rho \mathbf{u}) = \mathbf{0}$$
$$\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla \rho + \nu \nabla^2 \mathbf{u}$$

Kinematic viscosity and collision time are connected by

$$\nu = \frac{1}{3} \left(\frac{\tau_L}{\Delta t} - \frac{1}{2} \right) c \Delta x$$

from which one gets with $\sqrt{3}c_{s}=\frac{\Delta x}{\Delta t}$ [Hähnel, 2004]

$$\omega_L = \tau_L^{-1} = \frac{c_s^2}{\nu + \Delta t c_s^2/2}$$

Adaptive lattice Boltzmann method	Aerodynamics cases	Fluid-structure coupling	Wind turbine wake aerodynamics	References
00000000				
Construction principles				

Pursue a large-eddy simulation approach with \bar{f}_{α} and \bar{f}_{α}^{eq} , i.e.

1.)
$$\overline{f}_{\alpha}(\mathbf{x} + \mathbf{e}_{\alpha}\Delta t, t + \Delta t) = \overline{f}_{\alpha}(\mathbf{x}, t)$$

2.) $\overline{f}_{\alpha}(\cdot, t + \Delta t) = \widetilde{\overline{f}}_{\alpha}(\cdot, t + \Delta t) + \frac{1}{\tau^{\star}}\Delta t \left(\widetilde{\overline{f}}_{\alpha}^{eq}(\cdot, t + \Delta t) - \widetilde{\overline{f}}_{\alpha}(\cdot, t + \Delta t) \right)$

Adaptive lattice Boltzmann method	Aerodynamics cases	Fluid-structure coupling	Wind turbine wake aerodynamics	References
00000000				
Construction principles				

Pursue a large-eddy simulation approach with \overline{f}_{α} and $\overline{f}_{\alpha}^{eq}$, i.e. 1.) $\tilde{f}_{\alpha}(\mathbf{x} + \mathbf{e}_{\alpha}\Delta t, t + \Delta t) = \overline{f}_{\alpha}(\mathbf{x}, t)$ 2.) $\overline{f}_{\alpha}(\cdot, t + \Delta t) = \tilde{f}_{\alpha}(\cdot, t + \Delta t) + \frac{1}{\tau^{*}}\Delta t \left(\tilde{f}_{\alpha}^{eq}(\cdot, t + \Delta t) - \tilde{f}_{\alpha}(\cdot, t + \Delta t) \right)$ Effective viscosity: $\nu^{*} = \nu + \nu_{t} = \frac{1}{3} \left(\frac{\tau_{L}^{*}}{\Delta t} - \frac{1}{2} \right) c\Delta x$ with $\tau_{L}^{*} = \tau_{L} + \tau_{t}$

Adaptive lattice Boltzmann method	Aerodynamics cases	Fluid-structure coupling	Wind turbine wake aerodynamics	References
00000000				
Construction principles				

Pursue a large-eddy simulation approach with \overline{f}_{α} and $\overline{f}_{\alpha}^{eq}$, i.e. 1.) $\tilde{f}_{\alpha}(\mathbf{x} + \mathbf{e}_{\alpha}\Delta t, t + \Delta t) = \overline{f}_{\alpha}(\mathbf{x}, t)$ 2.) $\overline{f}_{\alpha}(\cdot, t + \Delta t) = \tilde{f}_{\alpha}(\cdot, t + \Delta t) + \frac{1}{\tau^{*}}\Delta t \left(\tilde{f}_{\alpha}^{eq}(\cdot, t + \Delta t) - \tilde{f}_{\alpha}(\cdot, t + \Delta t) \right)$ Effective viscosity: $\nu^{*} = \nu + \nu_{t} = \frac{1}{3} \left(\frac{\tau_{L}^{*}}{\Delta t} - \frac{1}{2} \right) c\Delta x$ with $\tau_{L}^{*} = \tau_{L} + \tau_{t}$ Use Smagorinsky model to evaluate ν_{t} , e.g., $\nu_{t} = (C_{sm}\Delta x)^{2}\overline{S}$, where

$$ar{m{S}} = \sqrt{2\sum_{i,j}m{m{S}}_{ij}m{m{S}}_{ij}}$$

Adaptive lattice Boltzmann method A	lerodynamics cases	Fluid-structure coupling	Wind turbine wake aerodynamics	Reference
000000000000000000000000000000000000000				
Construction principles				

Pursue a large-eddy simulation approach with \overline{f}_{α} and $\overline{f}_{\alpha}^{eq}$, i.e. 1.) $\tilde{f}_{\alpha}(\mathbf{x} + \mathbf{e}_{\alpha}\Delta t, t + \Delta t) = \overline{f}_{\alpha}(\mathbf{x}, t)$ 2.) $\overline{f}_{\alpha}(\cdot, t + \Delta t) = \tilde{f}_{\alpha}(\cdot, t + \Delta t) + \frac{1}{\tau^{*}}\Delta t \left(\tilde{f}_{\alpha}^{eq}(\cdot, t + \Delta t) - \tilde{f}_{\alpha}(\cdot, t + \Delta t) \right)$ Effective viscosity: $\nu^{*} = \nu + \nu_{t} = \frac{1}{3} \left(\frac{\tau_{L}^{*}}{\Delta t} - \frac{1}{2} \right) c\Delta x$ with $\tau_{L}^{*} = \tau_{L} + \tau_{t}$ Use Smagorinsky model to evaluate ν_{t} , e.g., $\nu_{t} = (C_{sm}\Delta x)^{2}\overline{S}$, where

$$ar{m{S}} = \sqrt{2\sum_{i,j}m{m{S}}_{ij}m{m{S}}_{jj}}$$

The filtered strain rate tensor $\mathbf{\bar{S}}_{ij} = (\partial_j \bar{u}_i + \partial_i \bar{u}_j)/2$ can be computed as a second moment as

$$\mathbf{\bar{S}}_{ij} = \frac{\Sigma_{ij}}{2\rho c_s^2 \tau_L^{\star} \left(1 - \frac{\omega_L \Delta t}{2}\right)} = \frac{1}{2\rho c_s^2 \tau_L^{\star}} \sum_{\alpha} \mathbf{e}_{\alpha i} \mathbf{e}_{\alpha j} (\bar{f}_{\alpha}^{eq} - \bar{f}_{\alpha})$$

Adaptive lattice Boltzmann method A	lerodynamics cases	Fluid-structure coupling	Wind turbine wake aerodynamics	Reference
000000000000000000000000000000000000000				
Construction principles				

Pursue a large-eddy simulation approach with $ar{f}_{lpha}$ and $ar{f}_{lpha}^{eq}$, i.e.

1.)
$$f_{\alpha}(\mathbf{x} + \mathbf{e}_{\alpha}\Delta t, t + \Delta t) = f_{\alpha}(\mathbf{x}, t)$$

2.) $\overline{f}_{\alpha}(\cdot, t + \Delta t) = \tilde{\overline{f}}_{\alpha}(\cdot, t + \Delta t) + \frac{1}{\tau^{\star}}\Delta t \left(\tilde{\overline{f}}_{\alpha}^{eq}(\cdot, t + \Delta t) - \tilde{\overline{f}}_{\alpha}(\cdot, t + \Delta t)\right)$

Effective viscosity: $\nu^{\star} = \nu + \nu_t = \frac{1}{3} \left(\frac{\tau_L^{\star}}{\Delta t} - \frac{1}{2} \right) c \Delta x$ with $\tau_L^{\star} = \tau_L + \tau_t$

Use Smagorinsky model to evaluate ν_t , e.g., $\nu_t = (C_{sm}\Delta x)^2 \bar{S}$, where

$$ar{m{S}} = \sqrt{2\sum_{i,j}m{m{S}}_{ij}m{m{S}}_{jj}}$$

The filtered strain rate tensor $\mathbf{\bar{S}}_{ij} = (\partial_j \bar{u}_i + \partial_i \bar{u}_j)/2$ can be computed as a second moment as

$$\bar{\mathbf{S}}_{ij} = \frac{\sum_{ij}}{2\rho c_s^2 \tau_L^* \left(1 - \frac{\omega_L \Delta t}{2}\right)} = \frac{1}{2\rho c_s^2 \tau_L^*} \sum_{\alpha} \mathbf{e}_{\alpha i} \mathbf{e}_{\alpha j} (\bar{f}_{\alpha}^{eq} - \bar{f}_{\alpha})$$

 τ_t can be obtained as [Yu, 2004, Hou et al., 1996]

$$\tau_t = \frac{1}{2} \left(\sqrt{\tau_L^2 + 18\sqrt{2}(\rho_0 c^2)^{-1} C_{sm}^2 \Delta x \bar{S}} - \tau_L \right)$$

Initial and boundary conditions

• Initial conditions are constructed as $f_{\alpha}^{eq}(\rho(t=0), \mathbf{u}(t=0))$

Initial and boundary conditions

• Initial conditions are constructed as $f^{eq}_{\alpha}(\rho(t=0), \mathbf{u}(t=0))$

Initial and boundary conditions

• Initial conditions are constructed as $f_{\alpha}^{eq}(\rho(t=0), \mathbf{u}(t=0))$

Initial and boundary conditions

• Initial conditions are constructed as $f^{eq}_{\alpha}(\rho(t=0), \mathbf{u}(t=0))$

- Outlet basically copies all distributions (zero gradient)
- Inlet and pressure boundary conditions use f^{eq}_α
- Embedded boundary conditions use ghost cell construction as before, then use $f^{eq}_{\alpha}(\rho', \mathbf{u}')$ to construct distributions in embedded ghost cells

Adaptive lattice Boltzmann method	Aerodynamics cases	Fluid-structure coupling	Wind turbine wake aerodynamics	References
00000000				
Adaptive mesh refinement for LBM				

1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := CT(f_{\alpha}^{C,n})$

Adaptive lattice Boltzmann method	Aerodynamics cases	Fluid-structure coupling	Wind turbine wake aerodynamics	References
000000000				
Adaptive mesh refinement for LBM				
Adaptiva I DNA				

- 1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := CT(f_{\alpha}^{C,n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.

Adaptive lattice Boltzmann method	Aerodynamics cases	Fluid-structure coupling	Wind turbine wake aerodynamics	References
000000000				
Adaptive mesh refinement for LBM				
Adamtica I DNA				

- 1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := CT(f_{\alpha}^{C,n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.

$$f^{f,n}_{\alpha,ir}$$

Adaptive lattice Boltzmann method	Aerodynamics cases	Fluid-structure coupling	Wind turbine wake aerodynamics	References
000000000				
Adaptive mesh refinement for LBM				

- 1. Complete update on coarse grid: $f_{\alpha}^{\mathcal{C},n+1} := \mathcal{CT}(f_{\alpha}^{\mathcal{C},n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.
- 3. $\tilde{f}^{f,n}_{\alpha} := \mathcal{T}(f^{f,n}_{\alpha})$ on whole fine mesh. $f^{f,n+1/2}_{\alpha} := \mathcal{C}(\tilde{f}^{f,n}_{\alpha})$ in interior.

$$\tilde{f}^{f,n}_{lpha,in}$$

Adaptive lattice Boltzmann method	Aerodynamics cases	Fluid-structure coupling	Wind turbine wake aerodynamics	References
000000000				
Adaptive mesh refinement for LBM				

- 1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := CT(f_{\alpha}^{C,n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.
- 3. $\tilde{f}^{f,n}_{\alpha} := \mathcal{T}(f^{f,n}_{\alpha})$ on whole fine mesh. $f^{f,n+1/2}_{\alpha} := \mathcal{C}(\tilde{f}^{f,n}_{\alpha})$ in interior.
- 4. $\tilde{f}^{f,n+1/2}_{\alpha} := \mathcal{T}(f^{f,n+1/2}_{\alpha})$ on whole fine mesh. $f^{f,n+1}_{\alpha} := \mathcal{C}(\tilde{f}^{f,n+1/2}_{\alpha})$ in interior.

$$\tilde{\mathbf{f}}^{f,n+1/2}_{\alpha,\mathrm{in}}$$

Adaptive lattice Boltzmann method	Aerodynamics cases	Fluid-structure coupling	Wind turbine wake aerodynamics	References
000000000				
Adaptive mesh refinement for LBM				

- 1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := CT(f_{\alpha}^{C,n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.
- 3. $\tilde{f}_{\alpha}^{f,n} := \mathcal{T}(f_{\alpha}^{f,n})$ on whole fine mesh. $f_{\alpha}^{f,n+1/2} := \mathcal{C}(\tilde{f}_{\alpha}^{f,n})$ in interior.
- 4. $\tilde{f}^{f,n+1/2}_{\alpha} := \mathcal{T}(f^{f,n+1/2}_{\alpha})$ on whole fine mesh. $f^{f,n+1}_{\alpha} := \mathcal{C}(\tilde{f}^{f,n+1/2}_{\alpha})$ in interior.

				\mathbf{N}	\mathbf{N}	
				1	1	
				₩	₩	
				₩	≭	
7	1	¥	¥	米	胀	
1	1	¥	¥	米	米	

 $\tilde{f}^{f,n+1/2}_{lpha,in}$

 $f_{\alpha,out}^{f,n}$

Adaptive lattice Boltzmann method	Aerodynamics cases	Fluid-structure coupling	Wind turbine wake aerodynamics	References
000000000				
Adaptive mesh refinement for LBM				

- 1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := CT(f_{\alpha}^{C,n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.
- 3. $\tilde{f}_{\alpha}^{f,n} := \mathcal{T}(f_{\alpha}^{f,n})$ on whole fine mesh. $f_{\alpha}^{f,n+1/2} := \mathcal{C}(\tilde{f}_{\alpha}^{f,n})$ in interior.
- 4. $\tilde{f}^{f,n+1/2}_{\alpha} := \mathcal{T}(f^{f,n+1/2}_{\alpha})$ on whole fine mesh. $f^{f,n+1}_{\alpha} := \mathcal{C}(\tilde{f}^{f,n+1/2}_{\alpha})$ in interior.

				×	X	
				≯	₩	
				₩	≭	
				₩	≭	
X	₩	₩	¥	₩	¥	
X	¥	¥	¥	*	1	

 $\tilde{f}^{f,n}_{\alpha out}$

Adaptive lattice Boltzmann method	Aerodynamics cases	Fluid-structure coupling	Wind turbine wake aerodynamics	References
000000000				
Adaptive mesh refinement for LBM				

- 1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := CT(f_{\alpha}^{C,n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.
- 3. $\tilde{f}_{\alpha}^{f,n} := \mathcal{T}(f_{\alpha}^{f,n})$ on whole fine mesh. $f_{\alpha}^{f,n+1/2} := \mathcal{C}(\tilde{f}_{\alpha}^{f,n})$ in interior.
- 4. $\tilde{f}^{f,n+1/2}_{\alpha} := \mathcal{T}(f^{f,n+1/2}_{\alpha})$ on whole fine mesh. $f^{f,n+1}_{\alpha} := \mathcal{C}(\tilde{f}^{f,n+1/2}_{\alpha})$ in interior.

						1	1
						1	1
						≯	≯
						≯	≯
						¥	¥
						≯	*
1	1	¥	¥	≁	*	1	1
1	1	₩	¥	*	*	1	1

 $\tilde{f}^{f,n+1/2}_{lpha,out}$
Adaptive lattice Boltzmann method	Aerodynamics cases	Fluid-structure coupling	Wind turbine wake aerodynamics	References
000000000				
Adaptive mesh refinement for LBM				

- 1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := CT(f_{\alpha}^{C,n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.
- 3. $\tilde{f}^{f,n}_{\alpha} := \mathcal{T}(f^{f,n}_{\alpha})$ on whole fine mesh. $f^{f,n+1/2}_{\alpha} := \mathcal{C}(\tilde{f}^{f,n}_{\alpha})$ in interior.
- 4. $\tilde{f}^{f,n+1/2}_{\alpha} := \mathcal{T}(f^{f,n+1/2}_{\alpha})$ on whole fine mesh. $f^{f,n+1}_{\alpha} := \mathcal{C}(\tilde{f}^{f,n+1/2}_{\alpha})$ in interior.

						1	1
						1	>
				₩	₩	≯	₩
				¥	¥	≭	≭
		¥	¥	米	账	ァ	凗
		×	¥	米	米	훆	凗
1	1	¥	¥	¥	¥	7	1
1	1	¥	¥	¥	¥	1	1

$$\tilde{\textit{f}}_{\alpha,out}^{f,n+1/2}, \tilde{\textit{f}}_{\alpha,in}^{f,n+1/2}$$

Adaptive lattice Boltzmann method	Aerodynamics cases	Fluid-structure coupling	Wind turbine wake aerodynamics	References
000000000				
Adaptive mesh refinement for LBM				

- 1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := CT(f_{\alpha}^{C,n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.
- 3. $\tilde{f}_{\alpha}^{f,n} := \mathcal{T}(f_{\alpha}^{f,n})$ on whole fine mesh. $f_{\alpha}^{f,n+1/2} := \mathcal{C}(\tilde{f}_{\alpha}^{f,n})$ in interior.
- 4. $\tilde{f}^{f,n+1/2}_{\alpha} := \mathcal{T}(f^{f,n+1/2}_{\alpha})$ on whole fine mesh. $f^{f,n+1}_{\alpha} := \mathcal{C}(\tilde{f}^{f,n+1/2}_{\alpha})$ in interior.

5. Average $\tilde{f}_{\alpha,out}^{f,n+1/2}$ (inner halo layer), $\tilde{f}_{\alpha,out}^{f,n}$ (outer halo layer) to obtain $\tilde{f}_{\alpha,out}^{C,n}$.

Adaptive lattice Boltzmann method	Aerodynamics cases	Fluid-structure coupling	Wind turbine wake aerodynamics	References
000000000				
Adaptive mesh refinement for LBM				

- 1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := CT(f_{\alpha}^{C,n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.
- 3. $\tilde{f}_{\alpha}^{f,n} := \mathcal{T}(f_{\alpha}^{f,n})$ on whole fine mesh. $f_{\alpha}^{f,n+1/2} := \mathcal{C}(\tilde{f}_{\alpha}^{f,n})$ in interior.
- 4. $\tilde{f}^{f,n+1/2}_{\alpha} := \mathcal{T}(f^{f,n+1/2}_{\alpha})$ on whole fine mesh. $f^{f,n+1}_{\alpha} := \mathcal{C}(\tilde{f}^{f,n+1/2}_{\alpha})$ in interior.

5. Average $\tilde{f}_{\alpha,out}^{f,n+1/2}$ (inner halo layer), $\tilde{f}_{\alpha,out}^{f,n}$ (outer halo layer) to obtain $\tilde{f}_{\alpha,out}^{C,n}$.

Adaptive lattice Boltzmann method	Aerodynamics cases	Fluid-structure coupling	Wind turbine wake aerodynamics	References
00000000				
Adaptive mesh refinement for LBM				

- 1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := CT(f_{\alpha}^{C,n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.
- 3. $\tilde{f}_{\alpha}^{f,n} := \mathcal{T}(f_{\alpha}^{f,n})$ on whole fine mesh. $f_{\alpha}^{f,n+1/2} := \mathcal{C}(\tilde{f}_{\alpha}^{f,n})$ in interior.
- 4. $\tilde{f}^{f,n+1/2}_{\alpha} := \mathcal{T}(f^{f,n+1/2}_{\alpha})$ on whole fine mesh. $f^{f,n+1}_{\alpha} := \mathcal{C}(\tilde{f}^{f,n+1/2}_{\alpha})$ in interior.

- 5. Average $\tilde{f}_{\alpha,out}^{f,n+1/2}$ (inner halo layer), $\tilde{f}_{\alpha,out}^{f,n}$ (outer halo layer) to obtain $\tilde{f}_{\alpha,out}^{C,n}$.
- 6. Revert transport into halos: $\bar{f}_{\alpha,out}^{C,n} := \mathcal{T}^{-1}(\tilde{f}_{\alpha,out}^{C,n})$

Adaptive lattice Boltzmann method	Aerodynamics cases	Fluid-structure coupling	Wind turbine wake aerodynamics	References
00000000				
Adaptive mesh refinement for LBM				

- 1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := CT(f_{\alpha}^{C,n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.
- 3. $\tilde{f}_{\alpha}^{f,n} := \mathcal{T}(f_{\alpha}^{f,n})$ on whole fine mesh. $f_{\alpha}^{f,n+1/2} := \mathcal{C}(\tilde{f}_{\alpha}^{f,n})$ in interior.
- 4. $\tilde{f}^{f,n+1/2}_{\alpha} := \mathcal{T}(f^{f,n+1/2}_{\alpha})$ on whole fine mesh. $f^{f,n+1}_{\alpha} := \mathcal{C}(\tilde{f}^{f,n+1/2}_{\alpha})$ in interior.

- 5. Average $\tilde{f}_{\alpha,out}^{f,n+1/2}$ (inner halo layer), $\tilde{f}_{\alpha,out}^{f,n}$ (outer halo layer) to obtain $\tilde{f}_{\alpha,out}^{C,n}$.
- 6. Revert transport into halos: $\bar{f}_{\alpha,out}^{C,n} := \mathcal{T}^{-1}(\tilde{f}_{\alpha,out}^{C,n})$
- 7. Parallel synchronization of $f_{\alpha}^{C,n}, \bar{f}_{\alpha,out}^{C,n}$

Adaptive lattice Boltzmann method	Aerodynamics cases	Fluid-structure coupling	Wind turbine wake aerodynamics	References
000000000				
Adaptive mesh refinement for LBM				

- 1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := CT(f_{\alpha}^{C,n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.
- 3. $\tilde{f}_{\alpha}^{f,n} := \mathcal{T}(f_{\alpha}^{f,n})$ on whole fine mesh. $f_{\alpha}^{f,n+1/2} := \mathcal{C}(\tilde{f}_{\alpha}^{f,n})$ in interior.
- 4. $\tilde{f}^{f,n+1/2}_{\alpha} := \mathcal{T}(f^{f,n+1/2}_{\alpha})$ on whole fine mesh. $f^{f,n+1}_{\alpha} := \mathcal{C}(\tilde{f}^{f,n+1/2}_{\alpha})$ in interior.

- 5. Average $\tilde{f}_{\alpha,out}^{f,n+1/2}$ (inner halo layer), $\tilde{f}_{\alpha,out}^{f,n}$ (outer halo layer) to obtain $\tilde{f}_{\alpha,out}^{C,n}$.
- 6. Revert transport into halos: $\bar{f}_{\alpha,out}^{C,n} := \mathcal{T}^{-1}(\tilde{f}_{\alpha,out}^{C,n})$
- 7. Parallel synchronization of $f_{\alpha}^{C,n}, \overline{f}_{\alpha,out}^{C,n}$
- 8. Cell-wise update where correction is needed: $f_{\alpha}^{C,n+1} := CT(f_{\alpha}^{C,n}, \bar{f}_{\alpha,out}^{C,n})$

Adaptive lattice Boltzmann method	Aerodynamics cases	Fluid-structure coupling	Wind turbine wake aerodynamics	References
00000000				
Adaptive mesh refinement for LBM				

- 1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := CT(f_{\alpha}^{C,n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.
- 3. $\tilde{f}_{\alpha}^{f,n} := \mathcal{T}(f_{\alpha}^{f,n})$ on whole fine mesh. $f_{\alpha}^{f,n+1/2} := \mathcal{C}(\tilde{f}_{\alpha}^{f,n})$ in interior.
- 4. $\tilde{f}^{f,n+1/2}_{\alpha} := \mathcal{T}(f^{f,n+1/2}_{\alpha})$ on whole fine mesh. $f^{f,n+1}_{\alpha} := \mathcal{C}(\tilde{f}^{f,n+1/2}_{\alpha})$ in interior.

- 5. Average $\tilde{f}_{\alpha,out}^{f,n+1/2}$ (inner halo layer), $\tilde{f}_{\alpha,out}^{f,n}$ (outer halo layer) to obtain $\tilde{f}_{\alpha,out}^{C,n}$.
- 6. Revert transport into halos: $\overline{f}_{\alpha,out}^{C,n} := \mathcal{T}^{-1}(\widetilde{f}_{\alpha,out}^{C,n})$
- 7. Parallel synchronization of $f_{\alpha}^{C,n}, \bar{f}_{\alpha,out}^{C,n}$
- 8. Cell-wise update where correction is needed: $f_{\alpha}^{C,n+1} := CT(f_{\alpha}^{C,n}, \bar{f}_{\alpha,out}^{C,n})$

Algorithm equivalent to [Chen et al., 2006].

Adaptive lattice Boltzmann method	Aerodynamics cases	Fluid-structure coupling	Wind turbine wake aerodynamics	References
000000000				
Implementation				
Classes				

Directory <code>amroc/lbm</code> contains the lattice Boltzmann integrator that is in C++ throughout and also is built on the classes in <code>amroc/amr/Interfaces</code>.

Several SchemeType-classes are already provided: LBMD1Q3<DataType
 , LBMD2Q9<DataType >, LBMD3Q19<DataType >,
 LBMD2Q9Thermal<DataType >, LBMD3Q19Thermal<DataType > included a large number of boundary conditions.

code/amroc/doc/html/lbm/classLBMD1Q3.html code/amroc/doc/html/lbm/classLBMD2Q9.html

code/amroc/doc/html/lbm/classLBMD3Q19Thermal.html

Using function within LBMD?D?, the special coarse-fine correction is implemented in LBMFixup<LBMType, FixupType, dim>

code/amroc/doc/html/lbm/classLBMFixup.html

LBMIntegrator<LBMType, dim >, LBMGFMBoundary<LBMType, dim >, etc. interface to the generic classes in amroc/amr/Interfaces

code/amroc/doc/html/amr/classSchemeGFMBoundary.html

Problem.h: Specific simulation is defined in Problem.h only. Predefined classes specified in LBMStdProblem.h, LBMStdGFMProblem.h and LBMProblem.h.

code/amroc/doc/html/lbm/LBMProblem_8h_source.html code/amroc/doc/html/lbm/LBMStdProblem_8h.html

code/amroc/doc/html/lbm/LBMStdGFMProblem_8h.html

Flow over 2D cylinder, $d = 2 \,\mathrm{cm}$

- Air with $\nu = 1.61 \cdot 10^{-5} \text{ m}^2/\text{s},$ $\rho = 1.205 \text{ kg/m}^3$
- ▶ Domain size [-8d, 24d] × [-8d, 8d]
- Dynamic refinement based on velocity. Last level to refine structure further.
- Inflow from left. Characteristic boundary conditions [Schlaffer, 2013] elsewhere.

- Base lattice 320×160 , 3 additional levels with factors $r_l = 2, 4, 4$.
- Resolution: \sim 320 points in diameter d
- Computation of C_D on 400 equidistant points along circle and averaged over time. Comparison above with [Henderson, 1995].

Adaptive lattice Boltzmann method	Aerodynamics cases	Fluid-structure coupling	Wind turbine wake aerodynamics	Referenc
00000000				
Verification				

Flow over cylinder in 2d - Re = 300, $u = 0.2415 \,\text{m/s}$

Isolines on refinement and distribution to processors

Mesh adaptation with LBM:

- 1. Level-wise evaluation of $\omega_L^l = \frac{c_s^2}{\nu + \Delta t_l c_s^2/2}$
- 2. Exchange of distributions streaming across refinement interfaces

 $\verb|code/amroc/doc/html/apps/lbm_2applications_2Navier-Stokes_22d_2CylinderDrag_2src_2Problem_8h_source.html/apps/lbm_2applications_2Navier-Stokes_22d_2CylinderDrag_2src_2Problem_8h_source.html/apps/lbm_2applications_2Navier-Stokes_22d_2CylinderDrag_2src_2Problem_8h_source.html/apps/lbm_2applications_2Navier-Stokes_22d_2CylinderDrag_2src_2Problem_8h_source.html/apps/lbm_2applications_2Navier-Stokes_22d_2CylinderDrag_2src_2Problem_8h_source.html/apps/lbm_2applications_2Navier-Stokes_22d_2CylinderDrag_2src_2Problem_8h_source.html/apps/lbm_2applications_2Navier-Stokes_2Apps/lbm_2applications_2Navier-Stokes_2Apps/lbm_2applications_2Navier-Stokes_2Apps/lbm_2apps/$

Flow over cylinder in 2d - Re = 300, $u = 0.2415 \,\text{m/s}$

Isolines on refinement and distribution to processors

Mesh adaptation with LBM:

- 1. Level-wise evaluation of $\omega_L^l = \frac{c_s^2}{\nu + \Delta t_l c_s^2/2}$
- 2. Exchange of distributions streaming across refinement interfaces

Flow over cylinder in 2d - Re = 300, $u = 0.2415 \,\text{m/s}$

Isolines on refinement and distribution to processors

Mesh adaptation with LBM:

- 1. Level-wise evaluation of $\omega_L^l = \frac{c_s^2}{\nu + \Delta t_l c_s^2/2}$
- 2. Exchange of distributions streaming across refinement interfaces

Flow over cylinder in 2d - Re = 300, $u = 0.2415 \,\text{m/s}$

Isolines on refinement and distribution to processors

Mesh adaptation with LBM:

- 1. Level-wise evaluation of $\omega_L^l = \frac{c_s^2}{\nu + \Delta t_l c_s^2/2}$
- 2. Exchange of distributions streaming across refinement interfaces

Flow over cylinder in 2d - Re = 300, $u = 0.2415 \,\text{m/s}$

Isolines on refinement and distribution to processors

Mesh adaptation with LBM:

- 1. Level-wise evaluation of $\omega_L^{\prime} = \frac{c_s^2}{\nu + \Delta t_l c_s^2/2}$
- 2. Exchange of distributions streaming across refinement interfaces

Flow over cylinder in 2d - Re = 300, $u = 0.2415 \,\text{m/s}$

Isolines on refinement and distribution to processors

Mesh adaptation with LBM:

- 1. Level-wise evaluation of $\omega_L^l = \frac{c_s^2}{\nu + \Delta t_l c_s^2/2}$
- 2. Exchange of distributions streaming across refinement interfaces

Adaptive lattice Boltzmann method	Aerodynamics cases		Wind turbine wake aerodynamics	References
00000000	00000	0000	000000000000000	00

Outline

Adaptive lattice Boltzmann method

Construction principles Adaptive mesh refinement for LBM Implementation Verification

Realistic aerodynamics computations Vehicle geometries

Fluid-structure coupling

Rigid body dynamics Validation simulations

Wind turbine wake aerodynamics

Mexico benchmark Simulation of wind turbine wakes Wake interaction prediction

- Inflow 40 m/s. LES model active. Characteristic boundary conditions.
- To t = 0.5 s (~ 4 characteristic lengths) with 31,416 time steps on finest level in ~ 37 h on 200 cores (7389 h CPU). Channel: 15 m × 5 m × 3.3 m

Adaptive lattice Boltzmann method	Aerodynamics cases	Fluid-structure coupling	Wind turbine wake aerodynamics	References
	00000			
Vehicle geometries				

Mesh adaptation

code/amroc/doc/html/apps/lbm_2applications_2Navier-Stokes_23d_2VehicleOnGround_2src_2Problem_8h_source.html

Adaptive lattice Boltzmann method	Aerodynamics cases	Fluid-structure coupling	Wind turbine wake aerodynamics	References
	0000			
Vehicle geometries				
Mesh adaptatio	n Used refinement blo	ocks and levels (indicate	ed by color)	

- SAMR base grid $600 \times 200 \times 132$ cells, $r_{1,2,3} = 2$ yielding finest resolution of $\Delta x = 3.125$ mm
- Adaptation based on level set and scaled gradient of magnitude of vorticity vector
- > 236M cells vs. 8.1 billion (uniform) at $t = 0.4075 \,\mathrm{s}$

Refinement at $t = 0.4075 \,\mathrm{s}$

Level	Grids	Cells
0	11,605	15,840,000
1	11,513	23,646,984
2	31,382	144,447,872
3	21,221	52,388,336

 $\verb|code/amroc/doc/html/apps/lbm_2applications_2Navier-Stokes_23d_2VehicleOnGround_2src_2Problem_8h_source.html/apps/lbm_2applications_2Navier-Stokes_23d_2VehicleOnGround_2src_2Problem_8h_source.html/apps/lbm_2applications_2Navier-Stokes_23d_2VehicleOnGround_2src_2Problem_8h_source.html/apps/lbm_2applications_2Navier-Stokes_23d_2VehicleOnGround_2src_2Problem_8h_source.html/apps/lbm_2applications_2Navier-Stokes_23d_2VehicleOnGround_2src_2Problem_8h_source.html/apps/lbm_2applications_2Navier-Stokes_23d_2VehicleOnGround_2src_2Problem_8h_source.html/apps/lbm_2applications_2Navier-Stokes_23d_2VehicleOnGround_2src_2Problem_8h_source.html/apps/lbm_2applications_2Navier-Stokes_23d_2VehicleOnGround_2src_2Problem_8h_source.html/apps/lbm_2applications_2Navier-Stokes_2Apps/lbm_2applications_2Navier-Stokes_2Apps/lbm_2apps/lbm_2$

Adaptive lattice Boltzmann method 00000000 Vehicle geometries Aerodynamics cases

Fluid-structure coupling

Vind turbine wake aerodynamic: 00000000000000000 References 00

Next Generation Train (NGT)

- 1:25 train model of 74,670 triangles
- Wind tunnel: air at room temperature with 33.48 m/s, $\mathrm{Re} = 250,000$, yaw angle 30°
- Comparison between LBM (fluid air) and incompressible OpenFOAM solvers

Adaptive lattice Boltzmann method 00000000 Vehicle geometries Aerodynamics cases

Fluid-structure coupling 0000 Vind turbine wake aerodynamics

References 00

Next Generation Train (NGT)

- 1:25 train model of 74,670 triangles
- Wind tunnel: air at room temperature with 33.48 m/s, Re = 250,000, yaw angle 30°
- Comparison between LBM (fluid air) and incompressible OpenFOAM solvers

Averaged vorticity LBM-LES Averaged vorticity OpenFOAM-LES code/amroc/doc/html/apps/lbm_2applications_2Navier-Stokes_23d_2NGT2_2src_2Problem_8h_source.html Aerodynamics cases

Fluid-structure coupling 0000 Wind turbine wake aerodynamic: 0000000000000000 References 00

NGT model

- LBM-AMR computation with 5 additional levels, factor 2 refinement (uniform: 120.4e9 cells)
- Dynamic AMR until $T_c = 34$, then static for $\sim 12T_C$ to obtain average coefficients
- OpenFOAM simulations by M. Fragner (DLR)

Simulation	Mesh	CFX	CFY	CMX
Wind tunnel	-	-0.06	-5.28	-3.46
DDES	low	-0.40	-5.45	-3.61
Σ only	low	0.10	-0.04	-0.05
LES	high	-0.45	-6.07	-4.14
DDES	high	-0.43	-5.72	-3.77
LBM - p only	-	-0.30	-5.09	-3.46

Aerodynamics cases

Fluid-structure coupling 0000 Wind turbine wake aerodynamic: 00000000000000000 References 00

NGT model

- LBM-AMR computation with 5 additional levels, factor 2 refinement (uniform: 120.4e9 cells)
- Dynamic AMR until $T_c = 34$, then static for $\sim 12T_C$ to obtain average coefficients
- OpenFOAM simulations by M. Fragner (DLR)

Simulation	Mesh	CFX	CFY	CMX
Wind tunnel	-	-0.06	-5.28	-3.46
DDES	low	-0.40	-5.45	-3.61
Σ only	low	0.10	-0.04	-0.05
LES	high	-0.45	-6.07	-4.14
DDES	high	-0.43	-5.72	-3.77
LBM - p only	-	-0.30	-5.09	-3.46

	LBM	DDES(I)	LES	DDES(h)
Cells	147M	34.1M	219M	219M
y ⁺	43	3.2	1.7	1.7
x^{+}, z^{+}	43	313	140	140
Δx wake [mm]	0.936	3.0	1.5	1.5
Runtime $[T_C]$	34	35.7	10.3	9.2
Processors	200	80	280	280
CPU [h]	34,680	49,732	194,483	164,472
$T_C/\Delta t$	1790	1325	1695	1695
CPU [h]/ T_C /1M cells	5.61	39.75	86.4	81.36

Aerodynamics cases

Fluid-structure coupling 0000 Wind turbine wake aerodynamic: 00000000000000000 References 00

NGT model

- LBM-AMR computation with 5 additional levels, factor 2 refinement (uniform: 120.4e9 cells)
- Dynamic AMR until $T_c = 34$, then static for $\sim 12T_C$ to obtain average coefficients
- OpenFOAM simulations by M. Fragner (DLR)

Simulation	Mesh	CFX	CFY	CMX
Wind tunnel	-	-0.06	-5.28	-3.46
DDES	low	-0.40	-5.45	-3.61
Σ only	low	0.10	-0.04	-0.05
LES	high	-0.45	-6.07	-4.14
DDES	high	-0.43	-5.72	-3.77
LBM - p only	-	-0.30	-5.09	-3.46

	LBM	DDES(I)	LES	DDES(h)
Cells	147M	34.1M	219M	219M
y ⁺	43	3.2	1.7	1.7
x^{+}, z^{+}	43	313	140	140
Δx wake [mm]	0.936	3.0	1.5	1.5
Runtime $[T_C]$	34	35.7	10.3	9.2
Processors	200	80	280	280
CPU [h]	34,680	49,732	194,483	164,472
$T_C/\Delta t$	1790	1325	1695	1695
CPU [h]/ $T_C/1M$ cells	5.61	39.75	86.4	81.36

Adaptive LBM code 16x faster than OpenFOAM with PISO algorithm on static mesh! Adaptive lattice Boltzmann method 00000000 Vehicle geometries Aerodynamics cases 0000● Fluid-structure coupling

Wind turbine wake aerodynamics

Strong scalability test (1:25 train)

- Computation is restarted from disk checkpoint at t = 0.526408 s from 96 core run.
- Time for initial re-partitioning removed from benchmark.
- 200 coarse level time steps computed.
- Regridding and re-partitioning every 2nd level-0 step.
- Computation starts with 51.8M cells (I3: 10.2M, I2: 15.3M, I1: 21.5M, I0= 4.8M) vs. 19.66 billion (uniform).
- Portions for parallel communication quite considerable (4 ghost cells still used).

		· • · · · / • • - -			-		
Cores	48	96	192	288	384	576	768
Time per step	132.43s	69.79s	37.47s	27.12s	21.91s	17.45s	15.15s
Par. Efficiency	100.0	94.88	88.36	81.40	75.56	63.24	54.63
LBM Update	5.91	5.61	5.38	4.92	4.50	3.73	3.19
Regridding	15.44	12.02	11.38	10.92	10.02	8.94	8.24
Partitioning	4.16	2.43	1.16	1.02	1.04	1.16	1.34
Interpolation	3.76	3.53	3.33	3.05	2.83	2.37	2.06
Sync Boundaries	54.71	59.35	59.73	56.95	54.54	52.01	51.19
Sync Fixup	9.10	10.41	12.25	16.62	20.77	26.17	28.87
Level set	0.78	0.93	1.21	1.37	1.45	1.48	1.47
Interp./Extrap.	3.87	3.81	3.76	3.49	3.26	2.75	2.39
Misc	2.27	1.91	1.79	1.67	1.58	1.38	1.25

Time in % spent in main operations

Mation column				
Rigid body dynamics				
		0000		
Adaptive lattice Boltzmann method	Aerodynamics cases	Fluid-structure coupling	Wind turbine wake aerodynamics	References

Motion solver

Based on the Newton-Euler method solution of dynamics equation of kinetic chains [Tsai, 1999]

$$\begin{pmatrix} \mathbf{F} \\ \boldsymbol{\tau}_{\mathrm{P}} \end{pmatrix} = \begin{pmatrix} m\mathbf{1} & -m[\mathbf{c}]^{\times} \\ m[\mathbf{c}]^{\times}\mathbf{I}_{\mathrm{cm}} & -m[\mathbf{c}]^{\times}[\mathbf{c}]^{\times} \end{pmatrix} \begin{pmatrix} \mathbf{a}_{\mathrm{P}} \\ \boldsymbol{\alpha} \end{pmatrix} + \begin{pmatrix} m[\boldsymbol{\omega}]^{\times}[\boldsymbol{\omega}]^{\times}\mathbf{c} \\ [\boldsymbol{\omega}]^{\times}(\mathbf{I}_{\mathrm{cm}} - m[\mathbf{c}]^{\times}[\mathbf{c}]^{\times}) \boldsymbol{\omega} \end{pmatrix}.$$

$$\begin{split} m &= \text{mass of the body, } 1 = \text{the } 4 \times 4 \text{ homogeneous identity matrix,} \\ \mathbf{a}_p &= \text{acceleration of link frame with origin at } \mathbf{p} \text{ in the preceding link's frame,} \\ \mathbf{I}_{\rm cm} &= \text{moment of inertia about the center of mass,} \\ \boldsymbol{\omega} &= \text{angular velocity of the body,} \\ \boldsymbol{\alpha} &= \text{angular acceleration of the body,} \end{split}$$

 ${\bf c}$ is the location of the body's center of mass,

and $[\mathbf{c}]^{\times}$, $[\boldsymbol{\omega}]^{\times}$ denote skew-symmetric cross product matrices.

Rigid body dynamics				
		0000		
Adaptive lattice Boltzmann method	Aerodynamics cases	Fluid-structure coupling	Wind turbine wake aerodynamics	References

Motion solver

Based on the Newton-Euler method solution of dynamics equation of kinetic chains [Tsai, 1999]

$$\begin{pmatrix} \mathbf{F} \\ \boldsymbol{\tau}_{\mathrm{P}} \end{pmatrix} = \begin{pmatrix} m\mathbf{1} & -m[\mathbf{c}]^{\times} \\ m[\mathbf{c}]^{\times}\mathbf{I}_{\mathrm{cm}} & -m[\mathbf{c}]^{\times}[\mathbf{c}]^{\times} \end{pmatrix} \begin{pmatrix} \mathbf{a}_{\mathrm{P}} \\ \boldsymbol{\alpha} \end{pmatrix} + \begin{pmatrix} m[\boldsymbol{\omega}]^{\times}[\boldsymbol{\omega}]^{\times}\mathbf{c} \\ [\boldsymbol{\omega}]^{\times}(\mathbf{I}_{\mathrm{cm}} - m[\mathbf{c}]^{\times}[\mathbf{c}]^{\times}) \boldsymbol{\omega} \end{pmatrix}.$$

m = mass of the body, 1 = the 4×4 homogeneous identity matrix, $\mathbf{a}_p =$ acceleration of link frame with origin at \mathbf{p} in the preceding link's frame, $\mathbf{l}_{cm} =$ moment of inertia about the center of mass, $\boldsymbol{\omega} =$ angular velocity of the body, $\boldsymbol{\alpha} =$ angular acceleration of the body, \mathbf{c} is the location of the body's center of mass,

and $[\mathbf{c}]^{ imes}$, $[oldsymbol{\omega}]^{ imes}$ denote skew-symmetric cross product matrices.

Here, we additionally define the total force and torque acting on a body,

 $\mathbf{F} = (\mathbf{F}_{\textit{FSI}} + \mathbf{F}_{\textit{prescribed}}) \cdot \boldsymbol{\mathcal{C}}_{\textit{xyz}}$ and

 $\tau = (\tau_{FSI} + \tau_{prescribed}) \cdot \mathcal{C}_{\alpha\beta\gamma}$ respectively.

Where C_{xyz} and $C_{\alpha\beta\gamma}$ are the translational and rotational constraints, respectively.

Two-segment hinged wing

Configuration by [Toomey and Eldredge, 2008]. Manufactured bodies in tank filled with water. Prescribed translation and rotation

$$X_t(t) = rac{A_0}{2} rac{G_t(ft)}{max \ Gt} C(ft), \quad lpha_1(t) = -eta rac{G_r(ft)}{max \ Gr}$$

with $G_r(t) = tanh[\sigma_r cos(2\pi t + \Phi)],$

$$G_t(t) = \int_t tanh[\sigma_t cos(2\pi t')]dt'$$

$A_0(cm)$	7.1
c (cm)	5.1
d (cm)	0.25
$\rho_b (\mathrm{kg/m^3})$	5080
f (Hz)	0.15

Two-segment hinged wing

Configuration by [Toomey and Eldredge, 2008]. Manufactured bodies in tank filled with water. Prescribed translation and rotation

$$X_t(t) = \frac{A_0}{2} \frac{G_t(ft)}{\max Gt} C(ft), \quad \alpha_1(t) = -\beta \frac{G_r(ft)}{\max Gr}$$

with $G_r(t) = tanh[\sigma_r cos(2\pi t + \Phi)],$

$$G_t(t) = \int_t tanh[\sigma_t cos(2\pi t')]dt'$$

- 7 cases constructed by varying σ_r , σ_t , Φ
- ► Rotational Reynolds number $\operatorname{Re}_{r} = 2\pi\beta\sigma_{r}fc^{2}/(\tanh(\sigma_{r})\nu)$ varied between 2200 and 7200 in experiments
- [Toomey and Eldredge, 2008] reference simulations with a viscous particle method are for $Re_r = \{100, 500\}$

$A_0(cm)$	7.1
c (cm)	5.1
d (cm)	0.25
$\rho_b (\mathrm{kg/m^3})$	5080
f (Hz)	0.15

Case 1 - $\sigma_r = \sigma_t = 0.628$, $\Phi = 0$, $\operatorname{Re}_r = 100$

- Quiescent water $\rho_f = 997 \text{ kg/m}^3$ $c_s = 1497 \text{ m/s}$
- No-slip boundaries in y, periodic in x-direction
- ▶ Base level: 100 × 100 for [-0.5, 0.5] × [-0.5, 0.5] domain
- 4 additional levels with factors 2,2,2,4
- Coupling to rigid body motion solver on 4th level

Right: computed vorticity field (enlarged)

Adaptive lattice Boltzmann method	Aerodynamics cases	Fluid-structure coupling	Wind turbine wake aerodynamics	References
		0000		
Validation simulations				

Quantitative comparison

- Evaluate normalized force $F_{x,y} = 2F_{x,y}^* / (\rho_f^2 c^3)$ and moment $M = 2M^* / (\rho_f f^2 c^4)$ over 3 periods
- [Wood and Deiterding, 2015] Used finest spatial resolution $\Delta x/c = 0.0122$ [Toomey and Eldredge, 2008]: $\Delta x/c = 0.013$ (Re_r = 100), $\Delta x/c = 0.0032$ (Re_r = 500)
- Temporal resolution ~ 113 and ~ 28 times finer

Relative difference in mean force and moment							
	$Re_r = 100$				$Re_r = 500$		
Case	\bar{F}_{x}	\bar{F}_{y}	Ā	\bar{F}_{x}	\bar{F}_{y}	Ā	
1	-2.59	3.33	-3.85	3.33	5.45	-3.75	
2	2.47	0.74	2.55	2.35	3.83	-4.29	
3	1.27	0.45	0.72	2.31	4.65	-3.43	
4	4.86	4.28	3.54	3.51	2.37	-2.32	
5	4.83	0.47	0.25	4.34	4.39	-2.67	
6	2.10	3.19	1.52	3.00	1.82	-3.96	
7	1.41	0.99	3.28	4.31	2.32	-3.07	

	Relativ	e differenc	e in peak	force and 1	noment	
	$Re_r = 100$			$Re_r = 500$		
Case	$ F_x _{\infty}$	$ F_y _{\infty}$	$ M _{\infty}$	$ F_x _{\infty}$	$ F_y _{\infty}$	$ M _{\infty}$
1	4.40	5.07	-3.66	4.40	3.98	-4.17
2	4.46	2.42	2.62	2.72	4.33	-2.34
3	4.20	3.20	4.80	3.32	2.68	-4.59
4	4.67	2.22	3.71	0.18	2.51	-2.85
5	3.57	3.37	1.26	4.09	4.97	-3.63
6	2.04	3.08	1.52	3.92	2.08	-4.44
7	2.20	1.91	2.26	3.29	3.79	-4.40

Adaptive lattice Boltzmann method	Aerodynamics cases	Fluid-structure coupling	Wind turbine wake aerodynamics	References
		0000		
Validation simulations				

Quantitative comparison

- Evaluate normalized force $F_{x,y} = 2F_{x,y}^*/(\rho_f^2 c^3)$ and moment $M = 2M^*/(\rho_f f^2 c^4)$ over 3 periods
- [Wood and Deiterding, 2015] Used finest spatial resolution $\Delta x/c = 0.0122$ [Toomey and Eldredge, 2008]: $\Delta x/c = 0.013$ (Re_r = 100), $\Delta x/c = 0.0032$ (Re_r = 500)
- \blacktriangleright Temporal resolution \sim 113 and \sim 28 times finer

 Adaptive lattice Boltzmann method
 Aerodynamics cases
 Fluid-structure coupling
 Wind turbine wake aerodynamics
 References

 00000000
 0000
 0000
 0000
 00
 00
 00

 Mexico benchmark
 00000
 0000
 00
 00000
 00

Mexico experimental turbine -0° inflow

- Setup and measurements by Energy Research Centre of the Netherlands (ECN) and the Technical University of Denmark (DTU) [Schepers and Boorsma, 2012]
- ▶ Inflow velocity $14.93 \,\mathrm{m/s}$ in wind tunnel of $9.5 \,\mathrm{m} \times 9.5 \,\mathrm{m}$ cross section.
- ▶ Rotor diameter D = 4.5w m. Prescribed motion with 424.5 rpm: tip speed 100 m/s, Re_r ≈ 75839 TSR 6.70
- Simulation with three additional levels with $r_l = \{2, 2, 4\}$. Resolution of rotor and tower $\Delta x = 1.6$ cm
- 149.5 h on 120 cores Intel-Xeon (17490 h CPU) for 10 s

 Adaptive lattice Boltzmann method
 Aerodynamics cases
 Fluid-structure coupling
 Wind turbine wake aerodynamics
 References

 00000000
 0000
 0000
 0000
 00
 00

 Mexico benchmark
 00000
 0000
 00
 00

Mexico experimental turbine -0° inflow

- Setup and measurements by Energy Research Centre of the Netherlands (ECN) and the Technical University of Denmark (DTU) [Schepers and Boorsma, 2012]
- ▶ Inflow velocity $14.93 \,\mathrm{m/s}$ in wind tunnel of $9.5 \,\mathrm{m} \times 9.5 \,\mathrm{m}$ cross section.
- ▶ Rotor diameter D = 4.5w m. Prescribed motion with 424.5 rpm: tip speed 100 m/s, Re_r ≈ 75839 TSR 6.70
- Simulation with three additional levels with $r_l = \{2, 2, 4\}$. Resolution of rotor and tower $\Delta x = 1.6$ cm
- $\blacktriangleright\,$ 149.5 h on 120 cores Intel-Xeon (17490 h CPU) for 10 s
- Blade loads: F_x : Ref = 1516.76 N, cur. = 1632.71 N (7.6%)
- T_x: Ref = 284.60 Nm, cur. = 307.87 Nm (8.1%)

Adaptive lattice Boltzmann method	Aerodynamics cases	Fluid-structure coupling	Wind turbine wake aerodynamics	References
			000000000000000000000000000000000000000	
Mexico benchmark				

Comparison along transects -0° inflow

Adaptive lattice Boltzmann method	Aerodynamics cases	Fluid-structure coupling	Wind turbine wake aerodynamics	References
			000000000000000000000000000000000000000	
Mexico benchmark				

Comparison along transects -0° inflow

Mexico experimental turbine – 30° yaw

- ▶ Load collected as average during $t \in [5, 10]$ on blade 1 as it passes through $\theta = 0^{\circ}$ (pointing vertically upwards), 35 rotations
- Blade loads: F_x : Ref = 13.66 N, cur. = 14.8 N (8.3%)
- T_x: Ref = 7.72 Nm, cur. = 8.36 Nm (8.3%)

Level 0: 768,000 cells Level 1: 1,524,826 cells Level 2: 6,832,602 cells Level 3: 3,019,205 cells

Adaptive lattice Boltzmann method	Aerodynamics cases	Fluid-structure coupling	Wind turbine wake aerodynamics	References
			000000000000000000000000000000000000000	
Mexico benchmark				

Comparison along transects – 30° yaw

Adaptive lattice Boltzmann method	Aerodynamics cases	Fluid-structure coupling	Wind turbine wake aerodynamics	References
			000000000000000000000000000000000000000	
Mexico benchmark				

Comparison along transects – 30° yaw

Adaptive lattice Boltzmann method	Aerodynamics cases	Fluid-structure coupling	Wind turbine wake aerodynamics	References
			000000000000000000000000000000000000000	
Mexico benchmark				

Normalized %-error along transects

	yaw	0	0	30)°
	transect	in	out	in	out
	u _x	6.416	7.663	5.742	6.410
Axial	\mathbf{u}_{y}	3.400	4.061	3.043	3.373
	u _z	3.073	3.678	2.752	3.068
		up	down	up	down
	u _x	6.556	7.325	7.093	6.655
Radial	\mathbf{u}_{y}	3.409	3.809	3.684	3.466
	u _z	3.242	3.659	3.511	3.294

Adaptive lattice Boltzmann method	Aerodynamics cases	Fluid-structure coupling	Wind turbine wake aerodynamics	References
			000000000000000000000000000000000000000	
Mexico benchmark				

Normalized %-error along transects

	yaw	0	0	30)°
	transect	in	out	in	out
	u _x	6.416	7.663	5.742	6.410
Axial	\mathbf{u}_{y}	3.400	4.061	3.043	3.373
	u _z	3.073	3.678	2.752	3.068
		up	down	up	down
	u _x	6.556	7.325	7.093	6.655
Radial	\mathbf{u}_{y}	3.409	3.809	3.684	3.466
	u _z	3.242	3.659	3.511	3.294

Comparison of normal and tangential forces on sections of blade 1 when $\theta_x = 0^\circ$ (pointing vertically upward) in aligned (left) and yaw 30°

 Adaptive lattice Boltzmann method
 Aerodynamics cases
 Fluid-structure coupling
 Wind tu

 000000000
 00000
 00000
 00000
 00000

Simulation of wind turbine wakes

- $\blacktriangleright\,$ Geometry from realistic Vestas V27 turbine. Rotor diameter 27 $\rm m,\,tower$ height $\sim35\,\rm m.\,$ Ground considered.
- Prescribed motion of rotor with 15 rpm. Inflow velocity 7 m/s.
- Simulation domain $200 \text{ m} \times 100 \text{ m} \times 100 \text{ m}$.
- Base mesh 400 \times 200 \times 200 cells with refinement factors 2,2,4. Resolution of rotor and tower $\Delta x=3.125\,{\rm cm}.$
- 141,344 highest level iterations to $t_e = 30 \text{ s}$ computed.

Aerodynamics ca 00000 Fluid-structure coupling

Wind turbine wake aerodynamics

References 00

- $\blacktriangleright\,$ Geometry from realistic Vestas V27 turbine. Rotor diameter 27 $\rm m,\,tower$ height $\sim35\,\rm m.\,$ Ground considered.
- Prescribed motion of rotor with 15 rpm. Inflow velocity 7 m/s.
- Simulation domain 200 m \times 100 m \times 100 m.
- Base mesh 400 \times 200 \times 200 cells with refinement factors 2,2,4. Resolution of rotor and tower $\Delta x=3.125\,{\rm cm}.$
- 141,344 highest level iterations to $t_e = 30 \text{ s}$ computed.

Aerodynamics ca 00000 Fluid-structure coupling

Wind turbine wake aerodynamics

References 00

- $\blacktriangleright\,$ Geometry from realistic Vestas V27 turbine. Rotor diameter 27 $\rm m,\,tower$ height $\sim35\,\rm m.\,$ Ground considered.
- Prescribed motion of rotor with 15 rpm. Inflow velocity 7 m/s.
- Simulation domain 200 m \times 100 m \times 100 m.
- Base mesh 400 \times 200 \times 200 cells with refinement factors 2,2,4. Resolution of rotor and tower $\Delta x=3.125\,{\rm cm}.$
- 141,344 highest level iterations to $t_e = 30 \text{ s}$ computed.

Aerodynamics ca 00000 Fluid-structure coupling

Wind turbine wake aerodynamics

References 00

- $\blacktriangleright\,$ Geometry from realistic Vestas V27 turbine. Rotor diameter 27 $\rm m,\,tower$ height $\sim35\,\rm m.\,$ Ground considered.
- Prescribed motion of rotor with 15 rpm. Inflow velocity 7 m/s.
- Simulation domain 200 m \times 100 m \times 100 m.
- Base mesh 400 \times 200 \times 200 cells with refinement factors 2,2,4. Resolution of rotor and tower $\Delta x=3.125\,{\rm cm}.$
- 141,344 highest level iterations to $t_e = 30 \text{ s}$ computed.

Aerodynamics ca 00000 Fluid-structure coupling

Wind turbine wake aerodynamics

References 00

- $\blacktriangleright\,$ Geometry from realistic Vestas V27 turbine. Rotor diameter 27 $\rm m,\,tower$ height $\sim35\,\rm m.\,$ Ground considered.
- Prescribed motion of rotor with 15 rpm. Inflow velocity 7 m/s.
- Simulation domain 200 m \times 100 m \times 100 m.
- Base mesh 400 \times 200 \times 200 cells with refinement factors 2,2,4. Resolution of rotor and tower $\Delta x=3.125\,{\rm cm}.$
- 141,344 highest level iterations to $t_e = 30 \text{ s}$ computed.

Aerodynamics ca 00000 Fluid-structure coupling

Wind turbine wake aerodynamics

References 00

- $\blacktriangleright\,$ Geometry from realistic Vestas V27 turbine. Rotor diameter 27 $\rm m,\,tower$ height $\sim35\,\rm m.\,$ Ground considered.
- Prescribed motion of rotor with 15 rpm. Inflow velocity 7 m/s.
- Simulation domain 200 m \times 100 m \times 100 m.
- Base mesh 400 \times 200 \times 200 cells with refinement factors 2,2,4. Resolution of rotor and tower $\Delta x=3.125\,{\rm cm}.$
- 141,344 highest level iterations to $t_e = 30 \text{ s}$ computed.

Adaptive lattice Boltzmann method Aerodynamics c 000000000 00000 Simulation of wind turbine wakes Fluid-structure coupling

Wind turbine wake aerodynamics

References 00

- $\blacktriangleright\,$ Geometry from realistic Vestas V27 turbine. Rotor diameter 27 $\rm m,\,tower$ height $\sim35\,\rm m.\,$ Ground considered.
- Prescribed motion of rotor with 15 rpm. Inflow velocity 7 m/s.
- Simulation domain $200 \text{ m} \times 100 \text{ m} \times 100 \text{ m}$.
- Base mesh 400 \times 200 \times 200 cells with refinement factors 2,2,4. Resolution of rotor and tower $\Delta x=3.125\,{\rm cm}.$
- 141,344 highest level iterations to $t_e = 30 \text{ s}$ computed.

Adaptive lattice Boltzmann method Aerodynamics 000000000 00000 Simulation of wind turbine wakes

- $\blacktriangleright\,$ Geometry from realistic Vestas V27 turbine. Rotor diameter 27 $\rm m,\,tower$ height $\sim35\,\rm m.\,$ Ground considered.
- Prescribed motion of rotor with 15 rpm. Inflow velocity 7 m/s.
- Simulation domain $200 \text{ m} \times 100 \text{ m} \times 100 \text{ m}$.
- Base mesh 400 \times 200 \times 200 cells with refinement factors 2,2,4. Resolution of rotor and tower $\Delta x=3.125\,{\rm cm}.$
- 141,344 highest level iterations to $t_e = 30 \text{ s}$ computed.

Adaptive lattice Boltzmann method	Aerodynamics cases	Fluid-structure coupling	Wind turbine wake aerodynamics	References
			000000000000000000000000000000000000000	
Simulation of wind turbine wakes				

Adaptive refinement

Time=6.65651 sec

Dynamic evolution of refinement blocks (indicated by color). code/doc/html/capps/motion-amroc_2WindTurbine_Terrain_2src_2FluidProblem_8h_source.html, code/doc/html/capps/motion-amroc_2WindTurbine_Terrain_2src_2SolidProblem_8h_source.html, code/doc/html/capps/Terrain_2src_2Terrain_8h_source.html Adaptive lattice Boltzmann method Wake interaction prediction

Simulation of the SWIFT array

- \blacktriangleright Three Vestas V27 turbines. 225 kW power generation at wind speeds 14 to $25 \,\mathrm{m/s}$ (then cut-off)
- ► Prescribed motion of rotor with 33 and 43 rpm. Inflow velocity 8 and 25 m/s
- TSR: 5.84 and 2.43, $Re_r \approx 919,700$ and 1,208,000 ►
- ► Simulation domain $448 \text{ m} \times 240 \text{ m} \times 100 \text{ m}$
- Base mesh $448 \times 240 \times 100$ cells with ► refinement factors 2,2,4. Resolution of rotor and tower $\Delta x = 6.25 \,\mathrm{cm}$
- > 94,224 highest level iterations to $t_e = 40 \, \mathrm{s}$ computed, then statistics are gathered for 10s [Deiterding and Wood, 2015]

- On 288 cores Intel Xeon-Ivybride 10 s in 38.5 h (11,090 h CPU)
- Only levels 0 and 1 used for iso-surface visualization
- At *t_e* approximately 140M cells used vs. 44 billion (factor 315)
- Only levels 0 and 1 used for iso-surface visualization

Level	Grids	Cells
0	3,234	10,752,000
1	11,921	21,020,256
2	66,974	102,918,568
3	896	5,116,992

Adaptive lattice Boltzmann method	Aerodynamics cases	Fluid-structure coupling	Wind turbine wake aerodynamics	Reference
			000000000000000000000000000000000000000	
Wake interaction prediction				

Vorticity generation - u = 25 m/s, 43 rpm

• Refinement of wake up to level 2 ($\Delta x = 25 \text{ cm}$).

Adaptive lattice Boltzmann method	Aerodynamics cases	Fluid-structure coupling	Wind turbine wake aerodynamics	Reference
			000000000000000000000000000000000000000	
Wake interaction prediction				

Vorticity generation - u = 8 m/s, 33 rpm

- Refinement of wake up to level 2 ($\Delta x = 25 \text{ cm}$).
- Vortex break-up before 2nd turbine is reached.

Adaptive lattice Boltzmann method	Aerodynamics cases	Fluid-structure coupling	Wind turbine wake aerodynamics	References
			000000000000000	
Wake interaction prediction				

Vorticity development - $u=8\,\mathrm{m/s}$, 33 rpm

 Adaptive lattice Boltzmann method
 Aerodynamics cases

 000000000
 00000

 Wake interaction prediction
 00000

Fluid-structure coupling

Wind turbine wake aerodynamics

References 00

Adaptive lattice Boltzmann method 000000000 Wake interaction prediction

Fluid-structure coupling

Wind turbine wake aerodynamics

References 00

Adaptive lattice Boltzmann method Aerodynamics cases
000000000
Wake interaction prediction

Fluid-structure coupling

Wind turbine wake aerodynamics

References 00

Adaptive lattice Boltzmann method Aerodynamics cases
000000000
Wake interaction prediction

Fluid-structure coupling

Wind turbine wake aerodynamics

References 00

Refinement $u = 8 \,\mathrm{m/s}$, $33 \,\mathrm{rpm}$

Adaptive lattice Boltzmann method Aeroc 000000000 000 Wake interaction prediction

Aerodynamics o

Fluid-structure coupling

Wind turbine wake aerodynamics

References 00

 Adaptive lattice Boltzmann method
 Aerodynamics cases
 Fluid-structure coupling
 Wind t

 000000000
 00000
 00000
 00000

Wind turbine wake aerodynamics

References 00

Wake interaction prediction

Adaptive lattice Boltzmann method Wake interaction prediction

Wind turbine wake aerodynamics

Refinement u = 8 m/s, 33 rpm

Adaptive lattice Boltzmann method	Aerodynamics cases	Fluid-structure coupling	Wind turbine wake aerodynamics	References
			000000000000000	
Wake interaction prediction				

[-] ⁰n/^mr

Mean point values

- Turbines located at (0,0,0), (135, 0, 0), (-5.65, 80.80, 0)
- Lines of 13 sensors with $\Delta y = 5 \,\mathrm{m}, z = 37 \,\mathrm{m}$ (approx. center of rotor)
- u and p measured over [40 s, 50 s] (1472 level-0 time steps) and averaged

Velocity deficits larger for higher TSR.

Adaptive lattice Boltzmann method	Aerodynamics cases	Fluid-structure coupling	Wind turbine wake aerodynamics	References
			0000000000000000	
Wake interaction prediction				

Mean point values

- Turbines located at (0,0,0), (135,0,0), (-5.65,80.80,0)
- Lines of 13 sensors with $\Delta y = 5 \text{ m}, z = 37 \text{ m}$ (approx. center of rotor)
- u and p measured over [40 s, 50 s] (1472 level-0 time steps) and averaged

- Velocity deficits larger for higher TSR.
- Velocity deficit before 2nd turbine more homogenous.

Adaptive lattice Boltzmann method	Aerodynamics cases	Fluid-structure coupling	Wind turbine wake aerodynamics	References
			000000000000000	
Wake interaction prediction				

Mean point values

- Turbines located at (0,0,0), (135,0,0), (-5.65,80.80,0)
- Lines of 13 sensors with $\Delta y = 5 \text{ m}, z = 37 \text{ m}$ (approx. center of rotor)
- u and p measured over [40 s, 50 s] (1472 level-0 time steps) and averaged

- Velocity deficits larger for higher TSR.
- Velocity deficit before 2nd turbine more homogenous.

Adaptive lattice Boltzmann method	Aerodynamics cases 00000	Fluid-structure coupling 0000	Wind turbine wake aerodynamics	References ●●
References				
References I				

- [Chen et al., 2006] Chen, H., Filippova, O., Hoch, J., Molvig, K., Shock, R., Teixeira, C., and Zhang, R. (2006). Grid refinement in lattice Boltzmann methods based on volumetric formulation. *Physica A*, 362:158–167.
- [Deiterding and Wood, 2015] Deiterding, R. and Wood, S. L. (2015). An adaptive lattice boltzmann method for predicting wake fields behind wind turbines. In Breitsamer, C. e. a., editor, *Proc. 19th DGLR-Fachsymposium der STAB, Munich, 2014*, Notes on Numerical Fluid Mechanics and Multidisciplinary Design. Springer. in press.

[Hähnel, 2004] Hähnel, D. (2004). Molekulare Gasdynamik. Springer.

- [Henderson, 1995] Henderson, R. D. (1995). Details of the drag curve near the onset of vortex shedding. *Phys. Fluids*, 7:2102–2104.
- [Hou et al., 1996] Hou, S., Sterling, J., Chen, S., and Doolen, G. D. (1996). A lattice Boltzmann subgrid model for high Reynolds number flows. In Lawniczak, A. T. and Kapral, R., editors, *Pattern formation and lattice gas automata*, volume 6, pages 151–166. Fields Inst Comm.

Adaptive lattice Boltzmann method	Aerodynamics cases	Fluid-structure coupling	Wind turbine wake aerodynamics	References ••
References				
References II				

- [Schepers and Boorsma, 2012] Schepers, J. G. and Boorsma, K. (2012). Final report of iea task 29: Mexnext (phase 1) – Analysis of Mexico wind tunnel measurements. Technical Report ECN-E-12-004, European research Centre of the Netherlands.
- [Schlaffer, 2013] Schlaffer, M. B. (2013). Non-reflecting boundary conditions for the lattice Boltzmann method. PhD thesis, Technical University Munich.
- [Toomey and Eldredge, 2008] Toomey, J. and Eldredge, J. D. (2008). Numerical and experimental study of the fluid dynamics of a flapping wing with low order flexibility. *Physics of Fluids*, 20(7):073603.
- [Tsai, 1999] Tsai, L. (1999). Robot Analysis: The Mechanics of Serial and Parallel Manipulators. Wiley.
- [Wood and Deiterding, 2015] Wood, S. L. and Deiterding, R. (2015). A lattice boltzmann method for horizontal axis wind turbine simulation. In *14th Int. Conf. on Wind Engineering*.
- [Yu, 2004] Yu, H. (2004). Lattice Boltzmann equation simulations of turbulence, mixing, and combustion. PhD thesis, Texas A&M University.