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Linear iterative methods for Poisson-type problems

Poisson equation

∆q(x) = ψ(x) , x ∈ Ω ⊂ Rd , q ∈ C2(Ω), ψ ∈ C0(Ω)
q = ψΓ(x) , x ∈ ∂Ω

Discrete Poisson equation in 2D:

Qj+1,k − 2Qjk + Qj−1,k
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2ψjk

]
with σ =
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Linear iterative methods for Poisson-type problems

Iterative methods

Jacobi iteration

Qm+1
jk =

1

σ

[
(Qm

j+1,k + Qm
j−1,k)∆x2

2 + (Qm
j,k+1 + Qm

j,k−1)∆x2
1 −∆x2

1 ∆x2
2ψjk

]

Lexicographical Gauss-Seidel iteration (use updated values when they become
available)

Qm+1
jk =

1

σ

[
(Qm

j+1,k + Qm+1
j−1,k)∆x2

2 + (Qm
j,k+1 + Qm+1

j,k−1)∆x2
1 −∆x2

1 ∆x2
2ψjk

]
Efficient parallelization / patch-wise application not possible!

Checker-board or Red-Black Gauss Seidel iteration

1. Qm+1
jk =

1

σ

[
(Qm

j+1,k + Qm
j−1,k)∆x2

2 + (Qm
j,k+1 + Qm

j,k−1)∆x2
1 −∆x2

1 ∆x2
2ψjk

]
for j + k mod 2 = 0

2. Qm+1
jk =

1

σ

[
(Qm+1

j+1,k + Qm+1
j−1,k)∆x2

2 + (Qm+1
j,k+1 + Qm+1

j,k−1)∆x2
1 −∆x2

1 ∆x2
2ψjk

]
for j + k mod 2 = 1

Gauss-Seidel methods require ∼ 1/2 of iterations than Jacobi method, however,
iteration count still proportional to number of unknowns [Hackbusch, 1994]
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Linear iterative methods for Poisson-type problems

Smoothing vs. solving

ν iterations with iterative linear solver

Qm+ν = S(Qm, ψ, ν)

Defect after m iterations
dm = ψ −A(Qm)

Defect after m + ν iterations

dm+ν = ψ −A(Qm+ν) = ψ −A(Qm + vm
ν ) = dm −A(vm

ν )

with correction
vm
ν = S(~0, dm, ν)

Neglecting the sub-iterations in the smoother we write

Qn+1 = Qn + v = Qn + S(dn)

Observation: Oscillations are damped faster on coarser grid.

Coarse grid correction:

Qn+1 = Qn + v = Qn + PSR(dn)

where R is suitable restriction operator and P a suitable prolongation operator

Structured AMR for elliptic problems 6
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Multi-level algorithms

Two-grid correction method

Relaxation on current grid:

Q̄ = S(Qn, ψ, ν)

Qn+1 = Q̄ + PS(~0, ·, µ)R(ψ −A(Q̄))

Algorithm:

Q̄ := S(Qn, ψ, ν)
d := ψ −A(Q̄)

dc := R(d)
vc := S(0, dc , µ)
v := P(vc)
Qn+1 := Q̄ + v

with smoothing:

d := ψ −A(Q)
v := S(0, d , ν)
r := d −A(v)
dc := R(r)
vc := S(0, dc , µ)
v := v + P(vc)
Qn+1 := Q + v

with pre- and post-iteration:

d := ψ −A(Q)
v := S(0, d , ν1)
r := d −A(v)
dc := R(r)
vc := S(0, dc , µ)
v := v + P(vc)
d := d −A(v)
r := S(0, d , ν2)
Qn+1 := Q + v + r

[Hackbusch, 1985]

Structured AMR for elliptic problems 7
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Multi-level algorithms

Multi-level methods and cycles

V-cycle
γ = 1
2-grid

S

S

S

3-grid

S

S

S

S

S

4-grid

S

S

S

S

S

S

S

W-cycle
γ = 2

S

S

S

S

S

S

S
S

S

S

S

S

S

S

S

S

S

S

S

S

S

S

[Hackbusch, 1985] [Wesseling, 1992] . . .
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Stencil modification at coarse-fine boundaries in 1D

1D Example: Cell j , ψ −∇ · ∇q = 0
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1

∆xl

(
1

∆xl
(Q l

j+1 − Q l
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∆xl
(Q l

j − Q l
j−1)

)

= ψj−
1

∆xl

(
H l

j+ 1
2
− H l

j− 1
2

)
H is approximation to derivative of Q l .
Consider 2-level situation with rl+1 = 2:

Q l
j−1 Q l

j Q l
j+1

Q l+1
wQ l+1

w−1 Q l+1
w+1

Solution needs to be continuously dif-
ferentiable across interface.
Easiest approach: H l+1

w+ 1
2

≡ H l
j− 1

2

No specific modification necessary for 1D vertex-based stencils, cf.

[Bastian, 1996]
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Stencil modification at coarse-fine boundaries in 1D II

Set H l+1

w+ 1
2

= HI .

Inserting Q gives

Q l+1
w+1 − Q l+1

w

∆xl+1
=

Q l
j − Q l+1

w

3
2
∆xl+1

from which we readily derive

Q l+1
w+1 =

2

3
Q l

j +
1

3
Q l+1

w

for the boundary cell on l + 1. We use the flux correction procedure to enforce
H l+1

w+ 1
2

≡ H l
j− 1

2
and thereby H l

j− 1
2
≡ HI .

Correction pass [Martin, 1998]

1. δH l+1

j− 1
2

:= −H l
j− 1

2

2. δH l+1

j− 1
2

:= δH l+1

j− 1
2

+ H l+1

w+ 1
2

= −H l
j− 1

2
+ (Q l

j − Q l+1
w )/

3

2
∆xl+1

3. ď l
j := d l

j +
1

∆xl
δH l+1

j− 1
2

yields

ď l
j = ψj −

1

∆xl

(
1

∆xl
(Q l

j+1 − Q l
j )−

2

3∆xl+1
(Q l

j − Q l+1
w )

)
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Stencil modification at coarse-fine boundaries: 2D

Q l+1
vw

Q l
jk

Q l+1
v,w−1 =

1

3
Q l+1

vw

+

2

3

(
3

4
Q l

jk +
1

4
Q l

j+1,k

)
In general:

Q l+1
v,w−1 =

(
1− 2

rl+1 + 1

)
Q l+1

vw +

2

rl+1 + 1

(
(1− f )Q l

jk + fQ l
j+1,k

)
with

f =
xv

1,l+1 − x j
1,l

∆x1,l
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Multigrid algorithms on SAMR data structures

Components of an SAMR multigrid method
I Stencil operators

I Application of defect d l = ψl −A(Q l) on each grid Gl,m of level l
I Computation of correction v l = S(0, d l , ν) on each grid of level l

I Boundary (ghost cell) operators

I Synchronization of Q l and v l on S̃1
l

I Specification of Dirichlet boundary
conditions for a finite volume
discretization for Q l ≡ w and v l ≡ w
on P̃1

l

I Specification of v l ≡ 0 on Ĩ 1
l

I Specification of Ql = (rl−1)Q l+1+2Q l

rl+1

on Ĩ 1
l

vj −vj

Qj 2w − Qj

ut

ut

ut

w

Qj

2w − Qj

I Coarse-fine boundary flux accumulation and application of δH l+1 on defect d l

I Standard prolongation and restriction on grids between adjacent levels

I Adaptation criteria

I E.g., standard restriction to project solution on 2x coarsended grid,
then use local error estimation

I Looping instead of time steps and check of convergence
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on Ĩ 1
l

vj −vj

Qj 2w − Qj

ut

ut

ut

w

Qj

2w − Qj

I Coarse-fine boundary flux accumulation and application of δH l+1 on defect d l

I Standard prolongation and restriction on grids between adjacent levels

I Adaptation criteria

I E.g., standard restriction to project solution on 2x coarsended grid,
then use local error estimation

I Looping instead of time steps and check of convergence

Structured AMR for elliptic problems 12



Adaptive geometric multigrid methods References

Multigrid algorithms on SAMR data structures

Components of an SAMR multigrid method
I Stencil operators

I Application of defect d l = ψl −A(Q l) on each grid Gl,m of level l
I Computation of correction v l = S(0, d l , ν) on each grid of level l

I Boundary (ghost cell) operators

I Synchronization of Q l and v l on S̃1
l

I Specification of Dirichlet boundary
conditions for a finite volume
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I Standard prolongation and restriction on grids between adjacent levels

I Adaptation criteria

I E.g., standard restriction to project solution on 2x coarsended grid,
then use local error estimation

I Looping instead of time steps and check of convergence
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on Ĩ 1
l

vj −vj

Qj 2w − Qj

ut

ut

ut

w

Qj

2w − Qj

I Coarse-fine boundary flux accumulation and application of δH l+1 on defect d l

I Standard prolongation and restriction on grids between adjacent levels

I Adaptation criteria

I E.g., standard restriction to project solution on 2x coarsended grid,
then use local error estimation

I Looping instead of time steps and check of convergence

Structured AMR for elliptic problems 12



Adaptive geometric multigrid methods References

Multigrid algorithms on SAMR data structures

Components of an SAMR multigrid method
I Stencil operators

I Application of defect d l = ψl −A(Q l) on each grid Gl,m of level l
I Computation of correction v l = S(0, d l , ν) on each grid of level l

I Boundary (ghost cell) operators

I Synchronization of Q l and v l on S̃1
l

I Specification of Dirichlet boundary
conditions for a finite volume
discretization for Q l ≡ w and v l ≡ w
on P̃1

l

I Specification of v l ≡ 0 on Ĩ 1
l

I Specification of Ql = (rl−1)Q l+1+2Q l

rl+1

on Ĩ 1
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Multigrid algorithms on SAMR data structures

Additive geometric multigrid algorithm
AdvanceLevelMG(l) - Correction Scheme

Set ghost cells of Q l

Calculate defect d l from Q l,ψl d l := ψl −A(Q l)
If (l < lmax)

Calculate updated defect r l+1 from v l+1,d l+1 r l+1 := d l+1 −A(v l+1)
Restrict d l+1 onto d l d l := Rl+1

l (r l+1)
Do ν1 smoothing steps to get correction v l v l := S(0, d l , ν1)
If (l > lmin)

Do γ > 1 times

AdvanceLevelMG(l − 1)
Set ghost cells of v l−1

Prolongate and add v l−1 to v l v l := v l + P l−1
l (v l−1)

If (ν2 > 0)
Set ghost cells of v l

Update defect d l according to v l d l := d l −A(v l)
Do ν2 post-smoothing steps to get r l r l := S(v l , d l , ν2)
Add addional correction r l to v l v l := v l + r l

Add correction v l to Q l Q l := Q l + v l
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Multigrid algorithms on SAMR data structures

Additive Geometric Multiplicative Multigrid Algorithm

Start - Start iteration on level lmax

For l = lmax Downto lmin + 1 Do

Restrict Q l onto Q l−1 Q l−1 := Rl−1
l (Q l)

Regrid(0)

AdvanceLevelMG(lmax)

See also: [Trottenberg et al., 2001], [Canu and Ritzdorf, 1994]
Vertex-based: [Brandt, 1977], [Briggs et al., 2001]
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Example

Example

On Ω = [0, 10]× [0, 10] use hat
function

ψ =

{
−An cos

(
πr

2Rn

)
, r < Rn

0 elsewhere

with r =
√

(x1 − Xn)2 + (x2 − Yn)2

to define three sources with

n An Rn Xn Yn

1 0.3 0.3 6.5 8.0
2 0.2 0.3 2.0 7.0
3 -0.1 0.4 7.0 3.0

128× 128 1024× 1024 1024× 1024
lmax 3 0 0
lmin -4 -7 -4
ν1 5 5 5
ν2 5 5 5

V-Cycles 15 16 341
Time [sec] 9.4 27.7 563

Stop at ‖d l‖max < 10−7 for l ≥ 0, γ = 1, rl = 2
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Comments on parabolic problems

Some comments on parabolic problems

I Consequences of time step refinement

I Level-wise elliptic solves vs. global solve

I If time step refinement is used an elliptic flux correction is
unavoidable.

I The correction is explained in Bell, J. (2004). Block-structured
adaptive mesh refinement. Lecture 2. Available at
https://ccse.lbl.gov/people/jbb/shortcourse/lecture2.pdf.
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