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Space-physics context
Instabilities: in the magnetosphere and/or ionosphere regions
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Compressible Magnetohydrodynamic Equations I

∂q
∂t

+∇ · f = 0 with the solenoidal condition ∇ · B = 0

q =


ρ
ρu
B
e

 and f =



ρ u

ρuu +

(
p +

B2

2

)
I− BB

uB− Bu(
e + p +

B2

2

)
u − B

(
u · B

)


ρ = ρ(x, t) is the density, p = p(x, t) is the pressure, I is a 3× 3 identity
matrix, u = u(x, t) is the velocity, B = B(x, t) is the magnetic field, uu or BB
stands for a 3× 3 tensor, x = (x , y , z), and e = e(x, t) is the total energy
density,

e =
p

γ − 1
+ ρ

u2

2
+

B2

2



Numerical aspects
1. Approximations of MHD Equations present a

numerically and computationally challenging task
2. Uniform meshes are not practical when

high resolution is only needed locally.
3. Our space adaptive strategy combines finite volumes with:

I Wavelet based analysis: multiresolution (MR)
1989 Mallat after his book, Harten (1995, Comm. Pure Appl. Math.), Kaibara and Gomes (2000,

Klumer/Plenum), Cohen et al (2002, Math. Comp.), Roussel et al. (2003, J. Comput. Phys.)

I Structured adaptive mesh refinement (SAMR)
[Berger and Olinger (1984, J. Comput. Phys.), Berger & Colella (1988, J. Comput. Phys.)]

4. Explicit time-space adaptation schemes are used.

TCOLORBOX AT A GLANCE
Goal: Improvement of computational efficiency while
controlling the precision using dynamically adapted
meshes in space-time in an MPI parallel distributed
memory patch-based AMROC framework.



This work context I

↪→ We compared (serial based): MR: Carmen code [ Roussel et al. (2003, J. Comput.

Phys.)] with SAMR: AMROC framework [ Deiterding (2011, ESAIM Proceedings), PhD

Thesis, 2003] for Euler Eqs. [Deiterding (2009, ESAIM Proceedings); 2016 (Deiterding et al. SIAM

JSciC)]

? MR representation is more compact, while the AMROC
framework is much more efficient in terms of CPU time.

↪→ Then, MR alg. in the AMROC framework in its patch-based MPI
parallel, exact same numerics.

? We confirmed the superiority of MR compact representation in
the patch-based structure. [Deiterding et al., submitted Comput.& Fluids, 2018]

↪→ In meanwhile, we developed a resistive GLM-MHD MR serial
solver. [Gomes et al. 2015, APNUM; PhD Thesis, 2017], then, we introduced this
solver in AMROC patch based MPI parallel [Moreira Lopes et al. 2018,

Comput.& Fluids, PhD Thesis, 2019].



This work context II

↪→ Now, we present our results of

TCOLORBOX AT A GLANCE
? Our MHD AMROC patch-based MPI parallel solver
? Wavelet based adaptive algorithm in this solver.

[Domingues et al. C&F 2019, Moreira Lopes, PhD Thesis 2019].



Adaptive schemes - main ideas I

∂q(x, t)
∂t

+∇ · f
(

q(x, t)
)

= 0

Numerical scheme: (2D example)

Qn+1
j,k = Qn

j,k −
∆t
∆x

[
Fx

j+ 1
2 ,k
− Fx

j− 1
2 ,k

]
− ∆t

∆y

[
Fy

j,k+ 1
2
− Fy

j,k− 1
2

]

I Reference scheme: Qn+1 = D Qn

Qn = Qn,L cell average in a regular meshML em tn = n∆t

D = DL,∆t stable and consistent operator in the time
evolution



Adaptive schemes - main ideas II

I Adaptive scheme: (Mn,Qn
a)→ (Mn+1,Qn+1

a )

Mn ⊂ML adaptive mesh Qn
a cell average inMn

Main steps:

1. Refinement: (Mn,Qn
a )
R−→ (Mn+,Qn+

a )

2. Evolution: (Mn+,Qn+
a )

Da−−→ (Mn+, Q̆n+1)

3. Adaptation: (Mn+, Q̆n+1
a )

Tε,ηtol−−−−→ (Mn+1,Qn+1
a ).

I Cluster organization: if it is the case



Multiresolution (MR) MR principles of interest: I

I Two-level wavelet transform:

Q `+1 
 {Q `} ∪ {d`},

I Information in a certain level can be obtained by the
combination of the coarser levels with the wavelet
coefficient contributions and vice-versa

I The algorithm are efficient: fast and stable.
I Wavelet coefficients d` are :

I local approximation polynomial errors.
I regularity indicators in adaptive strategies.
I low amplitudes of the coefficients are associated to regions

where the solution is smooth
I high amplitudes appear only in regions where the solution

is less regular.



Notation: one-dimensional example

Nested meshes:

(Ω`
k ) 0≤k<2`; 0≤`≤L

Data:
cell average value
on Ω`

k :

Q `
k =

1
|Ω`

k |

∫
Ω`k

Q dV

V – volume

QL
0 QL

2L−1

Q3
0 Q3

1 Q3
2 Q3

3 Q3
4 Q3

5 Q3
6 Q3

7

Q2
0 Q2

1 Q2
2 Q2

3

Q2
0 Q2

1

Q0
0

regular grid
Q0 Q2L−1

multilevel grid

Notation: Q` = (Q`
k) 0≤k<2` Harten, SIAM J. Num. Anal. 1993



MR operations for FV methods

1 Projection (restriction):

P`
`+1 : Q`+1 → Q`

Q`+1
k−3 Q`+1

k−2 Q`+1
k−1 Q`+1

k Q`+1
k+1 Q`+1

k+2

Q`k−1
Q`k Q`k+1

P`
`+1 : Q`

i =
1
2

(
Q`+1

2i + Q`+1
2i+1

)

2 Prediction (prolongation):

P`+1
` : Q` → Q̃`+1

Q`+1
k−3 Q`+1

k−2 Q`+1
k−1 Q`+1

k Q`+1
k+1 Q`+1

k+2

Q`k−1 Q`k Q`k+1

P`+1
`,0 : Q̃`+1

2i = Q`
i −

1
8

(Q`
i+1−Q`

i−1),

P`+1
`,1 : Q̃`+1

2i+1 = Q`
i +

1
8

(Q`
i+1−Q`

i−1)

Linear polynomial interpolation as proposed by Harten (1995, Comm.
Pure Appl. Math.).



Two-dimensional operators

Projection P`
`+1:

Q`
i,j =

1
4

(
Q`+1

2i,2j + Q`+1
2i,2j+1 + Q`+1

2i+1,2j + Q`+1
2i+1,2j+1

)

Prediction P`+1
` by Bihari and Harten (1995):

Q̃`+1
2i+m,2j+n = Q`

i,j +
1
8
[
(−1)m (Q`

i+1,j −Q`
i−1,j

)
+ (−1)n (Q`

i,j+1 −Q`
i,j−1

)]
+

1
64
[
(−1)mn (Q`

i+1,j+1 −Q`
i+1,j−1 −Q`

i−1,j+1 + Q`
i−1,j−1

)]
I Constructed by tensor product

I Note that these prediction operators are not TVD!



Three-dimensional operators
P`
`+1 : Q`

i,j =
1
8

(
Q`+1

2i,2j,2k + Q`+1
2i,2j+1,2k + Q`+1

2i+1,2j,2k + Q`+1
2i+1,2j+1,2k +

Q`+1
2i,2j,2k+1 + Q`+1

2i,2j+1,2k+1 + Q`+1
2i+1,2j,2k+1 + Q`+1

2i+1,2j+1,2k+1

)
Prediction P`+1

` after Roussel et al. (2003, J. Comput. Phys.):

Q̃`+1
2i+m,2j+n,2k+p = Q`

i,j,k +

1
8
[
(−1)m (Q`

i+1,j,k −Q`
i−1,j,k

)
+ (−1)n (Q`

i,j+1,k −Q`
i,j−1,k

)
+(−1)p (Q`

i,j,k+1 −Q`
i,j,k−1

)]
+

1
64
[
(−1)mn (Q`

i+1,j+1,k −Q`
i+1,j−1,k −Q`

i−1,j+1,k + Q`
i−1,j−1,k

)
(−1)np (Q`

i,j+1,k+1 −Q`
i,j−1,k+1 −Q`

i,j+1,k−1 + Q`
i,j−1,k−1

)
(−1)mp (Q`

i+1,j,k+1 −Q`
i−1,j,k+1 −Q`

i+1,j,k−1 + Q`
i−1,j,k−1

)]
+

1
512

[
Q`

i+1,j+1,k+1 −Q`
i+1,j+1,k−1 −Q`

i+1,j−1,k+1 −Q`
i−1,j+1,k+1+

Q`
i+1,j−1,k−1 + Q`

i−1,j+1,k−1 + Q`
i−1,j−1,k+1 −Q`

i−1,j−1,k−1
]



Proprieties:
I Localization: finite stencil and near the cell.
I Exact polynomial approximation.
I Stability
I Conservation: P`

`+1P`+1
` is the identity operator.

I Conservation implies P`
`+1 d` = 0.

Adaptive transform
I Threshold operation: → data compression

modulus of the wavelet coefficients bellow certain
tolerance are removed.
MR threshold strategies: hard threshold, level dependent
threshold, vector-value threshold.

I Buffer zones



Use of wavelet transform for adaptation

Wavelet coefficients:

d` = Q`+1 − P`+1
` Q` prediction error

Use of predicton error as refinement criterion:

|Q` − P`
`−1 P`−1

` Q`| > ε

Choice of ε:

I level-independent threshold parameter ε ≡ ε`
I Harten’s thresholding strategy:

ε` =
ε

|Ω|
22(`+1−L), 0 ≤ ` < L

I vector-valued threshold in Eucledian norm of velocity field
component of Q
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Patch-SAMR ideas in AMROC

? Block independence

? Refined blocks overlay coarser ones
[Berger & Colella (1988, J. Comput. Phys.)]

? Refinement in space-time by a factor r`

? Patch based data structures

? Efficient cache-reuse

? Vectorization possible
⇒ Level transfer/ setting ghost cells

I Restriction:
Conservative averaging

I Prolongation:
Bilinear interpolation

⇒ Linear time interpolation for
boundary conditions

⇒ Conservative flux correction Credits: R. Deiterding, ESAIM 2011.



Patch creation by clustering
TCOLORBOX AT A GLANCE

Image detection technique to identify cluster signatures.
Consider: mesh as a cluster.
Recursive cluster identification:

1. Compute # of flagged cells Υ
per row/column.

2. Identify where Υrow/col = 0.

3. Compute 2nd difference:

∆ = Υk+1 − 2Υk + Υk−1.

4. Localize the
largest difference in ∆row/col.

5. Stop if
flagged cells

unflagged cells
< ηtol

0 < ηtol < 1

ηtol =

{
0.80 parallel
0.99 equiv. serial

[Deiterding (2011, ESAIM Proceedings); Bell et. al (1994, SIAM J. Sci. Comput.); Berger (1986, SIAM J. Sci. Stat.

Comput.), and Berger & Rigoutsos (1991, IEEE Transactions on Systems)]



Numerical challenge I

The momentum equation

∂ρu
∂t

+∇ ·
[
ρuu +

(
p +

B2

2

)
I− BB

]
= 0,

can be rewritten as

∂ρu
∂t

+∇ · [ρu u] +

[
∇
(

p +
B2

2

)]
− (B · ∇) B = B (∇ · B)

- (∇ · B) = 0 implies the non-existence of magnetic monopoles.

- (∇ · B) 6= 0 results in a non-physical force that is parallel to B.

→ Numerically, in the standard FV uniform scheme (∇ · B) 6= 0
and this exerts a destabilizing effect on the numerical scheme or
possible non-physical results. [Brackbill & Barnes, 1980 J. Comput. Phys.]



Implemented solution to reduce the effects (∇ · B) 6= 0

- We use the parabolic-hyperbolic correction to avoid this problem in
conjunction with a numerical formulation of the MHD equations
called Generalized Lagrangian multipliers for divergence cleaning
(GLM-MHD) proposed by [Dedner et al., 2002 J. Comput. Phys.] with the
dimensional adjustment proposed by [Mignone et al., 2010 J. Comput. Phys.].

- GLM introduces changes in the induction equation, a scalar
function ψ and a new equation, with the parameters ch, cp.

- Extended-GLM (EGLM) - add also Powell’s source terms.
Non-conservative MHD system. [Dedner et al., 2002 J. Comput. Phys.]

- GLM (EGLM) does not zero the numerical effect but instead it
transports and diffuses the numerical effect.

- Other possibility implemented is the traditional elliptic correction, it
is very expensive computationally. It try to reduce this numerical
effect. [ Brackbill & Barnes, 1980 J. Comput. Phys.]

- DB ratio between the divergence and magnitude of the magnetic
field per unit of volume



Challenging test cases
? Rotor (ROT)- propagation of strong torsional Alfvén

waves. A high density fluid (the rotor) rotating in high

velocity inside a lighter background magnetised fluid,

angular momentum of the rotor to decrease and the

magnetic field wraps around the rotor, increasing the

magnetic pressure and compressing the fluid.

• Initial conditions:
→ Inside rotor ξ≤0.1:(

ρ, ux , uy
)

= (10,−20y,−20x)

→ Background fluid ξ≤0.1:(
ρ, ux , uy

)
= (1, 0, 0)

→ Transition zone, elsewhere:(
9φ + 1,−

2yφ

ξ
,−

2xφ

ξ

)
where φ = (0.115− ξ)/0.015,

→ B =

[ 5
√

4π
, 0, 0

]
,

→ The rotor is a cylinder with centre in the origin
and radius 0.1

→ ξ is distance to the origin.

• Comput. domain: [−
1

2
,

1

2
]× [−

1

2
,

1

2
],

• Tend = 0.15, αp = 0.4, CFL= 0.4, γ = 1.4

• Problem from Balsara and Spicer 1999.

? Orszag-Tang (OTV) - transition to supersonic

two-dimensional MHD
• Initial cond.: ρ = γ

2, p = γ,

u = [− sin(y), sin(x), 0]

B = [− sin(y), sin(2x), 0].

• Comput. domain: [0, 2π]× [0, 2π],
• Tend = π, αp = 0.5, CFL= 0.5

• Problem from Orszag-Tang (1979) and others.

? Spherical blast wave (BWV)- propagation of strong

MHD discontinuities. Explosion of p sphere contained

into a uniformly magnetised medium.
• Initial cond.: ρ = 1,

p =

{
10, if x2 +y2

<0.1
0.1, elsewhere.

,

u = 0, B =

[√
2

2
,

√
2

2
, 0

]
,

• Comput. domain:
[
−

1

2
,

1

2

]
×
[ 3

4
,

3

4

]
,

• Tend = 0.2, αp = 0.5, CFL = 0.4,

• Problem from Zachary et al. 1994 and others.

I For all cases: HLLD num. flux, MC limiter and
periodic boundary conditions.

I For OTV and BWV: γ = 5/3.



GLM Parabolic-hyperbolic ∇ · B correction Moreira Lopes, PhD Thesis 2019

M4

M3

M2

M1

Uniform mesh

Pressure andDB . Parameters: α(cp, ch) = 0.5,CFL = 0.4.
M1 to 4 → 2562

, · · · 20482 for rotor (ROT) and Orszag-Tang(OTV),
200× 300, · · · 1600× 2400 for blash wave (BWV) problems.



Elliptic ∇ · B correction Moreira Lopes, PhD Thesis 2019

M4

M3

M2

M1

Uniform mesh

Pressure andDB . Parameters: α(cp, ch) = 0.5,CFL = 0.4.
M1 to 4 → 2562

, · · · 20482 for rotor (ROT) and Orszag-Tang(OTV),
200× 300, · · · 1600× 2400 for blash wave (BWV) problems.



Orszag-Tang vortex
I Adaptive solution on 50 × 50 grid with 4 additional levels refined by rl = 2
I Initial condition

ρ(x , y , 0) = γ2, ux (x , y , 0) = − sin(y), uy (x , y , 0) = sin(x), uz (x , y , 0) = 0

p(x , y , 0) = γ, Bx (x , y , 0) = − sin(y), By (x , y , 0) = 2 sin(x), Bz (x , y , 0) = 0

Scaled gradient of ρ Multi-resolution criterion with
hierarchical thresholding
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Orszag-Tang vortex - cells on finest level vs. error
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Scaled gradient

I This is work in progress, and for now, the error is evaluated in ρ
only.

I Compared are SG and MR with hierarchical threshold also
applied to ρ only.



Orzag-Tang vortex GLM parabolic-hyperbolic test case

Uniform Mesh Scaled Gradient MR

I Refinement of additional features at the maximal level with the
gradient criterion and the stronger coarsening.

I These effects are the reason why the MR criterion with
hierarchical thresholding achieves still a smaller error

I MR avoids unnecessary over-refinement while avoiding
improper coarsening.

[Domingues et al. 2018, Comput. & Fluids]



Orzag-Tang vortex GLM parabolic-hiperbolic 3D test case

• Proposed by Helzel et al. (2011)
• a perturbation is added into the z axis of the velocity:

u = [−[1 + 0.2 sin(z)] sin(y), [1 + 0.2 sin(z)] sin(x), 0.2 sin(z)]
• Computational domain [0, 2π]3.
• Periodic boundaries.
• Adiabatic constant γ = 5/3, αp = 0.3 CFL= 0.3 until the final time

tend = π.

Proc. Distribution 3D pressure

[Moreira Lopes et al. 2018, Comput. & Fluids, PhD Thesis 2019]

I We also performed a branch of test with different limiters and
different correction parameters for MR adaptive simulations and
we do not have any numeric stability problem.

I For Scale gradient we report some problems with MinMod.



Kelvin-Helmholtz instability (KHI) I
The KHI is a phenomena which occur in single continuous fluids with a velocity shear.

Initial conditions (cat eye):

ρ ux uy Bx p
1.0 u0

x u0
y 1.0 50

I Periodic boundary conditions.
I Final time = 0.4
I Computational domain of

[0, 1]× [−1, 1],
I γ = 1.4, α(ch, cp) = 0.4.

u0
x = u0

x (x, y) := 5 tanh
(

20
(

y +
1

2

))
−
[

tanh
(

20
(

y −
1

2

))
+ 1
]

u0
y = u0

y (x, y) :=
1

4
sin(2πx)

e

−100

(
y+

1

2

)2

− e

−100

(
y−

1

2

)2


uz = By = Bz = 0.

Dedner et al., 2002 J. Comput. Phys.

Adaptive Proc.
solution distribution

Moreira Lopes et al., 2018 Comput. & Fluids



Instabilities: Rayleigh-Taylor (RTI) multi-modes

? Initial cond.(single-mode):
• ρ = 2 in the upper domain and 1 in the lower

domain.
• Bx = 0.0125
• Gravitational acceleration g = 0.1 must be added

to the equations of motion.
• Pressure is given by the condition of hydrostatic

equilibrium, that is p = p0 − 0.1ρy, where
p0 = 2.5. This gives a sound speed of 3.5 in the
low density medium at the interface.

• uy = 0.01 [1 + cos(4πx)] [1 + cos(3πy)] /4.

? Final time = 13.42

? Computational domain of
[−0.25, 0.25]× [−0.75, 0.75],

? γ = 1.4, ch/cp = 0.4,
ρ, 200× 600,MRε = 0.0001.

? Multi-modes

? uy = A [1 + cos(8πy/3)] /2,
where A is a random number with a peak-to-peak
amplitude of 0.01

? Pertubation zone:[−0.1, 0.1]

? Computational domain of

[−0.375, 0.375]× [−0.75, 0.75].

400× 1200, MR ε = 0.00005

Test concept Jun et al., 2002 J. Comput. Phys.

? Periodic boundary cond. at |x| and reflecting at |y|.



Final remarks

I The AMROC MHD MR–version is implemented and verified.

I Patch-based MPI-parallel distributed memory version

I Considering precision, number of cells and CPU time this new
MR implementation presents better results than the scaled
gradient criterion.

I We also tested more complex vector-valued wavelet criteria

I Further optimization of further SAMR core parameters stil
possible

I Performance could be further increased using methods already
implemented in AMROC with some more work, for instance:

I dimensional splitting;
I wave propagation method (fully unsplit 2nd order scheme

with Roe solver);
I higher-order WENO methods



Earth’s magnetosphere (validation, in testing)
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GLM and EGLM

GLM introduces changes in the induction equation, a scalar
function ψ and a new equation, with the parameters ch, cp.
For 2D, we have

∂Bx

∂t
+
∂ψ

∂x
+

∂

∂y
(uy Bx − By ux ) = 0,

∂By

∂t
+

∂

∂x
(uxBy − Bxuy ) +

∂ψ

∂y
= 0,

∂Bz

∂t
+

∂

∂x
(uxBz − Bzux ) +

∂

∂y
(uy Bz − By uz) = 0,

∂ψ

∂t
+ c2

h

(
∂Bx

∂x
+
∂By

∂y

)
= −

c2
h

c2
p
ψ,

EGLM include the source terms introduced by Powell in as a tentative
to improve the correction. These terms are not conservative, then this
method fail in most cases.



Orzag-Tang vortex test case details I

I The usual model problem for testing the transition to supersonic
two-dimensional MHD turbulence is Orszag-Tang vortex.

Orszag and Tang, 1998 J. Fluid Mech.

I It is used to tests how robust the code is at handling the
formation of MHD shocks, and shock-shock interactions and it
can also provide how significant the numerical magnetic
monopoles affect the numerical solutions.

Frequently, this test is also used for code comparisons.This test can present different fields values depending on the
units of the MHD model used.

Since then it has been extensively compared in tests of numerical MHD simulations. A few such examples include

Zachary et al. (JSC, 15, 263, 1994), Ryu et al. (ApJ, 452, 785, 1995 and ApJ, 509, 244, 1998), Dai & Woodward

(ApJ, 494, 317, 1998), Jiang & Wu (JCP, 150, 561, 1999), and Londrillo & Del Zanna (ApJ, 530, 508, 2000). The

problem was also studied as a model for 2-D turbulence by Dahlburg & Picone, Phys. Fluid B, 1, 2153 (1989) and

Picone & Dahlburg, Phys. Fluid B, 3, 29 (1991), using Fourier spectral methods.
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