Structured AMR	Adaptive LBM	LES	Aerodynamics	Non-Cartesian LBM	Conclusions

Adaptive Cartesian lattice Boltzmann methods in the AMROC framework and comparison with a non-Cartesian approach

Ralf Deiterding, Christos Gkoudesnes, Juan Antonio Reyes Barraza

Aerodynamics and Flight Mechanics Research Group University of Southampton Highfield Campus, Southampton SO17 1BJ, UK E-mail: r.deiterding@soton.ac.uk

July 16, 2019

Structured AMR	Adaptive LBM	LES	Aerodynamics	Non-Cartesian LBM	Conclusions

Outline

Adaptive Cartesian finite volume methods Block-structured AMR

Adaptive lattice Boltzmann method

Construction principles Verification for oscillating 2d cylinders

Large-eddy simulation

LES models Verification for homogeneous isotropic turbulence

Aerodynamics

Vehicle geometries Wind turbines Parallel performance

Non-Cartesian lattice Boltzmann method

Construction principles Verification and validation for 2d cylinder

Conclusions

For simplicity $\partial_t \mathbf{q}(x, y, t) + \partial_x \mathbf{f}(\mathbf{q}(x, y, t)) + \partial_y \mathbf{g}(\mathbf{q}(x, y, t)) = 0$

Refined blocks overlay coarser ones

For simplicity $\partial_t \mathbf{q}(x, y, t) + \partial_x \mathbf{f}(\mathbf{q}(x, y, t)) + \partial_y \mathbf{g}(\mathbf{q}(x, y, t)) = 0$

Refined blocks overlay coarser ones

For simplicity $\partial_t \mathbf{q}(x, y, t) + \partial_x \mathbf{f}(\mathbf{q}(x, y, t)) + \partial_y \mathbf{g}(\mathbf{q}(x, y, t)) = 0$

Refined blocks overlay coarser ones

For simplicity $\partial_t \mathbf{q}(x, y, t) + \partial_x \mathbf{f}(\mathbf{q}(x, y, t)) + \partial_y \mathbf{g}(\mathbf{q}(x, y, t)) = 0$

- Refined blocks overlay coarser ones
- Refinement in space and time by factor r_l [Berger and Colella, 1988]
- Block (aka patch) based data structures
- + Numerical scheme

$$\begin{split} \mathbf{Q}_{jk}^{n+1} &= \mathbf{Q}_{jk}^{n} - \frac{\Delta t}{\Delta x} \left[\mathbf{F}_{j+\frac{1}{2},k} - \mathbf{F}_{j-\frac{1}{2},k} \right] \\ &- \frac{\Delta t}{\Delta y} \left[\mathbf{G}_{j,k+\frac{1}{2}} - \mathbf{G}_{j,k-\frac{1}{2}} \right] \end{split}$$

only for single patch necessary

For simplicity $\partial_t \mathbf{q}(x, y, t) + \partial_x \mathbf{f}(\mathbf{q}(x, y, t)) + \partial_y \mathbf{g}(\mathbf{q}(x, y, t)) = 0$

- Refined blocks overlay coarser ones
- Refinement in space and time by factor r_l [Berger and Colella, 1988]
- Block (aka patch) based data structures
- + Numerical scheme

$$\mathbf{Q}_{jk}^{n+1} = \mathbf{Q}_{jk}^{n} - \frac{\Delta t}{\Delta x} \left[\mathbf{F}_{j+\frac{1}{2},k} - \mathbf{F}_{j-\frac{1}{2},k} \right] \\ - \frac{\Delta t}{\Delta y} \left[\mathbf{G}_{j,k+\frac{1}{2}} - \mathbf{G}_{j,k-\frac{1}{2}} \right]$$

only for single patch necessary

- + Efficient cache-reuse / vectorization possible
- Cluster-algorithm necessary
- Papers: [Deiterding, 2011, Deiterding et al., 2009 Deiterding et al., 2007]

Structured AMR	Adaptive LBM	LES	Aerodynamics	Non-Cartesian LBM	Conclusions
00					
Block-structured AMR					

Example: Cell j, k

$$\begin{split} \check{\mathbf{Q}}'_{jk}(t+\Delta t_l) &= \mathbf{Q}'_{jk}(t) - rac{\Delta t_l}{\Delta x_{1,l}} \left(\mathbf{F}'_{j+rac{1}{2},k} - rac{1}{r_{l+1}^2} \sum_{\kappa=0}^{r_{l+1}-1} \sum_{\iota=0}^{r_{l+1}-1} \mathbf{F}'^{l+1}_{\nu+rac{1}{2},w+\iota}(t+\kappa\Delta t_{l+1})
ight) \ &- rac{\Delta t_l}{\Delta x_{2,l}} \left(\mathbf{G}'_{j,k+rac{1}{2}} - \mathbf{G}'_{j,k-rac{1}{2}}
ight) \end{split}$$

Correction pass:

Structured AMR	Adaptive LBM	LES	Aerodynamics	Non-Cartesian LBM	Conclusions
00					
Block-structured AMR					

Example: Cell j, k

$$\begin{split} \check{\mathbf{Q}}_{jk}^{\prime}(t+\Delta t_l) &= \mathbf{Q}_{jk}^{\prime}(t) - rac{\Delta t_l}{\Delta x_{1,l}} \left(\mathbf{F}_{j+rac{1}{2},k}^{\prime} - rac{1}{r_{l+1}^2} \sum_{\kappa=0}^{r_{l+1}-1} \sum_{\iota=0}^{r_{l+1}-1} \mathbf{F}_{\nu+rac{1}{2},w+\iota}^{\prime+1}(t+\kappa\Delta t_{l+1})
ight) \ &- rac{\Delta t_l}{\Delta x_{2,l}} \left(\mathbf{G}_{j,k+rac{1}{2}}^{\prime} - \mathbf{G}_{j,k-rac{1}{2}}^{\prime}
ight) \end{split}$$

Correction pass:

1.
$$\delta \mathbf{F}_{j-\frac{1}{2},k}^{l+1} := -\mathbf{F}_{j-\frac{1}{2},k}^{l}$$

Structured AMR	Adaptive LBM	LES	Aerodynamics	Non-Cartesian LBM	Conclusions
00					
Block-structured AMR					

Example: Cell j, k

$$\begin{split} \check{\mathbf{Q}}_{jk}^{\prime}(t+\Delta t_l) &= \mathbf{Q}_{jk}^{\prime}(t) - rac{\Delta t_l}{\Delta x_{1,l}} \left(\mathbf{F}_{j+rac{1}{2},k}^{\prime} - rac{1}{r_{l+1}^2} \sum_{\kappa=0}^{r_{l+1}-1} \sum_{\iota=0}^{r_{l+1}-1} \mathbf{F}_{\nu+rac{1}{2},w+\iota}^{\prime+1}(t+\kappa\Delta t_{l+1})
ight) \ &- rac{\Delta t_l}{\Delta x_{2,l}} \left(\mathbf{G}_{j,k+rac{1}{2}}^{\prime} - \mathbf{G}_{j,k-rac{1}{2}}^{\prime}
ight) \end{split}$$

Correction pass:

1.
$$\delta \mathbf{F}_{j-\frac{1}{2},k}^{l+1} := -\mathbf{F}_{j-\frac{1}{2},k}^{l}$$

2. $\delta \mathbf{F}_{j-\frac{1}{2},k}^{l+1} := \delta \mathbf{F}_{j-\frac{1}{2},k}^{l+1} + \frac{1}{r_{l+1}^2} \sum_{\iota=0}^{r_{l+1}-1} \mathbf{F}_{\nu+\frac{1}{2},\nu+\iota}^{l+1}(t + \kappa \Delta t_{l+1})$

Structured AMR	Adaptive LBM	LES	Aerodynamics	Non-Cartesian LBM	Conclusions
00					
Block-structured AMR					

Example: Cell j, k

$$\begin{split} \check{\mathbf{Q}}_{jk}^{\prime}(t+\Delta t_l) &= \mathbf{Q}_{jk}^{\prime}(t) - rac{\Delta t_l}{\Delta x_{1,l}} \left(\mathbf{F}_{j+rac{1}{2},k}^{\prime} - rac{1}{r_{l+1}^2} \sum_{\kappa=0}^{r_{l+1}-1} \sum_{\iota=0}^{r_{l+1}-1} \mathbf{F}_{\nu+rac{1}{2},w+\iota}^{\prime+1}(t+\kappa\Delta t_{l+1})
ight) \ &- rac{\Delta t_l}{\Delta x_{2,l}} \left(\mathbf{G}_{j,k+rac{1}{2}}^{\prime} - \mathbf{G}_{j,k-rac{1}{2}}^{\prime}
ight) \end{split}$$

Correction pass:

1. $\delta \mathbf{F}_{j-\frac{1}{2},k}^{l+1} := -\mathbf{F}_{j-\frac{1}{2},k}^{l}$ 2. $\delta \mathbf{F}_{j-\frac{1}{2},k}^{l+1} := \delta \mathbf{F}_{j-\frac{1}{2},k}^{l+1} + \frac{1}{r_{l+1}^{2}} \sum_{\iota=0}^{r_{l+1}-1} \mathbf{F}_{\nu+\frac{1}{2},\nu+\iota}^{l+1}(t+\kappa\Delta t_{l+1})$ 3. $\check{\mathbf{Q}}_{jk}^{l}(t+\Delta t_{l}) := \mathbf{Q}_{jk}^{l}(t+\Delta t_{l}) + \frac{\Delta t_{l}}{\Delta x_{1,l}} \delta \mathbf{F}_{j-\frac{1}{2},k}^{l+1}$

 Structured AMR
 Adaptive LBM
 LES
 Aerodynamics
 Non-Cartesian LBM
 Conclusions

 00
 ●00000000
 0000000
 0000000
 0000
 0

 Construction principles
 Vision
 O
 O
 O
 O

Approximation of Boltzmann equation

Is based on solving the Boltzmann equation with a simplified collision operator

$$\partial_t f + \mathbf{u} \cdot \nabla f = \omega (f^{eq} - f) + F$$

- $\operatorname{Kn} = l_f / L \ll 1$, where l_f is replaced with Δx
- Weak compressibility and small Mach number assumed
- Assume a simplified phase space

 Structured AMR
 Adaptive LBM
 LES
 Aerodynamics
 Non-Cartesian LBM
 Conclusions

 00
 ●0000000
 0000000
 000000
 0000
 0

 Construction principles
 Conclusions
 Conclusions
 Conclusions
 Conclusions

Approximation of Boltzmann equation

Is based on solving the Boltzmann equation with a simplified collision operator

$$\partial_t f + \mathbf{u} \cdot \nabla f = \omega (f^{eq} - f) + F$$

• $\text{Kn} = l_f / L \ll 1$, where l_f is replaced with Δx

Weak compressibility and small Mach number assumed

Assume a simplified phase space

Equation is approximated with a splitting approach.

1.) Transport step solves
$$\partial_t f_{\alpha} + \mathbf{e}_{\alpha} \cdot \nabla f_{\alpha} = 0$$

Operator: \mathcal{T} : $\tilde{f}_{\alpha}(\mathbf{x} + \mathbf{e}_{\alpha}\Delta t, t + \Delta t) = f_{\alpha}(\mathbf{x}, t)$
 $\rho(\mathbf{x}, t) = \sum_{\alpha=0}^{8} f_{\alpha}(\mathbf{x}, t), \quad \rho(\mathbf{x}, t)u_i(\mathbf{x}, t) = \sum_{\alpha=0}^{8} e_{\alpha i}f_{\alpha}(\mathbf{x}, t)$

Discrete velocities:

$$\begin{aligned} \mathbf{e}_0 &= (0,0), \mathbf{e}_1 = (1,0)c, \mathbf{e}_2 = (-1,0)c, \mathbf{e}_3 = (0,1)c, \mathbf{e}_4 = (1,1)c, ... \\ c &= \frac{\Delta x}{\Delta t}, \text{ Physical speed of sound: } c_s = \frac{c}{\sqrt{3}} \end{aligned}$$

 Structured AMR
 Adaptive LBM
 LES
 Aerodynamics
 Non-Cartesian LBM
 Conclusions

 00
 ●0000000
 0000000
 000000
 0000
 0

 Construction principles

Approximation of Boltzmann equation

Is based on solving the Boltzmann equation with a simplified collision operator

$$\partial_t f + \mathbf{u} \cdot \nabla f = \omega (f^{eq} - f) + F$$

- $\text{Kn} = l_f / L \ll 1$, where l_f is replaced with Δx
- Weak compressibility and small Mach number assumed
- Assume a simplified phase space

Equation is approximated with a splitting approach.

1.) Transport step solves
$$\partial_t f_{\alpha} + \mathbf{e}_{\alpha} \cdot \nabla f_{\alpha} = 0$$

Operator: \mathcal{T} : $\tilde{f}_{\alpha}(\mathbf{x} + \mathbf{e}_{\alpha}\Delta t, t + \Delta t) = f_{\alpha}(\mathbf{x}, t)$
 $\rho(\mathbf{x}, t) = \sum_{\alpha=0}^{18} f_{\alpha}(\mathbf{x}, t), \quad \rho(\mathbf{x}, t) u_i(\mathbf{x}, t) = \sum_{\alpha=0}^{18} e_{\alpha i} f_{\alpha}(\mathbf{x}, t)$

Discrete velocities:

$$\mathbf{e}_{\alpha} = \begin{cases} 0, & \alpha = 0, \\ (\pm 1, 0, 0)c, (0, \pm 1, 0)c, (0, 0, \pm 1)c, & \alpha = 1, \dots, 6, \\ (\pm 1, \pm 1, 0)c, (\pm 1, 0, \pm 1)c, (0, \pm 1, \pm 1)c, & \alpha = 7, \dots, 18, \end{cases}$$

 Structured AMR
 Adaptive LBM
 LES
 Aerodynamics
 Non-Cartesian LBM
 Conclusions

 00
 00000000
 0000000
 000000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0</

Approximation of equilibrium state

2.) Collision step solves $\partial_t f_{\alpha} = \omega (f_{\alpha}^{eq} - f_{\alpha}) + F_{\alpha}$ Operator C:

$$f_{\alpha}(\cdot, t + \Delta t) = \tilde{f}_{\alpha}(\cdot, t + \Delta t) + \omega_{L}\Delta t \left(\tilde{f}_{\alpha}^{eq}(\cdot, t + \Delta t) - \tilde{f}_{\alpha}(\cdot, t + \Delta t)\right) + \Delta t F_{\alpha}$$

with $F_{\alpha} = 3\rho t_{\alpha} \mathbf{e}_{\alpha} \mathbf{F}/c^{2}$

 Structured AMR
 Adaptive LBM
 LES
 Aerodynamics
 Non-Cartesian LBM
 Conclusions

 00
 0000000
 0000000
 000000
 0

 Construction principles
 0000000
 0000000
 0

Approximation of equilibrium state

2.) Collision step solves $\partial_t f_{\alpha} = \omega (f_{\alpha}^{eq} - f_{\alpha}) + F_{\alpha}$ Operator C:

$$f_{\alpha}(\cdot,t+\Delta t) = \tilde{f}_{\alpha}(\cdot,t+\Delta t) + \omega_{L}\Delta t \left(\tilde{f}_{\alpha}^{eq}(\cdot,t+\Delta t) - \tilde{f}_{\alpha}(\cdot,t+\Delta t)\right) + \Delta t F_{\alpha}$$

with $F_{\alpha} = 3\rho t_{\alpha} \mathbf{e}_{\alpha} \mathbf{F}/c^2$ and equilibrium function

$$\begin{split} f_{\alpha}^{eq}(\rho,\mathbf{u}) &= \rho t_{\alpha} \left[1 + \frac{3\mathbf{e}_{\alpha}\mathbf{u}}{c^{2}} + \frac{9(\mathbf{e}_{\alpha}\mathbf{u})^{2}}{2c^{4}} - \frac{3\mathbf{u}^{2}}{2c^{2}} \right] \\ \text{with } t_{\alpha} &= \frac{1}{9} \left\{ 4, 1, 1, 1, \frac{1}{4}, \frac{1}{4}, 1, \frac{1}{4}, \frac{1}{4} \right\} \\ \delta p &= \sum_{\alpha} f_{\alpha}^{eq} c_{s}^{2} = \rho c_{s}^{2}. \text{ Dev. stress } \Sigma_{ij} = \left(1 - \frac{\omega_{L}\Delta t}{2} \right) \sum_{\alpha} e_{\alpha i} e_{\alpha j} (f_{\alpha}^{eq} - f_{\alpha}) \end{split}$$

 Structured AMR
 Adaptive LBM
 LES
 Aerodynamics
 Non-Cartesian LBM
 Conclusions

 00
 0000000
 0000000
 000000
 0

 Construction principles
 0000000
 0000000
 0

Approximation of equilibrium state

2.) Collision step solves $\partial_t f_{\alpha} = \omega (f_{\alpha}^{eq} - f_{\alpha}) + F_{\alpha}$ Operator C:

$$f_{\alpha}(\cdot,t+\Delta t) = \tilde{f}_{\alpha}(\cdot,t+\Delta t) + \omega_{L}\Delta t \left(\tilde{f}_{\alpha}^{eq}(\cdot,t+\Delta t) - \tilde{f}_{\alpha}(\cdot,t+\Delta t)\right) + \Delta t F_{\alpha}$$

with $F_{\alpha} = 3\rho t_{\alpha} \mathbf{e}_{\alpha} \mathbf{F}/c^2$ and equilibrium function

$$f_{\alpha}^{eq}(\rho, \mathbf{u}) = \rho t_{\alpha} \left[1 + \frac{3\mathbf{e}_{\alpha}\mathbf{u}}{c^{2}} + \frac{9(\mathbf{e}_{\alpha}\mathbf{u})^{2}}{2c^{4}} - \frac{3\mathbf{u}^{2}}{2c^{2}} \right]$$

with $t_{\alpha} = \frac{1}{9} \left\{ 3, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{1}{$

 Structured AMR
 Adaptive LBM
 LES
 Aerodynamics
 Non-Cartesian LBM
 Conclusions

 00
 0000000
 0000000
 0000000
 0

 Construction principles
 0000000
 0000000
 0

Approximation of equilibrium state

2.) Collision step solves $\partial_t f_{\alpha} = \omega (f_{\alpha}^{eq} - f_{\alpha}) + F_{\alpha}$ Operator C:

$$f_{\alpha}(\cdot,t+\Delta t) = \tilde{f}_{\alpha}(\cdot,t+\Delta t) + \omega_{L}\Delta t \left(\tilde{f}_{\alpha}^{eq}(\cdot,t+\Delta t) - \tilde{f}_{\alpha}(\cdot,t+\Delta t)\right) + \Delta t F_{\alpha}$$

with $F_{\alpha} = 3\rho t_{\alpha} \mathbf{e}_{\alpha} \mathbf{F}/c^2$ and equilibrium function

$$f_{\alpha}^{eq}(\rho,\mathbf{u}) = \rho t_{\alpha} \left[1 + \frac{3\mathbf{e}_{\alpha}\mathbf{u}}{c^2} + \frac{9(\mathbf{e}_{\alpha}\mathbf{u})^2}{2c^4} - \frac{3\mathbf{u}^2}{2c^2} \right]$$

with $t_{\alpha} = \frac{1}{9} \left\{ 3, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac$

$$f_{\alpha}^{eq}(\rho,\mathbf{u}) = \rho t_{\alpha} \left[1 + \frac{3\mathbf{e}_{\alpha}\mathbf{u}}{c^2} + \frac{9(\mathbf{e}_{\alpha}\mathbf{u})^2}{2c^4} - \frac{3u^2}{2c^2} + \frac{\mathbf{e}_{\alpha}\mathbf{u}}{3c^2} \left(\frac{9(\mathbf{e}_{\alpha}\mathbf{u})^2}{2c^4} - \frac{3u^2}{2c^2} \right) \right]$$

allows higher flow velocities (up to $M \approx 0.3 - 0.4$ vs. $M \approx 0.15 - 0.2$).

 Structured AMR
 Adaptive LBM
 LES
 Aerodynamics
 Non-Cartesian LBM
 Conclusions

 00
 0000000
 0000000
 0000000
 0

 Construction principles
 0000000
 0000000
 0

Approximation of equilibrium state

2.) Collision step solves $\partial_t f_{\alpha} = \omega (f_{\alpha}^{eq} - f_{\alpha}) + F_{\alpha}$ Operator C:

$$f_{lpha}(\cdot,t+\Delta t) = ilde{f}_{lpha}(\cdot,t+\Delta t) + \omega_L \Delta t \left(ilde{f}^{eq}_{lpha}(\cdot,t+\Delta t) - ilde{f}_{lpha}(\cdot,t+\Delta t)
ight) + \Delta t F_{lpha}$$

with $F_{\alpha} = 3\rho t_{\alpha} \mathbf{e}_{\alpha} \mathbf{F}/c^2$ and equilibrium function

$$f_{\alpha}^{eq}(\rho,\mathbf{u}) = \rho t_{\alpha} \left[1 + \frac{3\mathbf{e}_{\alpha}\mathbf{u}}{c^2} + \frac{9(\mathbf{e}_{\alpha}\mathbf{u})^2}{2c^4} - \frac{3\mathbf{u}^2}{2c^2} \right]$$

with $t_{\alpha} = \frac{1}{9} \left\{ 3, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac$

$$f_{\alpha}^{eq}(\rho,\mathbf{u}) = \rho t_{\alpha} \left[1 + \frac{3\mathbf{e}_{\alpha}\mathbf{u}}{c^2} + \frac{9(\mathbf{e}_{\alpha}\mathbf{u})^2}{2c^4} - \frac{3\mathbf{u}^2}{2c^2} + \frac{\mathbf{e}_{\alpha}\mathbf{u}}{3c^2} \left(\frac{9(\mathbf{e}_{\alpha}\mathbf{u})^2}{2c^4} - \frac{3\mathbf{u}^2}{2c^2} \right) \right]$$

allows higher flow velocities (up to $M \approx 0.3 - 0.4$ vs. $M \approx 0.15 - 0.2$). A Chapman-Enskog expansion shows

$$\nu = \frac{1}{3} \left(\frac{\tau_L}{\Delta t} - \frac{1}{2} \right) c \Delta x$$

Structured AMR	Adaptive LBM	LES	Aerodynamics	Non-Cartesian LBM	Conclusions
	00000000				
Construction principles					

Initial and boundary conditions

• Initial conditions are constructed as $f^{eq}_{\alpha}(\rho(t=0), \mathbf{u}(t=0))$

Boundary conditions (applied before streaming step)

- Outlet basically copies all distributions (zero gradient)
- Inlet and pressure boundary conditions use f^{eq}_α

Structured AMR	Adaptive LBM	LES	Aerodynamics	Non-Cartesian LBM	Conclusions
	00000000				
Construction principles					

Initial and boundary conditions

• Initial conditions are constructed as $f^{eq}_{\alpha}(\rho(t=0), \mathbf{u}(t=0))$

Boundary conditions (applied before streaming step)

- Outlet basically copies all distributions (zero gradient)
- Inlet and pressure boundary conditions use f^{eq}_α

Complex geometry:

- Use level set method as before to construct macro-values in embedded boundary cells by interpolation / extrapolation [Deiterding, 2011].
- ▶ Distance function φ , normal $\mathbf{n} = \nabla \varphi / |\nabla \varphi|$. Triangulated meshes use CPT algorithm [Mauch, 2003].
- Construct macro-velocity in ghost cells for no-slip BC as $\mathbf{u}'=2\mathbf{w}-\mathbf{u}$
- ▶ Then use $f_{\alpha}^{eq}(\rho', \mathbf{u}')$ or interpolated bounce-back [Bouzidi et al., 2001] to construct distributions in embedded ghost cells

Structured AMR	Adaptive LBM	LES	Aerodynamics	Non-Cartesian LBM	Conclusions
	00000000				
Construction principles					
Adaptive	LBM				

1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := CT(f_{\alpha}^{C,n})$

Construction principles	000000000	0000000	0000000	0000	
Construction principles					
A 1					

- 1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := CT(f_{\alpha}^{C,n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.

Construction principles	000000000	0000000	0000000	0000	
Construction principles					
A 1					

- 1. Complete update on coarse grid: $f_{\alpha}^{\mathcal{C},n+1} := \mathcal{CT}(f_{\alpha}^{\mathcal{C},n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.

$$f^{f,n}_{\alpha,in}$$

Structured AMR	Adaptive LBM	LES	Aerodynamics	Non-Cartesian LBM	Conclusions
	00000000				
Construction principles					

- 1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := CT(f_{\alpha}^{C,n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.
- 3. $\tilde{f}^{f,n}_{\alpha} := \mathcal{T}(f^{f,n}_{\alpha})$ on whole fine mesh. $f^{f,n+1/2}_{\alpha} := \mathcal{C}(\tilde{f}^{f,n}_{\alpha})$ in interior.

$$\tilde{f}^{f,n}_{\alpha,in}$$

Structured AMR	Adaptive LBM	LES	Aerodynamics	Non-Cartesian LBM	Conclusions
	00000000				
Construction principles					

- 1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := CT(f_{\alpha}^{C,n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.
- 3. $\tilde{f}^{f,n}_{\alpha} := \mathcal{T}(f^{f,n}_{\alpha})$ on whole fine mesh. $f^{f,n+1/2}_{\alpha} := \mathcal{C}(\tilde{f}^{f,n}_{\alpha})$ in interior.
- 4. $\tilde{f}^{f,n+1/2}_{\alpha} := \mathcal{T}(f^{f,n+1/2}_{\alpha})$ on whole fine mesh. $f^{f,n+1}_{\alpha} := \mathcal{C}(\tilde{f}^{f,n+1/2}_{\alpha})$ in interior.

$$\tilde{f}^{f,n+1/2}_{\alpha,in}$$

Structured AMR	Adaptive LBM	LES	Aerodynamics	Non-Cartesian LBM	Conclusions
	00000000				
Construction principles					

- 1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := CT(f_{\alpha}^{C,n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.
- 3. $\tilde{f}_{\alpha}^{f,n} := \mathcal{T}(f_{\alpha}^{f,n})$ on whole fine mesh. $f_{\alpha}^{f,n+1/2} := \mathcal{C}(\tilde{f}_{\alpha}^{f,n})$ in interior.
- 4. $\tilde{f}^{f,n+1/2}_{\alpha} := \mathcal{T}(f^{f,n+1/2}_{\alpha})$ on whole fine mesh. $f^{f,n+1}_{\alpha} := \mathcal{C}(\tilde{f}^{f,n+1/2}_{\alpha})$ in interior.

				\mathbf{N}	\mathbf{N}	
				1	1	
				₩	₩	
				₩	₩	
1	1	₩	₩	米	米	
7	1	₩	¥	米	米	

 $\tilde{f}^{f,n+1/2}_{\alpha,in}$

 $f_{\alpha,out}^{f,n}$

Structured AMR	Adaptive LBM	LES	Aerodynamics	Non-Cartesian LBM	Conclusions
	00000000				
Construction principles					

- 1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := CT(f_{\alpha}^{C,n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.
- 3. $\tilde{f}_{\alpha}^{f,n} := \mathcal{T}(f_{\alpha}^{f,n})$ on whole fine mesh. $f_{\alpha}^{f,n+1/2} := \mathcal{C}(\tilde{f}_{\alpha}^{f,n})$ in interior.
- 4. $\tilde{f}^{f,n+1/2}_{\alpha} := \mathcal{T}(f^{f,n+1/2}_{\alpha})$ on whole fine mesh. $f^{f,n+1}_{\alpha} := \mathcal{C}(\tilde{f}^{f,n+1/2}_{\alpha})$ in interior.

				X	X	
				≯	₩	
				₩	≭	
				₩	≭	
X	₩	¥	¥	来	Ŧ	
X	¥	₩	¥	≁	1	

 $\tilde{f}^{f,n}_{\alpha out}$

Structured AMR	Adaptive LBM	LES	Aerodynamics	Non-Cartesian LBM	Conclusions
	00000000				
Construction principles					

- 1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := CT(f_{\alpha}^{C,n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.
- 3. $\tilde{f}_{\alpha}^{f,n} := \mathcal{T}(f_{\alpha}^{f,n})$ on whole fine mesh. $f_{\alpha}^{f,n+1/2} := \mathcal{C}(\tilde{f}_{\alpha}^{f,n})$ in interior.
- 4. $\tilde{f}^{f,n+1/2}_{\alpha} := \mathcal{T}(f^{f,n+1/2}_{\alpha})$ on whole fine mesh. $f^{f,n+1}_{\alpha} := \mathcal{C}(\tilde{f}^{f,n+1/2}_{\alpha})$ in interior.

 $\tilde{f}^{f,n+1/2}_{lpha,out}$

Structured AMR	Adaptive LBM	LES	Aerodynamics	Non-Cartesian LBM	Conclusions
	00000000				
Construction principles					

- 1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := CT(f_{\alpha}^{C,n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.
- 3. $\tilde{f}^{f,n}_{\alpha} := \mathcal{T}(f^{f,n}_{\alpha})$ on whole fine mesh. $f^{f,n+1/2}_{\alpha} := \mathcal{C}(\tilde{f}^{f,n}_{\alpha})$ in interior.
- 4. $\tilde{f}^{f,n+1/2}_{\alpha} := \mathcal{T}(f^{f,n+1/2}_{\alpha})$ on whole fine mesh. $f^{f,n+1}_{\alpha} := \mathcal{C}(\tilde{f}^{f,n+1/2}_{\alpha})$ in interior.

						1	1
						1	1
				₩	₩	≯	₩
				₩	₩	≯	¥
		¥	¥	米	米	ァ	凗
		×	¥	米	米	훆	凗
1	1	¥	¥	¥	¥	7	1
1	1	¥	¥	¥	¥	1	1

$$\widetilde{f}^{f,n+1/2}_{lpha,out}, \widetilde{f}^{f,n+1/2}_{lpha,in}$$

Structured AMR	Adaptive LBM	LES	Aerodynamics	Non-Cartesian LBM	Conclusions
	00000000				
Construction principles					

- 1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := CT(f_{\alpha}^{C,n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.
- 3. $\tilde{f}_{\alpha}^{f,n} := \mathcal{T}(f_{\alpha}^{f,n})$ on whole fine mesh. $f_{\alpha}^{f,n+1/2} := \mathcal{C}(\tilde{f}_{\alpha}^{f,n})$ in interior.
- 4. $\tilde{f}^{f,n+1/2}_{\alpha} := \mathcal{T}(f^{f,n+1/2}_{\alpha})$ on whole fine mesh. $f^{f,n+1}_{\alpha} := \mathcal{C}(\tilde{f}^{f,n+1/2}_{\alpha})$ in interior.

5. Average $\tilde{f}_{\alpha,out}^{f,n+1/2}$ (inner halo layer), $\tilde{f}_{\alpha,out}^{f,n}$ (outer halo layer) to obtain $\tilde{f}_{\alpha,out}^{C,n}$.

Structured AMR	Adaptive LBM	LES	Aerodynamics	Non-Cartesian LBM	Conclusions
	00000000				
Construction principles					

- 1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := CT(f_{\alpha}^{C,n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.
- 3. $\tilde{f}_{\alpha}^{f,n} := \mathcal{T}(f_{\alpha}^{f,n})$ on whole fine mesh. $f_{\alpha}^{f,n+1/2} := \mathcal{C}(\tilde{f}_{\alpha}^{f,n})$ in interior.
- 4. $\tilde{f}_{\alpha}^{f,n+1/2} := \mathcal{T}(f_{\alpha}^{f,n+1/2})$ on whole fine mesh. $f_{\alpha}^{f,n+1} := \mathcal{C}(\tilde{f}_{\alpha}^{f,n+1/2})$ in interior.

5. Average $\tilde{f}_{\alpha,out}^{f,n+1/2}$ (inner halo layer), $\tilde{f}_{\alpha,out}^{f,n}$ (outer halo layer) to obtain $\tilde{f}_{\alpha,out}^{C,n}$.

Structured AMR	Adaptive LBM	LES	Aerodynamics	Non-Cartesian LBM	Conclusions
	00000000				
Construction principles					

- 1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := CT(f_{\alpha}^{C,n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.
- 3. $\tilde{f}_{\alpha}^{f,n} := \mathcal{T}(f_{\alpha}^{f,n})$ on whole fine mesh. $f_{\alpha}^{f,n+1/2} := \mathcal{C}(\tilde{f}_{\alpha}^{f,n})$ in interior.
- 4. $\tilde{f}^{f,n+1/2}_{\alpha} := \mathcal{T}(f^{f,n+1/2}_{\alpha})$ on whole fine mesh. $f^{f,n+1}_{\alpha} := \mathcal{C}(\tilde{f}^{f,n+1/2}_{\alpha})$ in interior.

- 5. Average $\tilde{f}_{\alpha,out}^{f,n+1/2}$ (inner halo layer), $\tilde{f}_{\alpha,out}^{f,n}$ (outer halo layer) to obtain $\tilde{f}_{\alpha,out}^{C,n}$.
- 6. Revert transport into halos: $\bar{f}_{\alpha,out}^{C,n} := \mathcal{T}^{-1}(\tilde{f}_{\alpha,out}^{C,n})$

Structured AMR	Adaptive LBM	LES	Aerodynamics	Non-Cartesian LBM	Conclusions
	00000000				
Construction principles					

- 1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := CT(f_{\alpha}^{C,n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.
- 3. $\tilde{f}_{\alpha}^{f,n} := \mathcal{T}(f_{\alpha}^{f,n})$ on whole fine mesh. $f_{\alpha}^{f,n+1/2} := \mathcal{C}(\tilde{f}_{\alpha}^{f,n})$ in interior.
- 4. $\tilde{f}^{f,n+1/2}_{\alpha} := \mathcal{T}(f^{f,n+1/2}_{\alpha})$ on whole fine mesh. $f^{f,n+1}_{\alpha} := \mathcal{C}(\tilde{f}^{f,n+1/2}_{\alpha})$ in interior.

- 5. Average $\tilde{f}_{\alpha,out}^{f,n+1/2}$ (inner halo layer), $\tilde{f}_{\alpha,out}^{f,n}$ (outer halo layer) to obtain $\tilde{f}_{\alpha,out}^{C,n}$.
- 6. Revert transport into halos: $\bar{f}_{\alpha,out}^{C,n} := \mathcal{T}^{-1}(\tilde{f}_{\alpha,out}^{C,n})$
- 7. Parallel synchronization of $f_{\alpha}^{C,n}, \bar{f}_{\alpha,out}^{C,n}$

Structured AMR	Adaptive LBM	LES	Aerodynamics	Non-Cartesian LBM	Conclusions				
	00000000								
Construction principles									

- 1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := CT(f_{\alpha}^{C,n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.
- 3. $\tilde{f}_{\alpha}^{f,n} := \mathcal{T}(f_{\alpha}^{f,n})$ on whole fine mesh. $f_{\alpha}^{f,n+1/2} := \mathcal{C}(\tilde{f}_{\alpha}^{f,n})$ in interior.
- 4. $\tilde{f}^{f,n+1/2}_{\alpha} := \mathcal{T}(f^{f,n+1/2}_{\alpha})$ on whole fine mesh. $f^{f,n+1}_{\alpha} := \mathcal{C}(\tilde{f}^{f,n+1/2}_{\alpha})$ in interior.

- 5. Average $\tilde{f}_{\alpha,out}^{f,n+1/2}$ (inner halo layer), $\tilde{f}_{\alpha,out}^{f,n}$ (outer halo layer) to obtain $\tilde{f}_{\alpha,out}^{C,n}$.
- 6. Revert transport into halos: $\bar{f}_{\alpha,out}^{C,n} := \mathcal{T}^{-1}(\tilde{f}_{\alpha,out}^{C,n})$
- 7. Parallel synchronization of $f_{\alpha}^{C,n}, \overline{f}_{\alpha,out}^{C,n}$
- 8. Cell-wise update where correction is needed: $f_{\alpha}^{C,n+1} := CT(f_{\alpha}^{C,n}, \bar{f}_{\alpha,out}^{C,n})$

Structured AMR	Adaptive LBM	LES	Aerodynamics	Non-Cartesian LBM	Conclusions
	00000000				
Construction principles					

- 1. Complete update on coarse grid: $f_{\alpha}^{\mathcal{C},n+1} := \mathcal{CT}(f_{\alpha}^{\mathcal{C},n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.
- 3. $\tilde{f}_{\alpha}^{f,n} := \mathcal{T}(f_{\alpha}^{f,n})$ on whole fine mesh. $f_{\alpha}^{f,n+1/2} := \mathcal{C}(\tilde{f}_{\alpha}^{f,n})$ in interior.
- 4. $\tilde{f}^{f,n+1/2}_{\alpha} := \mathcal{T}(f^{f,n+1/2}_{\alpha})$ on whole fine mesh. $f^{f,n+1}_{\alpha} := \mathcal{C}(\tilde{f}^{f,n+1/2}_{\alpha})$ in interior.

- 5. Average $\tilde{f}_{\alpha,out}^{f,n+1/2}$ (inner halo layer), $\tilde{f}_{\alpha,out}^{f,n}$ (outer halo layer) to obtain $\tilde{f}_{\alpha,out}^{C,n}$.
- 6. Revert transport into halos: $\bar{f}_{\alpha,out}^{C,n} := \mathcal{T}^{-1}(\tilde{f}_{\alpha,out}^{C,n})$
- 7. Parallel synchronization of $f_{\alpha}^{C,n}, \overline{f}_{\alpha,out}^{C,n}$
- 8. Cell-wise update where correction is needed: $f_{\alpha}^{C,n+1} := CT(f_{\alpha}^{C,n}, \overline{f}_{\alpha,out}^{C,n})$

Algorithm equivalent to [Chen et al., 2006]. [Deiterding and Wood, 2016]
Oscillating cylinder - Setup

Motion imposed on cylinder

Case	A_t	$f_t = f_{\theta}$	V _R	U_{∞}	Re
1a	D/4	0.6	0.5	0.0606	1322
1b	D/2	0.6	1.0	0.0606	1322
2a	D/4	3.0	0.5	0.3030	6310
2b	D/2	3.0	1.0	0.3030	6310

 $y(t) = A_t \sin(2\pi f_t t), \qquad \theta(t) = A_\theta \sin(2\pi f_\theta t)$

- Setup follows [Nazarinia et al., 2012], cf. [Laloglu and Deiterding, 2017]. Here A_θ = 1 for all cases.
- Natural frequency of cylinder $f_N \approx 0.6154 \, {\rm s}^{-1}$.
- Strouhal number $St_t = f_t D / U_{\infty} \approx 0.198$ for all cases.
- Chosen here $D = 20 \,\mathrm{mm}$
- ► Fluid is water with $c_s = 1482 \text{ m/s}$, $\nu = 9.167 \cdot 10^{-7} \text{ m}^2/\text{s}$, $\rho = 1016 \text{ kg/m}^3$

 \blacktriangleright Constant coefficient model deactivated for Case 1, active for Case 2 with $C_{sm}=0.2$

- Visualization enlargement of cylinder region
- ▶ Base mesh is discretized with 320 \times 160 cells, 3 additional levels with factor $r_l = 2, 2, 2$
- ▶ 80 cells within *D* on highest level
- ▶ Speedup S = 2000

- Visualization enlargement of cylinder region
- ▶ Base mesh is discretized with 320 × 160 cells, 3 additional levels with factor $r_l = 2, 2, 2$
- 80 cells within D on highest level
- ▶ Speedup *S* = 2000

- Visualization enlargement of cylinder region
- ▶ Base mesh is discretized with 320 × 160 cells, 3 additional levels with factor $r_l = 2, 2, 2$
- ▶ 80 cells within *D* on highest level
- ▶ Speedup S = 2000

- Visualization enlargement of cylinder region
- ▶ Base mesh is discretized with 320×160 cells, 3 additional levels with factor $r_l = 2, 2, 2$
- ▶ 80 cells within *D* on highest level
- ▶ Speedup S = 2000

- Visualization enlargement of cylinder region
- ▶ Base mesh is discretized with 320 × 160 cells, 3 additional levels with factor $r_l = 2, 2, 2$
- ▶ 80 cells within *D* on highest level
- ▶ Speedup *S* = 2000

- Visualization enlargement of cylinder region
- ▶ Base mesh is discretized with 320×160 cells, 3 additional levels with factor $r_1 = 2, 2, 2$
- 80 cells within D on highest level
- Speedup *S* = 2000
- Basically identical setup in commercial code XFlow for comparison

Increase of rotational velocity leads to formation of a vortex pair plus single vortex. Drag and lift amplitude roughly doubled.

Laminar results in good agreement with experiments of [Nazarinia et al., 2012].

• Oscillation period: $T = 1/f_t = 0.33$ s. 10 regular vortices in 1.67 s.

 CPU time on 6 cores for AMROC: 635.8 s, XFlow ~ 50 % more expensive when normalized based on number of cells

Structured AMR	Adaptive LBM	LES	Aerodynamics	Non-Cartesian LBM	Conclusions
	00000000				
Verification for oscillating	g 2d cylinders				

Computational performance

Flow type			Total	Total cells		Δt [s] R o		CPU time [s]	
	Case		AMROC	XFlow			У	AMROC	XFlow
Laminar	1a	0.0015	85982	84778	3.33	1322	0	161.89	176
Laminar	1b	0.0015	91774	90488	3.33	1322	0	165.97	183
Turbulont	2a	0.00031	232840	216452	1.66	6310	2.4	635.8	887
Turbulent	2b	0.00031	255582	246366	1.66	6310	2.6	933.2	1325

- [Laloglu and Deiterding, 2017]
- Intel-Xeon-3.50-GHz desktop workstation with 6 cores, communication through MPI
- Same base mesh and always three additional refinement levels
- AMROC: single-relaxation time LBM, block-based mesh adaptation
- XFlow: multi-relaxation time LBM, cell-based mesh adaptation

Structured AMR	Adaptive LBM	LES	Aerodynamics	Non-Cartesian LBM	Conclusions
	00000000				
Verification for oscillating 2d	cylinders				

Computational performance

Flow type			Total cells		Δt [c] Ro		×+	CPU time [s]	
		AMROC	XFlow			У	AMROC	XFlow	
Laminar	1a	0.0015	85982	84778	3.33	1322	0	161.89	176
Laminar	1b	0.0015	91774	90488	3.33	1322	0	165.97	183
Turbulont	2a	0.00031	232840	216452	1.66	6310	2.4	635.8	887
Turbulent	2b	0.00031	255582	246366	1.66	6310	2.6	933.2	1325

- [Laloglu and Deiterding, 2017]
- Intel-Xeon-3.50-GHz desktop workstation with 6 cores, communication through MPI
- Same base mesh and always three additional refinement levels
- AMROC: single-relaxation time LBM, block-based mesh adaptation
- XFlow: multi-relaxation time LBM, cell-based mesh adaptation
- $\blacktriangleright\,$ AMROC uses $\sim 7.5\,\%$ more cells on average more cells
- Normalized on cell number Case 2a is 50 % more expensive for XFlow than for AMROC-LBM
- Case 2b is 42 % more expensive in CPU time alone

Structured AMR	Adaptive LBM	LES	Aerodynamics	Non-Cartesian LBM	Conclusions
		000000			
LES models					

Pursue a large-eddy simulation approach with \overline{f}_{α} and $\overline{f}_{\alpha}^{eq}$, i.e.

1.)
$$\overline{f}_{\alpha}(\mathbf{x} + \mathbf{e}_{\alpha}\Delta t, t + \Delta t) = \overline{f}_{\alpha}(\mathbf{x}, t)$$

2.) $\overline{f}_{\alpha}(\cdot, t + \Delta t) = \tilde{\overline{f}}_{\alpha}(\cdot, t + \Delta t) + \frac{1}{\tau^{*}}\Delta t \left(\tilde{\overline{f}}_{\alpha}^{eq}(\cdot, t + \Delta t) - \tilde{\overline{f}}_{\alpha}(\cdot, t + \Delta t) \right)$

Structured AMR	Adaptive LBM	LES	Aerodynamics	Non-Cartesian LBM	Conclusions
		• 0 00000			
LES models					

Pursue a large-eddy simulation approach with \overline{f}_{α} and $\overline{f}_{\alpha}^{eq}$, i.e. 1.) $\tilde{\overline{f}}_{\alpha}(\mathbf{x} + \mathbf{e}_{\alpha}\Delta t, t + \Delta t) = \overline{f}_{\alpha}(\mathbf{x}, t)$ 2.) $\overline{f}_{\alpha}(\cdot, t + \Delta t) = \tilde{\overline{f}}_{\alpha}(\cdot, t + \Delta t) + \frac{1}{\tau^{*}}\Delta t \left(\tilde{\overline{f}}_{\alpha}^{eq}(\cdot, t + \Delta t) - \tilde{\overline{f}}_{\alpha}(\cdot, t + \Delta t) \right)$ Effective viscosity: $\nu^{*} = \nu + \nu_{t} = \frac{1}{3} \left(\frac{\tau_{L}^{*}}{\Delta t} - \frac{1}{2} \right) c\Delta x$ with $\tau_{L}^{*} = \tau_{L} + \tau_{t}$

Structured AMR	Adaptive LBM	LES	Aerodynamics	Non-Cartesian LBM	Conclusions
		000000			
LES models					

Pursue a large-eddy simulation approach with \overline{f}_{α} and $\overline{f}_{\alpha}^{eq}$, i.e. 1.) $\tilde{\overline{f}}_{\alpha}(\mathbf{x} + \mathbf{e}_{\alpha}\Delta t, t + \Delta t) = \overline{f}_{\alpha}(\mathbf{x}, t)$ 2.) $\overline{f}_{\alpha}(\cdot, t + \Delta t) = \tilde{\overline{f}}_{\alpha}(\cdot, t + \Delta t) + \frac{1}{\tau^{\star}}\Delta t \left(\tilde{\overline{f}}_{\alpha}^{eq}(\cdot, t + \Delta t) - \tilde{\overline{f}}_{\alpha}(\cdot, t + \Delta t)\right)$ Effective viscosity: $\nu^{\star} = \nu + \nu_{t} = \frac{1}{3}\left(\frac{\tau_{L}^{\star}}{\Delta t} - \frac{1}{2}\right)c\Delta x$ with $\tau_{L}^{\star} = \tau_{L} + \tau_{t}$ Use Smagorinsky model to evaluate ν_{t} , e.g., $\nu_{t} = (C_{sm}\Delta x)^{2}|\overline{\mathbf{S}}|$, where

$$\overline{\mathbf{S}}| = \sqrt{2\sum_{i,j}\overline{S}_{ij}\overline{S}_{ij}}$$

The filtered strain rate tensor $\overline{S}_{ij} = (\partial_j \overline{u}_i + \partial_i \overline{u}_j)/2$ can be computed as a second moment as

$$\overline{S}_{ij} = \frac{\overline{\Sigma}_{ij}}{2\rho c_s^2 \tau_L^* \left(1 - \frac{\omega_L \Delta t}{2}\right)} = \frac{1}{2\rho c_s^2 \tau_L^*} \sum_{\alpha} e_{\alpha i} e_{\alpha j} (\overline{f}_{\alpha}^{eq} - \overline{f}_{\alpha})$$

Structured AMR	Adaptive LBM	LES	Aerodynamics	Non-Cartesian LBM	Conclusions
		000000			
LES models					

Pursue a large-eddy simulation approach with \overline{f}_{α} and $\overline{f}_{\alpha}^{eq}$, i.e. 1.) $\tilde{\overline{f}}_{\alpha}(\mathbf{x} + \mathbf{e}_{\alpha}\Delta t, t + \Delta t) = \overline{f}_{\alpha}(\mathbf{x}, t)$ 2.) $\overline{f}_{\alpha}(\cdot, t + \Delta t) = \tilde{\overline{f}}_{\alpha}(\cdot, t + \Delta t) + \frac{1}{\tau^{\star}}\Delta t \left(\tilde{\overline{f}}_{\alpha}^{eq}(\cdot, t + \Delta t) - \tilde{\overline{f}}_{\alpha}(\cdot, t + \Delta t)\right)$ Effective viscosity: $\nu^{\star} = \nu + \nu_{t} = \frac{1}{3}\left(\frac{\tau_{L}^{\star}}{\Delta t} - \frac{1}{2}\right)c\Delta x$ with $\tau_{L}^{\star} = \tau_{L} + \tau_{t}$ Use Smagorinsky model to evaluate ν_{t} , e.g., $\nu_{t} = (C_{sm}\Delta x)^{2}|\overline{\mathbf{S}}|$, where

$$\overline{\mathbf{S}}| = \sqrt{2\sum_{i,j}\overline{S}_{ij}\overline{S}_{ij}}$$

The filtered strain rate tensor $\overline{S}_{ij} = (\partial_j \overline{u}_i + \partial_i \overline{u}_j)/2$ can be computed as a second moment as

$$\overline{S}_{ij} = \frac{\overline{\Sigma}_{ij}}{2\rho c_s^2 \tau_L^{\star} \left(1 - \frac{\omega_L \Delta t}{2}\right)} = \frac{1}{2\rho c_s^2 \tau_L^{\star}} \sum_{\alpha} e_{\alpha i} e_{\alpha j} (\overline{f}_{\alpha}^{eq} - \overline{f}_{\alpha})$$

 τ_t can be obtained as [Yu, 2004, Hou et al., 1996]

$$\tau_t = \frac{1}{2} \left(\sqrt{\tau_L^2 + 18\sqrt{2}(\rho_0 c^2)^{-1} C_{sm}^2 \Delta x |\overline{\mathbf{S}}|} - \tau_L \right)$$

Structured AMR	Adaptive LBM	LES	Aerodynamics	Non-Cartesian LBM	Conclusions
		000000			
LES models					

Further LES models

Dynamic Smagorinsky model (DSMA)

$$\begin{split} C_{sm}(\mathbf{x},t)^2 &= -\frac{1}{2} \frac{\langle L_{ij} M_{ij} \rangle}{\langle M_{ij} M_{ij} \rangle} \\ L_{ij} &= \mathcal{T}_{ij} - \hat{\tau}_{ij} = \widehat{u_i u_j} - \hat{u}_i \hat{u}_j \qquad M_{ij} = \widehat{\Delta x}^2 |\widehat{\mathbf{S}}| \hat{\overline{\mathbf{S}}}_{ij} - \Delta x^2 |\widehat{\mathbf{S}}| \hat{\overline{\mathbf{S}}}_{ij} \end{split}$$

No van Driest damping implemented yet!

Structured AMR	Adaptive LBM	LES	Aerodynamics	Non-Cartesian LBM	Conclusions
		000000			
LES models					

Further LES models

Dynamic Smagorinsky model (DSMA)

$$\begin{split} C_{sm}(\mathbf{x},t)^2 &= -\frac{1}{2} \frac{\langle L_{ij} M_{ij} \rangle}{\langle M_{ij} M_{ij} \rangle} \\ L_{ij} &= T_{ij} - \widehat{\tau}_{ij} = \widehat{\overline{u}_i u_j} - \widehat{\overline{u}}_i \widehat{\overline{u}}_j \qquad M_{ij} = \widehat{\Delta x}^2 |\widehat{\mathbf{S}}| \widehat{\overline{S}}_{ij} - \Delta x^2 |\widehat{\mathbf{S}}| \widehat{\overline{S}}_{ij} \end{split}$$
No van Driest damping implemented yet!

Wall-Adapting Local Eddy-viscosity model (WALE)

$$u_t = (C_w \Delta x)^2 OP_{WALE}, \quad ext{where } C_w = 0.5$$

WALE turbulence time-scale

$$\begin{split} OP_{WALE} &= \frac{\left(\mathcal{J}_{ij}\mathcal{J}_{ij}\right)^{\frac{3}{2}}}{\left(\overline{S}_{ij}\overline{S}_{ij}\right)^{\frac{5}{2}} + \left(\mathcal{J}_{ij}\mathcal{J}_{ij}\right)^{\frac{5}{4}}}\\ \mathcal{J}_{ij} &= \overline{S}_{ik}\overline{S}_{kj} + \overline{\Omega}_{ik}\overline{\Omega}_{kj} - \frac{1}{3}\delta_{ij}\left(\overline{S}_{mn}\overline{S}_{mn} - \overline{\Omega}_{mn}\overline{\Omega}_{mn}\right)\\ \end{split}$$
Effective relaxation time (see previous slide):
$$\tau_{L}^{\star} &= \frac{(\nu + \nu_{t}) + \Delta t c_{s}^{2}/2}{c_{s}^{2}} \end{split}$$

 Structured AMR
 Adaptive LBM
 LES
 Aerodynamics
 Non-Cartesian LBM
 Conclusions

 00
 00000000
 0000000
 0000000
 0
 00
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Forced homogeneous isotropic turbulence

- Fourier representation
- Periodic boundaries, uniform mesh
- Use of external forcing term, i.e., result independent of initial conditions

Forcing:

$$\begin{split} F_{x} &= 2A \Big(\frac{\kappa_{y} \kappa_{z}}{|\kappa|^{2}} \Big) G(\kappa_{x}, \kappa_{y}, \kappa_{z}) \\ F_{y} &= -A \Big(\frac{\kappa_{x} \kappa_{z}}{|\kappa|^{2}} \Big) G(\kappa_{x}, \kappa_{y}, \kappa_{z}) \\ F_{z} &= -A \Big(\frac{\kappa_{x} \kappa_{y}}{|\kappa|^{2}} \Big) G(\kappa_{x}, \kappa_{y}, \kappa_{z}) \end{split}$$

with phase

$$G(\kappa_x, \kappa_y, \kappa_z) = \sin\left(\frac{2\pi x}{L}\kappa_x + \frac{2\pi y}{L}\kappa_y + \frac{2\pi z}{L}\kappa_z + \phi\right) \text{ for } (0 < \kappa_i \le 2) \text{ and } \phi$$
 being a random phase value.

 Structured AMR
 Adaptive LBM
 LES
 Aerodynamics
 Non-Cartesian LBM
 Conclusions

 00
 00000000
 0000000
 0000000
 0
 00
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Forced homogeneous isotropic turbulence

- Fourier representation
- Periodic boundaries, uniform mesh
- Use of external forcing term, i.e., result independent of initial conditions

Forcing:

$$\begin{split} F_{x} &= 2A \Big(\frac{\kappa_{y} \kappa_{z}}{|\kappa|^{2}} \Big) G(\kappa_{x}, \kappa_{y}, \kappa_{z}) \\ F_{y} &= -A \Big(\frac{\kappa_{x} \kappa_{z}}{|\kappa|^{2}} \Big) G(\kappa_{x}, \kappa_{y}, \kappa_{z}) \\ F_{z} &= -A \Big(\frac{\kappa_{x} \kappa_{y}}{|\kappa|^{2}} \Big) G(\kappa_{x}, \kappa_{y}, \kappa_{z}) \end{split}$$

with phase

$$G(\kappa_x, \kappa_y, \kappa_z) = \sin\left(\frac{2\pi x}{L}\kappa_x + \frac{2\pi y}{L}\kappa_y + \frac{2\pi z}{L}\kappa_z + \phi\right) \text{ for } (0 < \kappa_i \le 2) \text{ and } \phi$$
 being a random phase value.

 Structured AMR
 Adaptive LBM
 LES
 Aerodynamics
 Non-Cartesian LBM
 Conclusions

 00
 0000000
 0000000
 000000
 0
 00
 0

 Verification for homogeneous isotropic turbulence

Forced homogeneous isotropic turbulence

- Fourier representation
- Periodic boundaries, uniform mesh
- Use of external forcing term, i.e., result independent of initial conditions

Forcing:

$$\begin{split} F_{x} &= 2A\Big(\frac{\kappa_{y}\kappa_{z}}{|\kappa|^{2}}\Big)G\big(\kappa_{x},\kappa_{y},\kappa_{z}\big)\\ F_{y} &= -A\Big(\frac{\kappa_{x}\kappa_{z}}{|\kappa|^{2}}\Big)G\big(\kappa_{x},\kappa_{y},\kappa_{z}\big)\\ F_{z} &= -A\Big(\frac{\kappa_{x}\kappa_{y}}{|\kappa|^{2}}\Big)G\big(\kappa_{x},\kappa_{y},\kappa_{z}\big) \end{split}$$

with phase

$$G(\kappa_x, \kappa_y, \kappa_z) = \sin\left(\frac{2\pi x}{L}\kappa_x + \frac{2\pi y}{L}\kappa_y + \frac{2\pi z}{L}\kappa_z + \phi\right) \text{ for } (0 < \kappa_i \le 2) \text{ and } \phi$$
 being a random phase value.

 Structured AMR
 Adaptive LBM
 LES
 Aerodynamics
 Non-Cartesian LBM
 Conclusions

 00
 00000000
 0000000
 0000000
 0
 00
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Forced homogeneous isotropic turbulence

- Fourier representation
- Periodic boundaries, uniform mesh
- Use of external forcing term, i.e., result independent of initial conditions

Forcing:

$$\begin{split} F_{x} &= 2A \Big(\frac{\kappa_{y} \kappa_{z}}{|\kappa|^{2}} \Big) G(\kappa_{x}, \kappa_{y}, \kappa_{z}) \\ F_{y} &= -A \Big(\frac{\kappa_{x} \kappa_{z}}{|\kappa|^{2}} \Big) G(\kappa_{x}, \kappa_{y}, \kappa_{z}) \\ F_{z} &= -A \Big(\frac{\kappa_{x} \kappa_{y}}{|\kappa|^{2}} \Big) G(\kappa_{x}, \kappa_{y}, \kappa_{z}) \end{split}$$

with phase

$$G(\kappa_x, \kappa_y, \kappa_z) = \sin\left(\frac{2\pi x}{L}\kappa_x + \frac{2\pi y}{L}\kappa_y + \frac{2\pi z}{L}\kappa_z + \phi\right) \text{ for } (0 < \kappa_i \le 2) \text{ and } \phi$$
 being a random phase value.

 Structured AMR
 Adaptive LBM
 LES
 Aerodynamics
 Non-Cartesian LBM
 Conclusions

 00
 00000000
 0000000
 000000
 0
 0000000
 0

 Verification for homogeneous isotropic turbulence
 Verification for homogeneous isotropic turbulence

Forced homogeneous isotropic turbulence

- Fourier representation
- Periodic boundaries, uniform mesh
- Use of external forcing term, i.e., result independent of initial conditions

Forcing:

$$\begin{split} F_{x} &= 2A \Big(\frac{\kappa_{y} \kappa_{z}}{|\kappa|^{2}} \Big) G(\kappa_{x}, \kappa_{y}, \kappa_{z}) \\ F_{y} &= -A \Big(\frac{\kappa_{x} \kappa_{z}}{|\kappa|^{2}} \Big) G(\kappa_{x}, \kappa_{y}, \kappa_{z}) \\ F_{z} &= -A \Big(\frac{\kappa_{x} \kappa_{y}}{|\kappa|^{2}} \Big) G(\kappa_{x}, \kappa_{y}, \kappa_{z}) \end{split}$$

with phase

$$G(\kappa_x, \kappa_y, \kappa_z) = \sin\left(\frac{2\pi x}{L}\kappa_x + \frac{2\pi y}{L}\kappa_y + \frac{2\pi z}{L}\kappa_z + \phi\right) \text{ for } (0 < \kappa_i \le 2) \text{ and } \phi$$
 being a random phase value.

R. Deiterding et al. - Adaptive lattice Boltzmann methods in AMROC

 Structured AMR
 Adaptive LBM
 LES
 Aerodynamics
 Non-Cartesian LBM
 Conclusions

 00
 00000000
 0000000
 000000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0</

Forced homogeneous isotropic turbulence

- Fourier representation
- Periodic boundaries, uniform mesh
- Use of external forcing term, i.e., result independent of initial conditions

Forcing:

$$\begin{split} F_{x} &= 2A \Big(\frac{\kappa_{y} \kappa_{z}}{|\kappa|^{2}} \Big) G(\kappa_{x}, \kappa_{y}, \kappa_{z}) \\ F_{y} &= -A \Big(\frac{\kappa_{x} \kappa_{z}}{|\kappa|^{2}} \Big) G(\kappa_{x}, \kappa_{y}, \kappa_{z}) \\ F_{z} &= -A \Big(\frac{\kappa_{x} \kappa_{y}}{|\kappa|^{2}} \Big) G(\kappa_{x}, \kappa_{y}, \kappa_{z}) \end{split}$$

with phase

$$G(\kappa_x, \kappa_y, \kappa_z) = \sin\left(\frac{2\pi x}{L}\kappa_x + \frac{2\pi y}{L}\kappa_y + \frac{2\pi z}{L}\kappa_z + \phi\right) \text{ for } (0 < \kappa_i \le 2) \text{ and } \phi$$
 being a random phase value.

R. Deiterding et al. - Adaptive lattice Boltzmann methods in AMROC

 Structured AMR
 Adaptive LBM
 LES
 Aerodynamics
 Non-Cartesian LBM
 Conclusions

 00
 0000000
 0000000
 0000000
 0
 0000
 0
 0000000
 0
 0000000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Forced homogeneous isotropic turbulence

- Fourier representation
- Periodic boundaries, uniform mesh
- Use of external forcing term, i.e., result independent of initial conditions

Forcing:

$$\begin{split} F_{x} &= 2A\Big(\frac{\kappa_{y}\kappa_{z}}{|\kappa|^{2}}\Big)G\big(\kappa_{x},\kappa_{y},\kappa_{z}\big)\\ F_{y} &= -A\Big(\frac{\kappa_{x}\kappa_{z}}{|\kappa|^{2}}\Big)G\big(\kappa_{x},\kappa_{y},\kappa_{z}\big)\\ F_{z} &= -A\Big(\frac{\kappa_{x}\kappa_{y}}{|\kappa|^{2}}\Big)G\big(\kappa_{x},\kappa_{y},\kappa_{z}\big) \end{split}$$

with phase

$$G(\kappa_x, \kappa_y, \kappa_z) = \sin\left(\frac{2\pi x}{L}\kappa_x + \frac{2\pi y}{L}\kappa_y + \frac{2\pi z}{L}\kappa_z + \phi\right) \text{ for } (0 < \kappa_i \le 2) \text{ and } \phi$$
 being a random phase value.

R. Deiterding et al. - Adaptive lattice Boltzmann methods in AMROC

 Structured AMR
 Adaptive LBM
 LES
 Aerodynamics
 Non-Cartesian LBM
 Conclusions

 00
 0000000
 0000000
 0000000
 0
 0000
 0
 0000000
 0
 0000000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Forced homogeneous isotropic turbulence

- Fourier representation
- Periodic boundaries, uniform mesh
- Use of external forcing term, i.e., result independent of initial conditions

Forcing:

$$\begin{split} F_{x} &= 2A\Big(\frac{\kappa_{y}\kappa_{z}}{|\kappa|^{2}}\Big)G\big(\kappa_{x},\kappa_{y},\kappa_{z}\big)\\ F_{y} &= -A\Big(\frac{\kappa_{x}\kappa_{z}}{|\kappa|^{2}}\Big)G\big(\kappa_{x},\kappa_{y},\kappa_{z}\big)\\ F_{z} &= -A\Big(\frac{\kappa_{x}\kappa_{y}}{|\kappa|^{2}}\Big)G\big(\kappa_{x},\kappa_{y},\kappa_{z}\big) \end{split}$$

Iso-surface $||\mathbf{u}||/\langle u_{rms}\rangle = 2$

with phase

$$G(\kappa_x, \kappa_y, \kappa_z) = \sin\left(\frac{2\pi x}{L}\kappa_x + \frac{2\pi y}{L}\kappa_y + \frac{2\pi z}{L}\kappa_z + \phi\right) \text{ for } (0 < \kappa_i \le 2) \text{ and } \phi$$
 being a random phase value.

 Structured AMR
 Adaptive LBM
 LES
 Aerodynamics
 Non-Cartesian LBM
 Conclusions

 00
 0000000
 0000000
 000000
 0
 0000
 0

 Verification for homogeneous isotropic turbulence

 </t

Forced homogeneous isotropic turbulence

- Fourier representation
- Periodic boundaries, uniform mesh
- Use of external forcing term, i.e., result independent of initial conditions

Forcing:

$$\begin{split} F_{x} &= 2A\Big(\frac{\kappa_{y}\kappa_{z}}{|\kappa|^{2}}\Big)G\big(\kappa_{x},\kappa_{y},\kappa_{z}\big)\\ F_{y} &= -A\Big(\frac{\kappa_{x}\kappa_{z}}{|\kappa|^{2}}\Big)G\big(\kappa_{x},\kappa_{y},\kappa_{z}\big)\\ F_{z} &= -A\Big(\frac{\kappa_{x}\kappa_{y}}{|\kappa|^{2}}\Big)G\big(\kappa_{x},\kappa_{y},\kappa_{z}\big) \end{split}$$

Iso-surface $||\mathbf{u}||/\langle u_{rms}\rangle = 2$

with phase

$$G(\kappa_x, \kappa_y, \kappa_z) = \sin\left(\frac{2\pi x}{L}\kappa_x + \frac{2\pi y}{L}\kappa_y + \frac{2\pi z}{L}\kappa_z + \phi\right) \text{ for } (0 < \kappa_i \le 2) \text{ and } \phi$$
 being a random phase value.

 Structured AMR
 Adaptive LBM
 LES
 Aerodynamics
 Non-Cartesian LBM
 Conclusions

 00
 0000000
 0000000
 0000000
 0
 0000
 0
 0000000
 0
 0000000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Forced homogeneous isotropic turbulence

- Fourier representation
- Periodic boundaries, uniform mesh
- Use of external forcing term, i.e., result independent of initial conditions

Forcing:

$$\begin{split} F_{x} &= 2A\Big(\frac{\kappa_{y}\kappa_{z}}{|\kappa|^{2}}\Big)G\big(\kappa_{x},\kappa_{y},\kappa_{z}\big)\\ F_{y} &= -A\Big(\frac{\kappa_{x}\kappa_{z}}{|\kappa|^{2}}\Big)G\big(\kappa_{x},\kappa_{y},\kappa_{z}\big)\\ F_{z} &= -A\Big(\frac{\kappa_{x}\kappa_{y}}{|\kappa|^{2}}\Big)G\big(\kappa_{x},\kappa_{y},\kappa_{z}\big) \end{split}$$

Iso-surface $||\mathbf{u}||/\langle u_{rms}\rangle = 2$

with phase

$$G(\kappa_x, \kappa_y, \kappa_z) = \sin\left(\frac{2\pi x}{L}\kappa_x + \frac{2\pi y}{L}\kappa_y + \frac{2\pi z}{L}\kappa_z + \phi\right) \text{ for } (0 < \kappa_i \le 2) \text{ and } \phi$$
 being a random phase value.

 Structured AMR
 Adaptive LBM
 LES
 Aerodynamics
 Non-Cartesian LBM
 Conclusions

 00
 00000000
 0000000
 0000000
 000000
 0

 Verification for homogeneous isotropic turbulence
 Verification for homogeneous isotropic turbulence
 Verification for homogeneous isotropic turbulence
 Verification for homogeneous isotropic turbulence

Comparison with model spectrum

Time-averaged energy spectrum (solid line) [$N = 128^3$ cells, $\nu = 3e^{-5}$ m²/s] against a modelled one (dashed line and the -5/3 power law (dot-dashed line).

Structured AMR	Adaptive LBM	LES	Aerodynamics	Non-Cartesian LBM	Conclusions
		0000000			
Verification for homogeneous	isotropic turbulence				

LES model spectra

Time-averaged energy spectra normalised by the turbulent kinetic energy k and the integral length scale L_{11} of LBM DNS and LES for two resolutions and DNS of the highest resolution for the viscosity value $\nu = 5 \cdot 10^{-5}$

Decaying homogeneous isotropic turbulence

 Restart DNS of 512³ resolution without forcing. Volume-averaging to 128³ cells gives DSMA and WALE initial conditions

Evolution of the turbulent kinetic energy k (left) and energy spectra at t = 68.72 (right) for DNS of 512^3 against DSMA and WALE of 128^3 cells resolution.

Structured AMR	Adaptive LBM	LES	Aerodynamics	Non-Cartesian LBM	Conclusions
		0000000			
Verification for homogeneous isotropic turbulence					

Flow field comparison

Contours of vorticity magnitude ($|\omega| = 0.18$) at t = 4.91 (left) and t = 68.72 (right) for DNS (thin blue lines) of 512³ against DSMA (dotted black lines) and WALE (thick red lines) of 128³ cells resolution

- ▶ Inflow 40 m/s. CSMA LES model active. Characteristic boundary conditions.
- To t = 0.5 s (~ 4 characteristic lengths) with 31,416 time steps on finest level in ~ 37 h on 200 cores (7389 h CPU). Channel: $15 \text{ m} \times 5 \text{ m} \times 3.3 \text{ m}$

- ▶ Inflow 40 m/s. CSMA LES model active. Characteristic boundary conditions.
- To t = 0.5 s (\sim 4 characteristic lengths) with 31,416 time steps on finest level in \sim 37 h on 200 cores (7389 h CPU). Channel: 15 m \times 5 m \times 3.3 m

- Inflow 40 m/s. CSMA LES model active. Characteristic boundary conditions.
 To t = 0.5 s (~ 4 characteristic lengths) with 31,416 time steps on finest level in ~ 37 h on
 - 200 cores (7389 h CPU). Channel: $15 \text{ m} \times 5 \text{ m} \times 3.3 \text{ m}$

- Inflow 40 m/s. CSMA LES model active. Characteristic boundary conditions. To t = 0.5 s (~ 4 characteristic lengths) with 31 416 time steps on finest level in
- To t = 0.5 s (~ 4 characteristic lengths) with 31,416 time steps on finest level in ~ 37 h on 200 cores (7389 h CPU). Channel: 15 m × 5 m × 3.3 m

- ▶ Inflow 40 m/s. CSMA LES model active. Characteristic boundary conditions.
- To t = 0.5 s (~ 4 characteristic lengths) with 31,416 time steps on finest level in ~ 37 h on 200 cores (7389 h CPU). Channel: $15 \text{ m} \times 5 \text{ m} \times 3.3 \text{ m}$

- ▶ Inflow 40 m/s. CSMA LES model active. Characteristic boundary conditions.
- To t = 0.5 s (\sim 4 characteristic lengths) with 31,416 time steps on finest level in \sim 37 h on 200 cores (7389 h CPU). Channel: 15 m \times 5 m \times 3.3 m

- ▶ Inflow 40 m/s. CSMA LES model active. Characteristic boundary conditions.
- To t = 0.5 s (\sim 4 characteristic lengths) with 31,416 time steps on finest level in \sim 37 h on 200 cores (7389 h CPU). Channel: 15 m \times 5 m \times 3.3 m

- ▶ Inflow 40 m/s. CSMA LES model active. Characteristic boundary conditions.
- To t = 0.5 s (\sim 4 characteristic lengths) with 31,416 time steps on finest level in \sim 37 h on 200 cores (7389 h CPU). Channel: 15 m \times 5 m \times 3.3 m

Structured AMR	Adaptive LBM	LES	Aerodynamics	Non-Cartesian LBM	Conclusions
			000000		
Vehicle geometries					

Structured AMR	Adaptive LBM	LES	Aerodynamics	Non-Cartesian LBM	Conclusions
			000000		
Vehicle geometries					

Used refinement blocks and levels (indicated by color)

- SAMR base grid $600 \times 200 \times 132$ cells, $r_{1,2,3} = 2$ yielding finest resolution of $\Delta x = 3.125$ mm
- Adaptation based on level set and scaled gradient of magnitude of vorticity vector
- 236M cells vs. 8.1 billion (uniform) at t = 0.4075 s

R. Deiterding et al. - Adaptive lattice Boltzmann methods in AMROC

Level	Grids	Cells
0	11,605	15,840,000
1	11,513	23,646,984
2	31,382	144,447,872
3	21,221	52,388,336

Structured AMR	Adaptive LBM	LES	Aerodynamics	Non-Cartesian LBM	Conclusions
			000000		
Vehicle geometries					

Used refinement blocks and levels (indicated by color)

- SAMR base grid $600 \times 200 \times 132$ cells, $r_{1,2,3} = 2$ yielding finest resolution of $\Delta x = 3.125$ mm
- Adaptation based on level set and scaled gradient of magnitude of vorticity vector
- 236M cells vs. 8.1 billion (uniform) at t = 0.4075 s

R. Deiterding et al. - Adaptive lattice Boltzmann methods in AMROC

Level	Grids	Cells
0	11,605	15,840,000
1	11,513	23,646,984
2	31,382	144,447,872
3	21,221	52,388,336

Structured AMR	Adaptive LBM	LES	Aerodynamics	Non-Cartesian LBM	Conclusions
			000000		
Vehicle geometries					

Used refinement blocks and levels (indicated by color)

- SAMR base grid $600 \times 200 \times 132$ cells, $r_{1,2,3} = 2$ yielding finest resolution of $\Delta x = 3.125$ mm
- Adaptation based on level set and scaled gradient of magnitude of vorticity vector
- 236M cells vs. 8.1 billion (uniform) at t = 0.4075 s

R. Deiterding et al. - Adaptive lattice Boltzmann methods in AMROC

Level	Grids	Cells
0	11,605	15,840,000
1	11,513	23,646,984
2	31,382	144,447,872
3	21,221	52,388,336

Structured AMR	Adaptive LBM	LES	Aerodynamics	Non-Cartesian LBM	Conclusions
			000000		
Vehicle geometries					

Used refinement blocks and levels (indicated by color)

- SAMR base grid $600 \times 200 \times 132$ cells, $r_{1,2,3} = 2$ yielding finest resolution of $\Delta x = 3.125$ mm
- Adaptation based on level set and scaled gradient of magnitude of vorticity vector
- 236M cells vs. 8.1 billion (uniform) at t = 0.4075 s

R. Deiterding et al. - Adaptive lattice Boltzmann methods in AMROC

Level	Grids	Cells
0	11,605	15,840,000
1	11,513	23,646,984
2	31,382	144,447,872
3	21,221	52,388,336

Structured AMR	Adaptive LBM	LES	Aerodynamics	Non-Cartesian LBM	Conclusions
			000000		
Vehicle geometries					

Used refinement blocks and levels (indicated by color)

- SAMR base grid $600 \times 200 \times 132$ cells, $r_{1,2,3} = 2$ yielding finest resolution of $\Delta x = 3.125$ mm
- Adaptation based on level set and scaled gradient of magnitude of vorticity vector
- 236M cells vs. 8.1 billion (uniform) at t = 0.4075 s

R. Deiterding et al. - Adaptive lattice Boltzmann methods in AMROC

Level	Grids	Cells
0	11,605	15,840,000
1	11,513	23,646,984
2	31,382	144,447,872
3	21,221	52,388,336

Structured AMR	Adaptive LBM	LES	Aerodynamics	Non-Cartesian LBM	Conclusions
			000000		
Vehicle geometries					

Used refinement blocks and levels (indicated by color)

- SAMR base grid $600 \times 200 \times 132$ cells, $r_{1,2,3} = 2$ yielding finest resolution of $\Delta x = 3.125$ mm
- Adaptation based on level set and scaled gradient of magnitude of vorticity vector
- 236M cells vs. 8.1 billion (uniform) at t = 0.4075 s

R. Deiterding et al. - Adaptive lattice Boltzmann methods in AMROC

Level	Grids	Cells
0	11,605	15,840,000
1	11,513	23,646,984
2	31,382	144,447,872
3	21,221	52,388,336

Structured AMR	Adaptive LBM	LES	Aerodynamics	Non-Cartesian LBM	Conclusions
			000000		
Vehicle geometries					

Used refinement blocks and levels (indicated by color)

- SAMR base grid $600 \times 200 \times 132$ cells, $r_{1,2,3} = 2$ yielding finest resolution of $\Delta x = 3.125$ mm
- Adaptation based on level set and scaled gradient of magnitude of vorticity vector
- 236M cells vs. 8.1 billion (uniform) at t = 0.4075 s

R. Deiterding et al. - Adaptive lattice Boltzmann methods in AMROC

Level	Grids	Cells
0	11,605	15,840,000
1	11,513	23,646,984
2	31,382	144,447,872
3	21,221	52,388,336

Structured AMR	Adaptive LBM	LES	Aerodynamics	Non-Cartesian LBM	Conclusions
			000000		
Vehicle geometries					

Flow over a motorcycle

- Inflow 40 m/s. Bouzidi pressure boundary conditions at outflows. CSMA LES model active.
- SAMR base grid 200 × 80 × 80 cells, r_{1,2,3} = 2 yielding finest resolution of Δx = 6.25 mm. 23560 time steps on finest level
- ▶ Forces in AMROC-LBM are time-averaged over interval [0.5s, 1s]
- Unstructured STAR-CCM+ mesh has significantly finer as well as coarser cells

AMROC-LBM LES at $t = 1 \, \text{s}$

STAR-CCM+ steady RANS

Velocity in flow direction

	Forces (N)				Cores	Wall Time	CPU Time
Variables	Drag	Sideforce	Lift	Total		h	h
STAR-CCM+	297	5	9	297	10	4.9	78
AMROC	297	10	23	298	64	10	635

Structured AMR	Adaptive LBM	LES	Aerodynamics	Non-Cartesian LBM	Conclusions
			000000		
Vehicle geometries					

Flow over a motorcycle

- Inflow 40 m/s. Bouzidi pressure boundary conditions at outflows. CSMA LES model active.
- SAMR base grid 200 × 80 × 80 cells, r_{1,2,3} = 2 yielding finest resolution of Δx = 6.25 mm. 23560 time steps on finest level
- ▶ Forces in AMROC-LBM are time-averaged over interval [0.5s, 1s]
- Unstructured STAR-CCM+ mesh has significantly finer as well as coarser cells

STAR-CCM+ steady RANS

Velocity in flow direction

	Forces (N)				Cores	Wall Time	CPU Time
Variables	Drag	Sideforce	Lift	Total		h	h
STAR-CCM+	297	5	9	297	10	4.9	78
AMROC	297	10	23	298	64	10	635

Structured AMR	Adaptive LBM	LES	Aerodynamics	Non-Cartesian LBM	Conclusions
			0000000		
Wind turbines					
Single Ve	estas V27				

- ▶ Inflow velocity $u_{\infty} = 8 \text{ m/s}$. Prescribed motion of rotor with $n_{rpm} = 33$, r = 14.5 m: tip speed 46.7 m/s, Re_r ≈ 919,700, TSR=5.84
- ▶ Simulation with three additional levels with refinement factors 2,2,4.
- Refinement based on vorticity and level set. CSMA LES model.
- \sim 24 time steps for 1° rotation
- Validation results: [Deiterding and Wood, 2016]

Structured AMR	Adaptive LBM	LES	Aerodynamics	Non-Cartesian LBM	Conclusions
			0000000		
Wind turbines					
Single Ve	estas V27				

- ▶ Inflow velocity $u_{\infty} = 8 \text{ m/s}$. Prescribed motion of rotor with $n_{rpm} = 33$, r = 14.5 m: tip speed 46.7 m/s, Re_r ≈ 919,700, TSR=5.84
- ▶ Simulation with three additional levels with refinement factors 2,2,4.
- Refinement based on vorticity and level set. CSMA LES model.
- \sim 24 time steps for 1° rotation
- Validation results: [Deiterding and Wood, 2016]

Structured AMR	Adaptive LBM	LES	Aerodynamics	Non-Cartesian LBM	Conclusions
			0000000		
Wind turbines					
Single Ve	estas V27				

- ▶ Inflow velocity $u_{\infty} = 8 \text{ m/s}$. Prescribed motion of rotor with $n_{\text{rpm}} = 33$, r = 14.5 m: tip speed 46.7 m/s, Re_r ≈ 919,700, TSR=5.84
- ▶ Simulation with three additional levels with refinement factors 2,2,4.
- Refinement based on vorticity and level set. CSMA LES model.
- \sim 24 time steps for 1° rotation
- Validation results: [Deiterding and Wood, 2016]

Single Ve	estas V27				
Wind turbines					
			0000000		
Structured AMR	Adaptive LBM	LES	Aerodynamics	Non-Cartesian LBM	Conclusions

- ▶ Inflow velocity $u_{\infty} = 8 \text{ m/s}$. Prescribed motion of rotor with $n_{\text{rpm}} = 33$, r = 14.5 m: tip speed 46.7 m/s, Re_r ≈ 919, 700, TSR=5.84
- ▶ Simulation with three additional levels with refinement factors 2,2,4.
- Refinement based on vorticity and level set. CSMA LES model.
- \sim 24 time steps for 1° rotation
- Validation results: [Deiterding and Wood, 2016]

Single Ve	estas V27				
Wind turbines					
			0000000		
Structured AMR	Adaptive LBM	LES	Aerodynamics	Non-Cartesian LBM	Conclusions

- ▶ Inflow velocity $u_{\infty} = 8 \text{ m/s}$. Prescribed motion of rotor with $n_{\text{rpm}} = 33$, r = 14.5 m: tip speed 46.7 m/s, Re_r ≈ 919,700, TSR=5.84
- ▶ Simulation with three additional levels with refinement factors 2,2,4.
- Refinement based on vorticity and level set. CSMA LES model.
- \sim 24 time steps for 1° rotation
- Validation results: [Deiterding and Wood, 2016]

Single Ve	estas V27				
Wind turbines					
			0000000		
Structured AMR	Adaptive LBM	LES	Aerodynamics	Non-Cartesian LBM	Conclusions

- ▶ Inflow velocity $u_{\infty} = 8 \text{ m/s}$. Prescribed motion of rotor with $n_{\text{rpm}} = 33$, r = 14.5 m: tip speed 46.7 m/s, Re_r ≈ 919,700, TSR=5.84
- Simulation with three additional levels with refinement factors 2, 2, 4.
- Refinement based on vorticity and level set. CSMA LES model.
- \sim 24 time steps for 1° rotation
- Validation results: [Deiterding and Wood, 2016]

Single Ve	estas V27				
Wind turbines					
			0000000		
Structured AMR	Adaptive LBM	LES	Aerodynamics	Non-Cartesian LBM	Conclusions

- ▶ Inflow velocity $u_{\infty} = 8 \text{ m/s}$. Prescribed motion of rotor with $n_{\text{rpm}} = 33$, r = 14.5 m: tip speed 46.7 m/s, Re_r ≈ 919,700, TSR=5.84
- ▶ Simulation with three additional levels with refinement factors 2,2,4.
- Refinement based on vorticity and level set. CSMA LES model.
- \sim 24 time steps for 1° rotation
- Validation results: [Deiterding and Wood, 2016]

Single Ve	estas V27				
Wind turbines					
			0000000		
Structured AMR	Adaptive LBM	LES	Aerodynamics	Non-Cartesian LBM	Conclusions

- ▶ Inflow velocity $u_{\infty} = 8 \text{ m/s}$. Prescribed motion of rotor with $n_{\text{rpm}} = 33$, r = 14.5 m: tip speed 46.7 m/s, Re_r ≈ 919, 700, TSR=5.84
- ▶ Simulation with three additional levels with refinement factors 2,2,4.
- Refinement based on vorticity and level set. CSMA LES model.
- \sim 24 time steps for 1° rotation
- Validation results: [Deiterding and Wood, 2016]

 Structured AMR
 Adaptive LBM
 LES
 Aerodynamics
 Non-Cartesian LBM
 Conclusions

 00
 00000000
 0000000
 000000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 00000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 0000
 00000
 0000
 0000

Simulation of the SWIFT array

- > Three Vestas V27 turbines (geometric details prototypical). 225 $\rm kW$ power generation at wind speeds 14 to 25 $\rm m/s$ (then cut-off)
- $\blacktriangleright\,$ Prescribed motion of rotor with 33 $\rm rpm.$ Inflow velocity 8 $\rm m/s$
- $\blacktriangleright~$ Simulation domain 448 $m \times 240\,m \times 100\,m$
- ► Base mesh $448 \times 240 \times 100$ cells with refinement factors 2, 2,4. Resolution of rotor and tower $\Delta x = 6.25$ cm
- 94,224 highest level iterations to t_e = 40 s computed, then statistics are gathered for 10 s [Deiterding and Wood, 2016]

Structured AMR	Adaptive LBM	LES	Aerodynamics	Non-Cartesian LBM	Conclusions
			0000000		
Wind turbines					

Levels – inflow at 30°, $u = 8 \,\mathrm{m/s}$, 33 rpm

- At 63.8 s approximately 167M cells used vs. 44 billion (factor 264)
- $\blacktriangleright~\sim$ 6.01 h per revolution (961 h CPU) $\longrightarrow \sim$ 5.74 h CPU/1M cells/revolution
- 160 cores Intel-Xeon E5 2.6 GHz, 33.03 h wall time for 10 s interval

Structured AMR	Adaptive LBM	LES	Aerodynamics	Non-Cartesian LBM	Conclusions
			0000000		
Wind turbines					

- At 63.8 s approximately 167M cells used vs. 44 billion (factor 264)
- $\blacktriangleright~\sim$ 6.01 h per revolution (961 h CPU) $\longrightarrow \sim$ 5.74 h CPU/1M cells/revolution
- 160 cores Intel-Xeon E5 2.6 GHz, 33.03 h wall time for 10 s interval

Structured AMR	Adaptive LBM	LES	Aerodynamics	Non-Cartesian LBM	Conclusions
			0000000		
Wind turbines					

- At 63.8 s approximately 167M cells used vs. 44 billion (factor 264)
- $\blacktriangleright~\sim$ 6.01 h per revolution (961 h CPU) $\longrightarrow \sim$ 5.74 h CPU/1M cells/revolution
- 160 cores Intel-Xeon E5 2.6 GHz, 33.03 h wall time for 10 s interval

Level	Grids	Cells
0	2,463	10,752,000
1	6,464	20,674,760
2	39,473	131,018,832
3	827	4,909,632

Structured AMR	Adaptive LBM	LES	Aerodynamics	Non-Cartesian LBM	Conclusions
			0000000		
Wind turbines					

- At 63.8 s approximately 167M cells used vs. 44 billion (factor 264)
- $\blacktriangleright~\sim$ 6.01 h per revolution (961 h CPU) $\longrightarrow \sim$ 5.74 h CPU/1M cells/revolution
- 160 cores Intel-Xeon E5 2.6 GHz, 33.03 h wall time for 10 s interval

Level	Grids	Cells
0	2,463	10,752,000
1	6,464	20,674,760
2	39,473	131,018,832
3	827	4,909,632

Structured AMR	Adaptive LBM	LES	Aerodynamics	Non-Cartesian LBM	Conclusions
			0000000		
Wind turbines					

- At 63.8 s approximately 167M cells used vs. 44 billion (factor 264)
- $\blacktriangleright~\sim$ 6.01 h per revolution (961 h CPU) $\longrightarrow \sim$ 5.74 h CPU/1M cells/revolution
- 160 cores Intel-Xeon E5 2.6 GHz, 33.03 h wall time for 10 s interval

Structured AMR	Adaptive LBM	LES	Aerodynamics	Non-Cartesian LBM	Conclusions
			0000000		
Wind turbines					

- At 63.8 s approximately 167M cells used vs. 44 billion (factor 264)
- $\blacktriangleright~\sim$ 6.01 h per revolution (961 h CPU) $\longrightarrow \sim$ 5.74 h CPU/1M cells/revolution
- 160 cores Intel-Xeon E5 2.6 GHz, 33.03 h wall time for 10 s interval

Level	Grids	Cells
0	2,463	10,752,000
1	6,464	20,674,760
2	39,473	131,018,832
3	827	4,909,632

Structured AMR	Adaptive LBM	LES	Aerodynamics	Non-Cartesian LBM	Conclusions
			000000		
Parallel performance					

AMROC strong scalability tests

3D wave propagation method with Roe scheme: spherical blast wave

Tests run IBM BG/P (mode VN)

 $64\times32\times32$ base grid, 2 additional levels with factors 2, 4; uniform $512\times256\times256=33.6\cdot10^6$ cells

Level	Grids	Cells		
0	1709	65,536		
1	1735	271,048		
2	2210	7,190,208		

 Structured AMR
 Adaptive LBM
 LES
 Aerodynamics
 Non-Cartesian LBM
 Conclusions

 OO
 00000000
 0000000
 000000
 00000
 0

 Parallel performance
 Value
 Value
 Value
 Value

AMROC strong scalability tests

3D wave propagation method with Roe scheme: spherical blast wave

Tests run IBM BG/P (mode VN)

 $64\times32\times32$ base grid, 2 additional levels with factors 2, 4; uniform $512\times256\times256=33.6\cdot10^6$ cells

Level	Grids	Cells	
0	1709	65,536	
1	1735	271,048	
2	2210	7,190,208	

3D SRT-lattice Boltzmann scheme: flow over rough surface of $19\times13\times2$ spheres

CPUs

 $360\times240\times108$ base grid, 2 additional levels with factors 2, 4; uniform $1440\times1920\times432=1.19\cdot10^9$ cells

Level	Grids	Cells		
0	788	9,331,200		
1	21367	24,844,504		
2	1728	10,838,016		

 Structured AMR
 Adaptive LBM
 LES
 Aerodynamics
 Non-Cartesian LBM
 Conclusions

 00
 00000000
 0000000
 0000000
 0

 Construction principles
 00000000
 0000000
 0

Lattice Boltzmann equation in mapped coordinates

Consider mapping from Cartesian to non-Cartesian coordinates

$$\xi = \xi(x, y), \ \eta = \eta(x, y)$$

with

$$\frac{\partial}{\partial x} = \frac{\partial}{\partial \xi} \frac{\partial \xi}{\partial x} + \frac{\partial}{\partial \eta} \frac{\partial \eta}{\partial x}, \ \frac{\partial}{\partial y} = \frac{\partial}{\partial \xi} \frac{\partial \xi}{\partial y} + \frac{\partial}{\partial \eta} \frac{\partial \eta}{\partial y}$$

Under this transformation the convection term reads

$$\begin{split} \mathbf{e}_{\alpha} \cdot \nabla f_{\alpha} &= \mathbf{e}_{\alpha x} \frac{\partial f_{\alpha}}{\partial x} + \mathbf{e}_{\alpha y} \frac{\partial f_{\alpha}}{\partial y} \\ &= \mathbf{e}_{\alpha x} \left(\frac{\partial f_{\alpha}}{\partial \xi} \frac{\partial \xi}{\partial x} + \frac{\partial f_{\alpha}}{\partial \eta} \frac{\partial \eta}{\partial x} \right) + \mathbf{e}_{\alpha y} \left(\frac{\partial f_{\alpha}}{\partial \xi} \frac{\partial \xi}{\partial y} + \frac{\partial f_{\alpha}}{\partial \eta} \frac{\partial \eta}{\partial y} \right) \\ &= \left(\mathbf{e}_{\alpha x} \frac{\partial \xi}{\partial x} + \mathbf{e}_{\alpha y} \frac{\partial \xi}{\partial y} \right) \frac{\partial f_{\alpha}}{\partial \xi} + \left(\mathbf{e}_{\alpha x} \frac{\partial \eta}{\partial x} + \mathbf{e}_{\alpha y} \frac{\partial \eta}{\partial y} \right) \frac{\partial f_{\alpha}}{\partial \eta} \\ &= \tilde{\mathbf{e}}_{\alpha \xi} \frac{\partial f_{\alpha}}{\partial \xi} + \tilde{\mathbf{e}}_{\alpha \eta} \frac{\partial f_{\alpha}}{\partial \eta}, \end{split}$$

and hence the lattice Boltzmann equation becomes

$$\frac{\partial f}{\partial t} + \tilde{\mathbf{e}}_{\alpha\xi} \frac{\partial f_{\alpha}}{\partial \xi} + \tilde{\mathbf{e}}_{\alpha\eta} \frac{\partial f_{\alpha}}{\partial \eta} = -\frac{1}{\tau} \left(f_{\alpha} - f_{\alpha}^{eq} \right).$$

Structured AMR	Adaptive LBM	LES	Aerodynamics	Non-Cartesian LBM	Conclusions
				0000	
Construction principles					

Scheme construction

Currently using the explicit 4th-order Runge-Kutta scheme

$$f_{\alpha}^{1} = f_{\alpha}^{t}, \ f_{\alpha}^{2} = f_{\alpha}^{1} + \frac{\Delta t}{4} R_{\alpha}^{1},$$
$$f_{\alpha}^{3} = f_{\alpha}^{1} + \frac{\Delta t}{3} R_{\alpha}^{2}, f_{\alpha}^{4} = f_{\alpha}^{1} + \frac{\Delta t}{2} R_{\alpha}^{3},$$
$$f_{\alpha}^{t+\Delta t} = f_{\alpha}^{1} + \Delta t R_{\alpha}^{4}.$$

with

$$R_{\alpha_{(i,j)}} = -\left(\tilde{e}_{\alpha\xi_{(i,j)}} \frac{f_{\alpha_{(i+1,j)}} - f_{\alpha_{(i-1,j)}}}{2\Delta\xi} + \tilde{e}_{\alpha\eta_{(i,j)}} \frac{f_{\alpha_{(i,j+1)}} - f_{\alpha_{(i,j-1)}}}{2\Delta\eta}\right) - \frac{1}{\tau} \left(f_{\alpha_{(i,j)}} - f_{\alpha_{(i,j)}}^{eq}\right)$$

for the solution, 2nd-order central differences to approximate derivatives. A 4th-order dissipation term

$$D = -\epsilon \left(\left(\Delta \xi
ight)^4 rac{\partial^4 f_lpha}{\partial \xi^4} + \left(\Delta \eta
ight)^4 rac{\partial^4 f_lpha}{\partial \eta^4}
ight)$$

is added for stabilization [Hejranfar and Hajihassanpour, 2017]. Prototype implementation is presently on finite difference meshes!

2L/D is normalized length of wake behind cylinder

 Structured AMR
 Adaptive LBM
 LES
 Aerodynamics
 Non-Cartesian LBM
 Conclusions

 OO
 OOOOOOOOO
 OOOOOOOO
 OOOOOOO
 OOOO
 OOO
 OO
 OO</t

2d cylinder study - unsteady flow case

Author(s)	St	C_d	c'_{l}
[Chiu et al., 2010]	0.167	1.35	0.30
AMROC-LBM	0.166	1.28	0.32
Present	0.165	1.36	0.35
[Chiu et al., 2010]	0.198	1.37	0.71
AMROC-LBM	0.196	1.26	0.70
Present	0.196	1.37	0.73
	Author(s) [Chiu et al., 2010] AMROC-LBM Present [Chiu et al., 2010] AMROC-LBM Present	Author(s) St [Chiu et al., 2010] 0.167 AMROC-LBM 0.166 Present 0.165 [Chiu et al., 2010] 0.198 AMROC-LBM 0.196 Present 0.196	$\begin{tabular}{ c c c c c c c } \hline Author(s) & St & $\overline{C_d}$ \\ \hline [Chiu et al., 2010] & 0.167 & 1.35 \\ \hline AMROC-LBM & 0.166 & 1.28 \\ \hline Present & 0.165 & 1.36 \\ \hline [Chiu et al., 2010] & 0.198 & 1.37 \\ \hline AMROC-LBM & 0.196 & 1.26 \\ \hline Present & 0.196 & 1.37 \\ \hline \end{tabular}$

Structured AMR
 Adaptive LBM
 LES
 Aerodynamics
 Non-Cartesian LBM
 Conclusions

 00
 00000000
 0000000
 000000
 0000
 000
 00
 0

 Verification and validation for 2d cylinder

2d cylinder study - unsteady flow case

Re	Author(s)	St	C_d	c'_{l}
100	[Chiu et al., 2010]	0.167	1.35	0.30
	AMROC-LBM	0.166	1.28	0.32
	Present	0.165	1.36	0.35
200	[Chiu et al., 2010]	0.198	1.37	0.71
	AMROC-LBM	0.196	1.26	0.70
	Present	0.196	1.37	0.73

Re		CPU-time	Mesh
20	AMROC-LBM	24:55:21	297796
	Present	06:08:41	65536
40	AMROC-LBM	27:10:08	317732
	Present	05:57:17	65536
100	AMROC-LBM	113:15:37	1026116
	Present	05:58:49	65536
200	AMROC-LBM	130:37:18	1130212
	Present	06:03:42	65536

Structured AMR	Adaptive LBM	LES	Aerodynamics	Non-Cartesian LBM	Conclusions
					•
Summary					

Conclusions

- Cartesian LBM is a very efficient low-dissipation method and especially suitable for DNS and LES
- Cartesian CFD with block-based AMR is faster than cell-cased AMR and tailored for modern massively parallel computer systems
- Fast dynamic mesh adaptation in AMROC makes FSI problems with complex motion easily accessible. Time-explicit approach leads to very tight coupling
- For high Reynolds number flows around complex bodies an LES turbulence model is vital for stability (so are higher-order in- and outflow boundary conditions)
- Currently validating and extending (dynamic) Smagorinsky with wall-near damping and WALE model for realistic problems
- Turbulent wall function boundary condition model under development

Structured AMR	Adaptive LBM	LES	Aerodynamics	Non-Cartesian LBM	Conclusions
					•
Summary					

Conclusions

- Cartesian LBM is a very efficient low-dissipation method and especially suitable for DNS and LES
- Cartesian CFD with block-based AMR is faster than cell-cased AMR and tailored for modern massively parallel computer systems
- Fast dynamic mesh adaptation in AMROC makes FSI problems with complex motion easily accessible. Time-explicit approach leads to very tight coupling
- For high Reynolds number flows around complex bodies an LES turbulence model is vital for stability (so are higher-order in- and outflow boundary conditions)
- Currently validating and extending (dynamic) Smagorinsky with wall-near damping and WALE model for realistic problems
- > Turbulent wall function boundary condition model under development
- Accurate simulation of thin, wall-resolved boundary layers is dramatically more efficient with the non-Cartesian LBM approach, despite the availability of AMR in AMROC
 - Develop non-Cartesian version of AMROC-LBM as near-term goal
 - Chimera technique within AMROC-LBM might be long-term goal

References I

- [Berger and Colella, 1988] Berger, M. and Colella, P. (1988). Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys., 82:64–84.
- [Bouzidi et al., 2001] Bouzidi, M., Firdaouss, M., and Lallemand, P. (2001). Momentum transfer of a Boltzmann-lattice fluid with boundaries. *Physics of Fluids*, 13:3452.
- [Chen et al., 2006] Chen, H., Filippova, O., Hoch, J., Molvig, K., Shock, R., Teixeira, C., and Zhang, R. (2006). Grid refinement in lattice Boltzmann methods based on volumetric formulation. *Physica A*, 362:158–167.
- [Chiu et al., 2010] Chiu, P. H., Lin, R. K., and Sheu, T. W. (2010). A differentially interpolated direct forcing immersed boundary method for predicting incompressible Navier Stokes equations in time-varying complex geometries. *Journal of Computational Physics*.
- [Deiterding, 2011] Deiterding, R. (2011). Block-structured adaptive mesh refinement theory, implementation and application. European Series in Applied and Industrial Mathematics: Proceedings, 34:97–150.
- [Deiterding et al., 2007] Deiterding, R., Cirak, F., Mauch, S. P., and Meiron, D. I. (2007). A virtual test facility for simulating detonationand shock-induced deformation and fracture of thin flexible shells. Int. J. Multiscale Computational Engineering, 5(1):47–63.
- [Deiterding et al., 2009] Deiterding, R., Domingues, M. O., Gomes, S. M., Roussel, O., and Schneider, K. (2009). Adaptive multiresolution or adaptive mesh refinement? A case study for 2D Euler equations. European Series in Applied and Industrial Mathematics: Proceedings, 29:28–42.
- [Deiterding et al., 2006] Deiterding, R., Radovitzky, R., Mauch, S. P., Noels, L., Cummings, J. C., and Meiron, D. I. (2006). A virtual test facility for the efficient simulation of solid materials under high energy shock-wave loading. *Engineering with Computers*, 22(3-4):325-347.
- [Deiterding and Wood, 2016] Deiterding, R. and Wood, S. L. (2016). An adaptive lattice Boltzmann method for predicting wake fields behind wind turbines. In Dillmann, A., Heller, G., Krämer, E., Wagner, C., and Breitsamter, C., editors, New Results in Numerical and Experimental Fluid Mechanics X, volume 132 of Notes on Numerical Fluid Mechanics and Multidisciplinary Design, pages 845–857. Springer.
- [Dennis and Chang, 1970] Dennis, S. C. R. and Chang, G. (1970). Numerical solutions for steady flow past a circular cylinder at Reynolds numbers up to 100. Journal of Fluid Mechanics, 42(03):471.

[Hähnel, 2004] Hähnel, D. (2004). Molekulare Gasdynamik. Springer.

References II

- [Hejranfar and Ezzatneshan, 2014] Hejranfar, K. and Ezzatneshan, E. (2014). Implementation of a high-order compact finite-difference lattice Boltzmann method in generalized curvilinear coordinates. Journal of Computational Physics, 267:28–49.
- [Hejranfar and Hajihassanpour, 2017] Hejranfar, K. and Hajihassanpour, M. (2017). Chebyshev collocation spectral lattice Boltzmann method in generalized curvilinear coordinates. Computers and Fluids.
- [Henderson, 1995] Henderson, R. D. (1995). Details of the drag curve near the onset of vortex shedding. Phys. Fluids, 7:2102-2104.
- [Hou et al., 1996] Hou, S., Sterling, J., Chen, S., and Doolen, G. D. (1996). A lattice Boltzmann subgrid model for high Reynolds number flows. In Lawniczak, A. T. and Kapral, R., editors, *Pattern formation and lattice gas automata*, volume 6, pages 151–166. Fields Inst Comm.
- [Laloglu and Deiterding, 2017] Laloglu, C, and Deiterding, R. (2017). Simulation of the flow around an oscillating cylinder with adaptive lattice Boltzmann methods. In Ivanyi, P. Topping, B. H. V. and Varady, G., editors, Proc. 5th Int. Conf. on Parallel, Distributed, Grid and Cloud Computing for Engineering, page paper 19. Civil-Comp Press.
- [Mauch, 2003] Mauch, S. P. (2003). Efficient Algorithms for Solving Static Hamilton-Jacobi Equations. PhD thesis, California Institute of Technology.
- [Nazarinia et al., 2012] Nazarinia, M., Jacono, D. L., Thompson, M. C., and Sheridan, J. (2012). Flow over a cylinder subjected to combined translational and rotational oscillations. J. Fluids and Structures, 32:135–145.
- [Sethian, 1999] Sethian, J. A. (1999). Level set methods and fast marching methods. Cambridge University Press, Cambridge, New York.
- [Tritton, 1959] Tritton, D. (1959). Experiments on the flow past a circular cylinder at low Reynolds numbers. Journal of Fluid Mechanics, 6(4):547–567.
- [Yu, 2004] Yu, H. (2004). Lattice Boltzmann equation simulations of turbulence, mixing, and combustion. PhD thesis, Texas A&M University.

Closest point transform algorithm

The signed distance φ to a surface ${\cal I}$ satisfies the eikonal equation [Sethian, 1999]

$$|
abla arphi| = 1$$
 with $|arphi|_{\mathcal{T}} = 0$

Solution smooth but non-diferentiable across characteristics.

Closest point transform algorithm

The signed distance φ to a surface \mathcal{I} satisfies the eikonal equation [Sethian, 1999]

|
abla arphi| = 1 with $arphi \Big|_{\mathcal{T}} = 0$

Solution smooth but non-diferentiable across characteristics.

Distance computation trivial for non-overlapping elementary shapes but difficult to do efficiently for triangulated surface meshes:

 Geometric solution approach with plosest-point-transform algorithm [Mauch, 2003]

Closest point transform algorithm

The signed distance φ to a surface \mathcal{I} satisfies the eikonal equation [Sethian, 1999]

|
abla arphi| = 1 with $arphi \Big|_{\mathcal{T}} = 0$

Solution smooth but non-diferentiable across characteristics.

Distance computation trivial for non-overlapping elementary shapes but difficult to do efficiently for triangulated surface meshes:

 Geometric solution approach with plosest-point-transform algorithm [Mauch, 2003]

1. Build the characteristic polyhedrons for the surface mesh

Characteristic polyhedra for faces, edges, and vertices

(c)

- 1. Build the characteristic polyhedrons for the surface mesh
- 2. For each face/edge/vertex
 - 2.1 Scan convert the polyhedron.

- 1. Build the characteristic polyhedrons for the surface mesh
- 2. For each face/edge/vertex
 - 2.1 Scan convert the polyhedron.
 - 2.2 Compute distance to that primitive for the scan converted points

- 1. Build the characteristic polyhedrons for the surface mesh
- 2. For each face/edge/vertex
 - 2.1 Scan convert the polyhedron.
 - 2.2 Compute distance to that primitive for the scan converted points
- 3. Computational complexity.
 - O(m) to build the b-rep and the polyhedra.
 - O(n) to scan convert the polyhedra and compute the distance, etc.

- 1. Build the characteristic polyhedrons for the surface mesh
- 2. For each face/edge/vertex
 - 2.1 Scan convert the polyhedron.
 - 2.2 Compute distance to that primitive for the scan converted points
- 3. Computational complexity.
 - O(m) to build the b-rep and the polyhedra.
 - O(n) to scan convert the polyhedra and compute the distance, etc.
- 4. Problem reduction by evaluation only within specified max. distance

[Mauch, 2003], see also [Deiterding et al., 2006]

