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Standard lattice Boltzmann scheme

Based on solving the Boltzmann equation with the simplified BGK 
collision operator.

𝜕𝜕𝑓𝑓𝛼𝛼
𝜕𝜕𝑡𝑡

+ 𝒆𝒆𝜶𝜶 � 𝛻𝛻𝑓𝑓𝜶𝜶 = −
1
𝜏𝜏
𝑓𝑓𝛼𝛼 − 𝑓𝑓𝛼𝛼

𝑒𝑒𝑒𝑒 , 𝑓𝑓𝑓𝑓𝑓𝑓 𝛼𝛼 = 0,1,2 …𝑁𝑁

Discrete velocities

𝒆𝒆𝜶𝜶 =
0, 𝛼𝛼 = 0

±1,0 𝑐𝑐, 0, ±1 𝑐𝑐 𝛼𝛼 = 1,3,2,4
±1, ±1 𝑐𝑐 𝛼𝛼 = 5, 6, 7, 8

𝑐𝑐 =
∆𝑥𝑥
∆𝑡𝑡 , 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑓𝑓𝑓𝑓 𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠𝑆𝑆 𝑐𝑐𝑠𝑠 =

𝑐𝑐
√3

Usually a two-step procedure

– Streaming 𝑓𝑓𝛼𝛼∗ 𝑥𝑥 + ∆𝑡𝑡 � 𝒆𝒆𝜶𝜶, 𝑡𝑡 + ∆𝑡𝑡 = 𝑓𝑓𝛼𝛼 𝑥𝑥, 𝑡𝑡

– Collision 𝑓𝑓𝛼𝛼 �, 𝑡𝑡 + ∆𝑡𝑡 = 𝑓𝑓𝛼𝛼∗ �, 𝑡𝑡 + ∆𝑡𝑡 − 1
𝜏𝜏
𝑓𝑓𝛼𝛼∗ �, 𝑡𝑡 + ∆𝑡𝑡 − 𝑓𝑓𝛼𝛼

∗𝑒𝑒𝑒𝑒 �, 𝑡𝑡 + ∆𝑡𝑡

D2Q9 Model
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Standard lattice Boltzmann scheme

Equilibrium distribution function

𝑓𝑓𝛼𝛼
𝑒𝑒𝑒𝑒 = 𝜌𝜌𝑤𝑤𝛼𝛼 1 +

3𝒆𝒆𝜶𝜶𝒖𝒖
𝑐𝑐2 +

9(𝒆𝒆𝜶𝜶𝒖𝒖)2

𝑐𝑐2 −
3𝒖𝒖2

𝑐𝑐2

𝑤𝑤0 =
4
9 ,𝑤𝑤1,2,3,4 =

1
9 ,𝑤𝑤5,6,7,8 =

1
36

Kinematic viscosity and LBM collision time are connected by

𝑣𝑣 = 𝜏𝜏 −
1
2 ∆𝑡𝑡𝑐𝑐𝑠𝑠2

Macroscopic quantities obtained from moments as

𝜌𝜌 = �𝑓𝑓𝜶𝜶 , 𝒖𝒖 =
1
𝜌𝜌�𝒆𝒆𝜶𝜶 � 𝑓𝑓𝛼𝛼, 𝑆𝑆 = 𝜌𝜌𝑐𝑐𝑠𝑠2
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Couette Flow – standard LBM

Dimensionless time t*
Mesh 0.01 0.025 0.05 0.1

10 -4.06 -4.74 -5.29 -6.65
20 -5.44 -6.12 -6.68 -8.01
40 -6.82 -7.51 -8.07 -9.39

Order of accuracy ∼ 2.0 2.0 2.0 2.0

Dimensionless time t*
Mesh 0.01 0.025 0.05 0.1

10 -4.03 -4.71 -5.26 -6.64
20 -5.37 -6.06 -6.61 -7.97
40 -6.7 -7.39 -7.39 -9.22

Order of accuracy ∼ 1.9 1.9 1.9 1.9

Reynolds number Re=100

Mach = 0.017

Mach = 0.17
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LBM in generalized curvilinear coordinates

The LB equation can be transformed into a generalized curvilinear 
coordinate system in which the physical and computational planes are 
represented by (x, y) and (ξ, η), respectively, 

𝜉𝜉 = 𝜉𝜉 𝑥𝑥, 𝑦𝑦 ,

𝜂𝜂 = 𝜂𝜂 𝑥𝑥, 𝑦𝑦 .

To transform the LBE from a physical plane (x, y) to a computational
plane (ξ, η) we must apply

𝜕𝜕
𝜕𝜕𝑥𝑥 =

𝜕𝜕
𝜕𝜕𝜉𝜉

𝜕𝜕𝜉𝜉
𝜕𝜕𝑥𝑥 +

𝜕𝜕
𝜕𝜕𝜂𝜂

𝜕𝜕𝜂𝜂
𝜕𝜕𝑥𝑥 ,

𝜕𝜕
𝜕𝜕𝑥𝑥 =

𝜕𝜕
𝜕𝜕𝜉𝜉

𝜕𝜕𝜉𝜉
𝜕𝜕𝑥𝑥 +

𝜕𝜕
𝜕𝜕𝜂𝜂

𝜕𝜕𝜂𝜂
𝜕𝜕𝑥𝑥 .
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LBM in generalized curvilinear coordinates

The convection term can be rewritten as 

𝒆𝒆𝜶𝜶 � 𝛻𝛻𝑓𝑓𝜶𝜶 = 𝑆𝑆𝛼𝛼𝛼𝛼
𝜕𝜕𝑓𝑓𝛼𝛼
𝜕𝜕𝑥𝑥

+ 𝑆𝑆𝛼𝛼𝛼𝛼
𝜕𝜕𝑓𝑓𝛼𝛼
𝜕𝜕𝑦𝑦

,

= 𝑆𝑆𝛼𝛼𝛼𝛼
𝜕𝜕𝑓𝑓𝛼𝛼
𝜕𝜕𝜉𝜉

𝜕𝜕𝜉𝜉
𝜕𝜕𝑥𝑥

+
𝜕𝜕𝑓𝑓𝛼𝛼
𝜕𝜕𝜂𝜂

𝜕𝜕𝜂𝜂
𝜕𝜕𝑥𝑥

+ 𝑆𝑆𝛼𝛼𝛼𝛼
𝜕𝜕𝑓𝑓𝛼𝛼
𝜕𝜕𝜉𝜉

𝜕𝜕𝜉𝜉
𝜕𝜕𝑦𝑦

+
𝜕𝜕𝑓𝑓𝛼𝛼
𝜕𝜕𝜂𝜂

𝜕𝜕𝜂𝜂
𝜕𝜕𝑦𝑦

,

= 𝑆𝑆𝛼𝛼𝛼𝛼
𝜕𝜕𝜉𝜉
𝜕𝜕𝑥𝑥

+ 𝑆𝑆𝛼𝛼𝛼𝛼
𝜕𝜕𝜉𝜉
𝜕𝜕𝑦𝑦

𝜕𝜕𝑓𝑓𝛼𝛼
𝜕𝜕𝜉𝜉

+ 𝑆𝑆𝛼𝛼𝛼𝛼
𝜕𝜕𝜂𝜂
𝜕𝜕𝑥𝑥

+ 𝑆𝑆𝛼𝛼𝛼𝛼
𝜕𝜕𝜂𝜂
𝜕𝜕𝑦𝑦

𝜕𝜕𝑓𝑓𝛼𝛼
𝜕𝜕𝜂𝜂

,

= �̃�𝑆𝛼𝛼𝛼𝛼
𝜕𝜕𝑓𝑓𝛼𝛼
𝜕𝜕𝜉𝜉

+ �̃�𝑆𝛼𝛼𝜂𝜂
𝜕𝜕𝑓𝑓𝛼𝛼
𝜕𝜕𝜂𝜂

.
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LBM in generalized curvilinear coordinates

Hence, the LB equation can be expressed in the computational domain 
as

𝜕𝜕𝑓𝑓𝛼𝛼
𝜕𝜕𝑡𝑡

+ �̃�𝑆𝛼𝛼𝛼𝛼
𝜕𝜕𝑓𝑓𝛼𝛼
𝜕𝜕𝜉𝜉 + �̃�𝑆𝛼𝛼𝜂𝜂

𝜕𝜕𝑓𝑓𝛼𝛼
𝜕𝜕𝜂𝜂 = −

1
𝜏𝜏
𝑓𝑓𝛼𝛼 − 𝑓𝑓𝛼𝛼

𝑒𝑒𝑒𝑒 .

The relationship between the physical and computational domain
satisfies

𝜉𝜉𝛼𝛼 𝜉𝜉𝛼𝛼
𝜂𝜂𝛼𝛼 𝜂𝜂𝛼𝛼

=
1
𝐽𝐽

𝑦𝑦𝜂𝜂 −𝑥𝑥𝜂𝜂
−𝑦𝑦𝛼𝛼 𝑥𝑥𝛼𝛼 .

The Jacobian, J, of the transformation is

𝐽𝐽 = 𝑥𝑥𝛼𝛼𝑦𝑦𝜂𝜂 − 𝑥𝑥𝜂𝜂𝑦𝑦𝛼𝛼 .
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LBM in generalized curvilinear coordinates

Physical Domain Computational Domain

x

y

𝜉𝜉

𝜂𝜂
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Curvilinear method construction

A 2nd-order-accurate central discretization for the spatial derivatives is 
used to approximate

𝑅𝑅𝛼𝛼𝑖𝑖,𝑗𝑗 = − �̃�𝑆𝛼𝛼𝛼𝛼 𝑖𝑖,𝑗𝑗

𝑓𝑓𝛼𝛼 𝑖𝑖+1,𝑗𝑗 − 𝑓𝑓𝛼𝛼(𝑖𝑖−1,𝑗𝑗)

2Δ𝜉𝜉
+ �̃�𝑆𝛼𝛼𝜂𝜂 𝑖𝑖,𝑗𝑗

𝑓𝑓𝛼𝛼 𝑖𝑖,𝑗𝑗+1 − 𝑓𝑓𝛼𝛼 𝑖𝑖,𝑗𝑗−1

2Δ𝜂𝜂 −
1
𝜏𝜏
𝑓𝑓𝛼𝛼 𝑖𝑖,𝑗𝑗 − 𝑓𝑓𝛼𝛼 𝑖𝑖,𝑗𝑗

𝑒𝑒𝑒𝑒 .

The solution is advanced in the time by using an explicit four-stage 
Runge-Kutta scheme:

𝑓𝑓𝛼𝛼1 = 𝑓𝑓𝛼𝛼𝑡𝑡,

𝑓𝑓𝛼𝛼2 = 𝑓𝑓𝛼𝛼1 +
∆𝑡𝑡
4 𝑅𝑅𝛼𝛼1 ,

𝑓𝑓𝛼𝛼3 = 𝑓𝑓𝛼𝛼1 +
∆𝑡𝑡
3 𝑅𝑅𝛼𝛼2 ,

𝑓𝑓𝛼𝛼4 = 𝑓𝑓𝛼𝛼1 +
∆𝑡𝑡
2 𝑅𝑅𝛼𝛼3 ,

𝑓𝑓𝛼𝛼𝑡𝑡+Δ𝑡𝑡 = 𝑓𝑓𝛼𝛼1 + Δ𝑡𝑡𝑅𝑅𝛼𝛼4 .
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Curvilinear LBM construction

Central schemes can be unstable when non-linearities are present. 
Therefore a 4th-order artificial dissipation term

𝐷𝐷 = −𝜖𝜖 Δ𝜉𝜉 4 𝜕𝜕𝑓𝑓𝛼𝛼
𝜕𝜕𝜉𝜉4

+ Δ𝜂𝜂 4 𝜕𝜕𝑓𝑓𝛼𝛼
𝜕𝜕𝜂𝜂4

is added in order to stabilize the solution (Hejranfar, 2017). 

The formal order of the overall scheme remains 2. 

K. Hejranfar, M. Hajihassanpour, Chebyshev collocation spectral lattice Boltzmann method in generalized 
curvilinear coordinates, Computers and Fluids 146 (2017) 154–173. 
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Verification – Lid-driven Cavity with 
stretched mesh

Re = 3200
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2D Lid-driven cavity

Re = 1000 Re = 3200
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Skewed cavity

Re = 1000, α = 120
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Skewed cavity – Re=100

Verification for single- as well as multi-time relaxation collision operator

𝛼𝛼
=
 1

3
5

𝛼𝛼
=
 1

2
0
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Skewed Cavity – Re=1000, 𝛼𝛼 = 120

Grid sensitivity
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Skewed Cavity – Re=1000, 𝛼𝛼 = 120
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AMROC-LBM software
• Finite volume based LBM implementation

• Boundary representation with signed distance level 
set function

• Bouzidi-type fixed wall boundary conditions

• One-sided interpolation/extrapolation of 
macroscopic quantities at embedded boundaries

• Block-structured adaptive mesh refinement 
(Deiterding, 2011)

• Mesh adaptation algorithm for LBM is 
mathematically equivalent to method by Chen et al. 
(as in Powerflow)

• Verified and validated (Deiterding and Wood, 2016)

• Also very large number of finite volume patch 
solvers -> www.vtf.website

R. Deiterding. Block-structured adaptive mesh refinement - theory, implementation and application. 
European Series in Applied and Industrial Mathematics: Proceedings, 34:97-150 (2011).

R. Deiterding and S. L. Wood. In Results in Numerical and Experimental Fluid Mechanics X, volume 132 of 
Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Springer, pages 845-857 (2016).

http://www.vtf.website/
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2D circular cylinder

Mesh for present method Snapshot of AMROC-LBM mesh
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Steady state flow cases

Re = 20 Re = 40

The predicted length of the wake, L, is an important output

Normalized wake length: 2L/D
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Steady state flow cases

Effect of Re on steady flow over the 
circular cylinder

Present method in excellent agreement with references

Re Author(s) Cd Cp(0) Cp(180) 2L/D

20 Tritton (1959), Exp. 2.10 - - 0.6

Henderson (1995) 2.06 - - -
Dennis and Chang (1970) 2.05 1.27 -0.58 1.88

Hejranfar & Ezzatneshan (2014) 2.02 1.25 -0.59 1.84

He et al. 2.15 1.28 -0.58 1.84

AMROC-LBM 1.98 1.26 -0.59 1.85

Present 2.02 1.31 -0.55 1.85

40 Tritton (1959) , Exp. 1.59 - - -
Henderson (1995) 1.55 - -0.53 -
Dennis and Chang (1970) 1.52 1.14 -0.5 4.69

Hejranfar & Ezzatneshan (2014) 1.51 1.15 -0.48 4.51

He et al. 1.49 1.11 -0.48 4.49

AMROC-LBM 1.45 1.19 -0.49 4.66

Present 1.51 1.18 -0.5 4.32

Pressure coefficient distribution around 
body
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Unsteady flow cases

Re Author(s) 𝑆𝑆𝑡𝑡 𝐶𝐶𝑆𝑆 𝐶𝐶𝐶𝐶𝐶

100 Chiu et al. (2010) 0.167 1.35 0.30

AMROC-LBM 0.166 1.28 0.32

Present 0.165 1.36 0.35

200 Chiu et al. (2010) 0.198 1.37 0.71

AMROC-LBM 0.196 1.26 0.70

Present 0.196 1.37 0.73

Re = 100

P. H. Chiu, R. K. Lin, T. W. Sheu, A differentially interpolated direct forcing immersed boundary method for 
predicting incompressible Navier Stokes equations in time-varying complex geometries, Journal of 
Computational Physics 229 (2010) 4476–4500.



23

Unsteady flow cases – computational performance

Re CPU time Mesh size

20 AMROC-LBM 24:55:21 297,796

Present 06:08:41 65,536

40 AMROC-LBM 27:10:08 317,732

Present 05:57:17 65,536

100 AMROC-LBM 113:15:37 1,026,116

Present 05:58:49 65,536

200 AMROC-LBM 130:37:18 1,130,212

Present 06:03:42 65,536

Re = 200

Computations were run on University of Southampton IRIDIS 4 cluster
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2D NACA0012 airfoil

O-grid with domain radius of 15 chord lengths

• Streamlines
• Re = 500
• Angle of attack 10º
• Note flawless flow 

at trailing edge!
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2D NACA0012 airfoil – AOA=0 

Verification for angle of attack = 0, Re = 500

T. Imamura, K. Suzuki. Flow Simulation Around an Airfoil by Lattice Boltzmann Method on Generalized 
Coordinates. AIAA, 43 (2005) 1–6.
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2D NACA0012 airfoil, AOA=10

Verification for AOA = 10, Re = 500

M. Hafez, A. Shatalov, M. Nakajima, Improved numerical simulations of incompressible flows based on 
viscous/inviscid interaction procedures, Computers & Fluids 36 (2007) 1588–1591.
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Conclusions and outlook
• A 2nd-order accurate 2D lattice Boltzmann BGK method on 

structured non-Cartesian meshes has been formulated and 
verified

• Approach is built on mapping of the streaming step

• Discretization of the moment space, i.e., the collision operator is 
unchanged compared to the standard LBM-BGK scheme

• Comparisons to our Cartesian, but non-uniform, solver system 
AMROC-LBM are very favourable

• Evaluation of quantities on bodies in flow is unambiguous and 
very accurate

• Current method is time-explicit and will lead to very small global 
time steps from near-body cells -> consider time-implicit 
integration in wall-normal direction

• Hybrid chimera-type meshing currently under investigation to 
eventually combine both approaches in the future
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