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ABSTRACT 
The essential components of a parallel dynamically 

adaptive lattice Boltzmann method coupled to a 6-degree-of-
freedom rigid body motion solver are presented. This Cartesian 
approach with automatic fluid meshing is particularly well 
suited for simulating the interaction of low Reynolds number 
flows and moving structures with good accuracy and high 
computational performance. The fully coupled fluid-structure 
simulation method is demonstrated for the experiment of a two-
segment hinged wing with torsion damper by Toomey & 
Eldredge, a simplistic model of a flapping wing in air. A grid 
convergence study assesses the prediction accuracy of the 
overall method and required CPU times. Our computations 
show very good agreement with measurements of the evolving 
hinge angle by Toomey & Eldredge; forces and moments are 
predicted with an error margin of generally <5% with respect to 
their computational results.  

NOMENCLATURE 
C, T Collision and transport operator of Lattice Boltzmann 

method 
ܿ௦, ܽ Physical speed of sound, lattice speed 
 ఈ  Set of lattice velocity vectors܍
݂, ݂	  Distribution and equilibrium distribution function 

ఈ݂,	 ఈ݂
	 Discrete distribution functions 

ఈ݂
,	 ఈ݂

	 Discrete distributions on next finer and coarser level 
p Dynamic fluid pressure 
,ܝ   and ith velocity component	 Fluid velocity vectorݑ
 Wall velocity ܟ
 Δx   Point in space, mesh spacing ,ܠ
,ݐ  Time, discrete time step ݐ∆
 Fluid density ߩ
 Viscosity 	ߥ

߬	 Relaxation time 
߱ Collision frequency 
݊ Time step index 
݈ Refinement level index 
ϕ Level set function 
۴, ૌ Force and torque acting on a body and its center of 

mass  
۱௫௬௭/ఈఉఊTranslational and rotational constraints at joint   

ଵܺ,  ଵ x-coordinate and angle of driven component inߙ
experiment 

,௧ܩ   Translational and rotation shape function to prescribeܩ
motion 

Re௧, Re Reynolds number defined on translational and 
rotational velocity of driven component 

,௧ߪ  Φ Kinematic parameters for different cases	,ߪ
 Hinge angle  ߠ
 ഥ௭ Mean forces and moment on hingeܯ,ത௫/௬ܨ

INTRODUCTION 
The aerodynamics of flapping wings are characterized by a 

complex interaction between moving structures and fluid flow. 
Unstructured finite volume methods that use grids following 
the motion have to deal with difficult mesh morphing, 
untangling and possibly grid regeneration and data remapping 
problems. As an alternative to the usually employed implicit, 
typically pressure-correction based CFD solution algorithms, 
we adopt in here the lattice Boltzmann method (LBM), cf.  
Aono et al. [1]. The LBM is based on solving the Boltzmann 
equation in a specially chosen, discrete phase space and fully 
explicit in time [2]. The LBM is constructed on uniform 
Cartesian grids and geometrically complex boundaries are 
considered with an immersed boundary approach, making the 
method well suited for considering moving structures. Here, we 



 

utilize a level set distance function to represent embedded 
objects. Dynamic mesh adaptation is applied in addition to 
increase the local resolution based on the level set function and 
features detected in the flow field [3]. Distributed memory 
parallelization is adopted to allow for large-scale simulations.   

The paper is organized as follows: We first recall the 
construction principles of the LBM. In the next section, the 
block-based mesh adaptation procedure and in particular the 
incorporation of the LBM are presented. The third section 
explains our approach in dealing with embedded geometries in 
the LBM and how we compute rigid body dynamics. Finally, 
validation results of a two-segment hinged wing with torsion 
damper modeling a simplistic flapping wing as proposed by 
Toomey & Eldredge [4] are presented and discussed. The 
computations confirm the benefit of the proposed overall 
approach for flapping wing dynamics and biologically inspired 
fluid-structure interaction problems.  

LATTICE BOLTZMANN METHOD 
The lattice Boltzmann method is based on computing 

approximations of the Boltzmann equation with a simplified 
collision operator  

 

 u eq
t f f f f      (1) 

 

on a rectangular grid of characteristic domain length L with 
isotropic mesh spacing Δx under the assumption of a small 
Knudsen number ݊ܭ ൌ ݈/ܮ ≪ 1, where the mean free path 
length ݈ is replaced with Δx. A crucial idea of the LBM is to 
approximate Eq. (1) in a specially chosen discrete phase space, 
in which a particle distribution function ఈ݂ሺܠ,  ሻ is associatedݐ
to every discrete lattice velocity ܍ఈ . The total density 
distribution is given as ߩሺܠ, ሻݐ ൌ ∑ ఈ݂ሺܠ, ሻఈݐ  and the 

macroscopic moments as ,ܠሺߩ	 ,ܠሺݑሻݐ ሻݐ ൌ ∑ e i ఈ݂ሺܠ, ሻఈݐ . A 

splitting approach is then adopted that first solves the 
homogeneous transport equation with the time-explicit update 
step  

   : , , .x e xT f t t t f t       
(2) 

 
Here, we apply the D3Q19 model for which the lattice 
velocities are defined as  
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with ܽ ൌ  The physical speed of sound ܿ௦ is related to .ݐ∆/ݔ∆
a by ܿ௦ ൌ ܽ/√3 . The right-hand of Eq. (1) is integrated 
subsequently by the collision operator  
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with equilibrium function  
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with ݐ ൌ 1 3⁄ , ఈݐ ൌ 1 18⁄  for ߙ ൌ 1,… , 6and ݐఈ ൌ 1 36⁄  for 
ߙ ൌ 7,… , 18. The variation in hydrodynamic pressure for the 
equilibrium function (5) reads  ൌ ∑ ఈ݂

ܿ௦ଶ ൌ ሺߩ െ ሻܿ௦ଶఈߩ  . 

Applying a Chapman-Enskog expansion procedure, it can 
be shown [5] that the sketched LBM converges to a solution of 
the weakly compressible Navier-Stokes equations   

 

  0,ut      (6) 

2 .u u u ut p         (7) 

 
It can be shown further, cf. [2], that the kinematic viscosity ν 
and collision frequency ω are connected by the relation   
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While the sketched model can be used directly to simulate 
laminar flows, it is mandatory to apply a turbulence model in 
addition in high Reynolds number situations. In the context of 
LBM, it is most common to adopt a large eddy simulation 
approach, cf. [5]. 

DYNAMIC MESH ADAPTATION  
For local dynamic mesh adaptation we have adopted the 

block-structured adaptive mesh refinement (SAMR) method 
after Berger & Collela [6]. In order to fit smoothly into our 
existing, fully parallelized finite volume SAMR software 
system AMROC [3], we have implemented the LBM cell-
based, which makes the scheme also conservative in ߩ  and 
 . In the SAMR approach, finite volume cells are clusteredݑߩ
with a special algorithm into non-overlapping rectangular grids. 
The grids have a suitable layer of halo cells for synchronization 

 
FIGURE 1. THE VELOCITIES e

α
 OF THE D3Q19 LATTICE. 



 

and applying inter-level and physical boundary conditions. 
Refinement levels are integrated recursively. The spatial mesh 
width ∆ݔ and the time step ∆ݐ are refined by the same factor 
ݎ ,where we assumeݎ  2 for ݈  0and ݎ ൌ 1.  

Note that in an adaptive LBM the collision frequency ߱ is 
not a constant but needs to be adjusted according to Eq. (8) for 
the update on each level. In addition to this, the interface region 
requires a specialized treatment. Distinguishing between the 
transport and collision operators, T and C, cf. Eqs. (2) and (4), 
the steps of our method for a refinement factor of 2 are:  

1. Complete update on coarse grid: f
C,n1 :CT f

C,n   

2. Use coarse grid distributions f,in
C,n that propagate into the 

fine grid, cf. Fig. 2(a), to construct initial fine grid halo 

values f,in
f ,n , cf. Fig. 2(b).  

3. Complete transport on whole fine mesh. 

Collision is applied only in the interior 

cells (yellow in Fig. 2(b)).  

4. Repeat 3. to obtain  and

f
f ,n1 :C f

f ,n1/2  .  

5. Average outgoing distributions from fine grid halos 

(Fig. 2(c)), that is f,out
f ,n1/2 in the inner halo layer and  

(outer halo layer) to obtain .  

6. Revert transport for averaged outgoing distributions, 

, and overwrite those in the previous 

coarse grid time step, cf. Fig. 2(d).  

7. Parallel synchronization of on entire level.  

8. Repeat complete update on coarse grid cells next to coarse-

fine boundary only:  

This algorithm is computationally equivalent to the method by 
Chen et al. [7] but tailored to the SAMR recursion that updates 
coarse grids in their entirety before fine grids are computed. 
Because of the nonlinearity of the collision operator C it 
becomes necessary under this paradigm to repeat the LBM 
update for those coarse grid cells that share a face or corner 
with a fine grid. 

EMBEDDED STRUCTURE HANDLING 
We represent non-Cartesian boundaries implicitly on the 

adaptive Cartesian grid by utilizing a scalar level set function ϕ 
that stores the distance to the boundary surface. The boundary 
surface it located exactly at ϕ=0 and the boundary outer normal 
in every mesh point can be evaluated as n=−ϕ/|ϕ| [8]. We 
treat a fluid cell as an embedded ghost cell if its midpoint 
satisfies ϕ<0. 

In order to implement non-Cartesian boundary conditions 
with the LBM, we have chosen to pursue a 1st order accurate 
ghost fluid approach that was already available in AMROC [4]. 
In our technique, the density distributions in embedded ghost 
cells are adjusted to model the boundary conditions of a non-
Cartesian reflective wall moving with velocity w before 
applying the unaltered LBM. The last step involves 
interpolation and mirroring of ߩ, u across the boundary to ߩ′ 
and ū and modification of the macro velocity in the immersed 
boundary cells to ܝᇱ ൌ െܟ2 ,ഥܝ  cf. [3]. From the newly 
constructed macroscopic values the density distributions in the 
embedded ghost cells are simply set to ఈ݂

ሺߩ′,  .ሻ′ܝ
Real-world geometries are considered in AMROC as 

triangular surface meshes. The computation of the level set 
distance information in every Cartesian mesh point could 

 
 

FIGURE 2. DISTRIBUTIONS INVOLVED IN NECESSARY DATA EXCHANGE AT A COARSE-FINE BOUNDARY. (A) COARSE 
DISTRIBUTIONS GOING INTO FINE GRID; (B) INGOING INTERPOLATED FINE DISTRIBUTIONS IN HALOS (TOP), OUTGOING 

DISTRIBUTIONS IN HALOS AFTER TWO FINE-LEVEL TRANSPORT STEPS (BOTTOM); (C) AVERAGED DISTRIBUTIONS 
REPLACING COARSE VALUES BEFORE UPDATE IS REPEATED IN CELLS NEXT TO BOUNDARY. 



 

principally be accomplished by simply iterating over the entire 
surface mesh; yet, this would lead to detrimental performance 
for increasing mesh size. The problem is equivalent to 
determining for every Cartesian cell the closest facet on the 
surface mesh. For this purpose, we employ a specially 
developed algorithm based on characteristic reconstruction and 
scan conversion developed by Mauch [9] that is used to 
compute the distance exactly only in a small band around the 
embedded structure.  

The dynamics of multi-body systems undergoing 
interaction with the fluid are modeled as sets of triangulated 
surface meshes configured in kinetic chains. The dynamics of 
these mechanisms are solved by a recursive Newton-Euler 
method at each time step [10]. Considering an arbitrary link 
with a coordinate frame located at point P that is not coincident 
with its associated body’s center of mass, the force and torque 
applied by the preceding link are  
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where m is the mass of the body,  denotes the 4 ൈ 4	identity 
matrix, a


	is the acceleration of link frame with origin at P in 

the preceding link's frame.	۷ is the moment of inertia about 
the center of mass,   and હ  are angular velocity and 
acceleration, respectively, ܋ is the location of the body's center 
of mass expressed in the associated link's frame, and ሾ܋ሿൈ,ሾሿൈ 
denote skew-symmetric cross product matrices. 

Here, we additionally define the total force and torque 

acting on a body,  F F F CFSI prescribed xyz   and

τ τFSI  Prτ Cescribed   respectively. Where Cxyz  

and C are the translational and rotational constraints, 

respectively. FFSI  and τFSI  are determined for each body by 

integrating the fluid hydrodynamic pressure and viscous forces 
on the triangular facets of the respective body’s surface mesh. 
Each surface mesh (lofted from .xyz curves or loaded from .obj, 
.ply, .stl formats) is associated with a kinetic link in a chain that 
begins with a base link in the global coordinate frame. Links 
are connected by joints that may be independently constrained 
in six degrees of freedom relative to the preceding link. The 
evolution of the triangular surface mesh as well as the velocity 
w in each node are communicated to the LBM fluid solver in 
dedicated coupling time steps. The data exchange corresponds 
to the time step of an SAMR level but this does not have to be 
the finest refinement level available, cf. [11]. This formulation 
readily facilitates the kinetic analysis of each link and 
triangulated surface in the global coordinate frame or in any of 
the link coordinate frames.  

 
FIGURE 3. MODEL SYSTEM CONSISTING OF TWO RIGID 
ELLIPTICAL SECTIONS CONNECTED BY A HINGE WITH 

TORSION SPRING AND DAMPER. 

RESULTS 
A canonical problem of fluid-structure interaction and wake 

prediction proposed by Toomey & Eldredge [4] is selected as a 
validation test case for coupled flapping wing aerodynamics. 
This model, depicted in Fig. 3, utilizes a system of two 
articulated rigid bodies connected by a torsion spring and 
damper. The kinematics of the centroid of the driven wing are 
prescribed, while the trailing body responds passively to the 
aerodynamic and inertial/elastic forces. The principle unknown 
in this rigid body dynamics problem is the hinge angle, ߠ. The 
parametric kinematic equations  
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    tanh cos 2 ,t t

t

G t t dt      (12) 
 

 

    tanh cos 2r rG t t    (13) 
 

 
describe the motion of the driven body. The parameters utilized 
in this work and in [1] to specify the kinematics through the 
translational, ܩ௧ሺݐሻ, and rotational, ܩሺݐሻ, shape functions are 
given in Table 1. The start-up conditioner, ܥ௧ሺݐሻ, is applied to 
the translational kinematics to avoid an impulsive start. The 
translational and rotational Reynolds numbers are based on the 
peak translational, V, and rotational, 2ߪߚߨ݂ܿ	tanhሺߪሻ , 
velocities as shown in  
 

  2Re , Re 2 tanht r r rVc fc     . (14) 

The used torsion spring and damper coefficients are 
∗ܭ ൌ 6.9 ∙ 10ିଷkg mଶ/sଶ  and ܴ∗ ൌ 3.8 ∙ 10ିସkg mଶ/sଶ 
respectively. A no-slip boundary condition is applied at the 
wing surface and at the top and bottom (y direction) 
boundaries. The simulation domain is a box of extents 



 

:ݔ ሾെ0.5,0.5ሿ, :ݕ ሾെ0.5,0.5], z:[-0.31,0.31]. It is periodic in the 
x-direction and has slip walls at the z-boundaries to minimize 
corner effects similar to the confguration used by Aono et al. 
[1].   

A convergence study was conducted for the moderate 
kinematic parameters (ߪ௧ ൌ 1.85, ߪ ൌ 1.885,Φ=0) assigned to 
Case 2 for the simulation parameters given in Table 2. The error 
in predicted hinge deflection relative to the experiments 
conducted by Toomey & Eldredge for each of the convergence 
study cases is presented in Table 3 along with the wall time of 
each simulation on 24 Intel-Ivybridge CPUs. The errors in 
mean and peak forces and moments relative to the values 
predicted by VVPM [4] are shown in Tables 4 and 5 
respectively. The spatial and temporal resolution at the wing 
surface in Case 2.2 predicts peak hinge deflection, forces and 
moment accurately at moderate computational cost.  These 
parameters where selected to simulate the seven kinematic 
cases investigated by Toomey & Eldredge [4]. Eddies shed by 
the moving wing in Case 2 are clearly depicted in the vorticity 
field at two times in Fig. 4. Regions of mesh refinement are 
shown in Fig. 5 and the domain decomposition is displayed in 
Fig. 6 plainly presenting the adaptive refinement and load 
balancing during runtime within AMROC.  
  Figures 7–9 display the hinge deflection angle for 
experiments and our simulations through three periods of 
motion for Cases 1, 2 and 4. The mean and peak fluid loads are 
simulated in this work are within 5% of those predicted by the 
VVPM [4] as shown in Tabs. 6 and 7. Hinge deflections 
presented in Figs. 7–9 are in good agreement with the 
experimental results [4]. Comparing Cases 1, 2, and 4, where 
the translational and rotational shape parameters are increased 
simultaneously the expected increases in deflection angle, mean  

and peak forces and moment are observed. Figure 9 clearly 
depicts the expected large deflection opposite the initial 
rotation followed by a recoil. In contrast, steady translation 
causes a small aft rotation. Comparing Cases 4 and 6 the 
expected decrease in hinge deflection corresponds to the 
reduced rotation rate caused by the rotational shape 
parameter, .ߪ	  The insensitivity of hinge deflection to 
translation rate controlled by	ߪ௧ is shown in the comparison of 
Cases 4 and 7. The deviation at small hinge angles observed in 
Case 7 (Fig. 9) corresponds to periods of the flaping cycle 
when the driven lead wing component is translating and 
rotating very slowly and the trailing wing component is 
recoiling.  In the experiments the hinge was observed to 
behave nonlinearly at small angles and under small loads.  
This nonlinearity was not accounted for in this work or in the 
simulations by Aono et al. [1] or those by Toomey & Eldredge 
[4, 12] to similar effect.   
 

 
TABLE 3.  CONVERGENCE STUDY RELATIVE ERROR OF 

MEAN AND PEAK HINGE DEFLECTION VS WALL TIME 
 

 100rRe   500rRe   

Case Mean Peak Wall [s] Mean Peak Wall [s]
Ref. -0.124° 17.167° - -0.116° 17.980° - 
2.1 -8.31% -0.95% 625 -8.08% -0.93% 656 
2.2 -8.31% -0.81% 2047 -8.01% -0.79% 2118 
2.3 -2.11% -0.03% 7630 -2.08% -0.03% 7974 
2.4 -2.01% -0.01% 43318 -2.00% -0.01% 44834

 
 

TABLE 4.  CONVERGENCE STUDY RELATIVE ERROR OF 
NONDIMENSIONAL MEAN FORCE AND MOMENTS 

 
 100rRe   500rRe   

Case Fx  Fy  Mz  Fx  Fy  Mz  

Ref. -7 58.8 -4 -4.9 81.6 -2
2.1 5.47% 3.74% 5.55% 5.35% 6.83% -7.29%
2.2 2.47% 0.74% 2.55% 2.35% 3.83% -4.29%
2.3 2.22% 0.49% 2.30% 2.10% 3.58% -4.04%
2.4 2.17% 0.44% 2.25% 2.05% 3.53% -3.99%

 
 

TABLE 5.  CONVERGENCE STUDY RELATIVE ERROR OF 
NONDIMENSIONAL PEAK FORCE AND MOMENTS 

 
 100rRe   500rRe   

Case Fx  Fy  Mz  Fx  Fy  Mz  

Ref. 876 359 397 863 373 382
2.1 7.81% 5.77% 5.97% 6.07% 7.68% -5.69%
2.2 4.46% 2.42% 2.62% 2.72% 4.33% -2.34%
2.3 4.12% 2.08% 2.28% 2.38% 3.99% -2.00%
2.4 4.08% 2.04% 2.24% 2.34% 3.95% -1.96%

TABLE 1.  KINEMATIC PARAMETERS 
 

 (cm) 7.1 Φ 0, 45	ܣ

ܿ	(cm) 5.1 ܴ݁௧ 73, 370 

݀	(cm) 0.25 ܴ݁ 100, 500 

 ሺ݇݃/݉ଷሻ 5080ߩ 4/ߨ ߚ

 ሻ 0.15ݖܪሺ	௧ 0.628, 1.885, 3.770 ݂ߪ

    0.628, 1.885, 3.770ߪ

 
TABLE 2.  CONVERGENCE STUDY PARAMETERS 

 

Case 2.1 2.2 2.3 2.4 

|റݒ| 0.5 0.5 0.5 0.5

net refine 0.125 0.0625 0.0625 0.0625

finest ∆2.45 ܿ/ݔE-02 1.22E-02 6.12E-03 3.06E-03

finest ∆ݐ/߬ 3.53E-04 8.83E-05 4.42E-05 2.21E-05 

 



 

 
The influence of rotational phase is observed by comparing 

Cases 2 and 3, as well as, 4 and 5. In both comparisons the 
mean y–force is slightly increased and hinge deflection is only 
changed by a phase shift. These simulations show that the rate 
of rotation of the driven body is the major cause of hinge 
deflection as was found in the experiments conducted by 
Toomey & Eldredge [4, 12].    

CONCLUSIONS 
The first prototype of a dynamically adaptive, three-

dimensional lattice-Boltzmann method for simulation of 
flapping wing dynamics has been developed. First validation 
has been achieved for a canonical FSI problem from [4]. We 
have confirmed that our approach is able to simulate the 
propagation of wake fields created by the translation and 
rotation of simplified hinged wing geometry, including the 
interaction with previously shed vortices, with apparent good 
quality and comparably moderate computational costs. 
Immediate future work will concentrate on incorporating the 
dynamic elastic response of the components into simplified 
biologically relevant models and validating the approach for 
available benchmarks. 
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TABLE 6.  RELATIVE ERROR (%) OF NONDIMENSIONAL 
MEAN FORCE AND MOMENTS 

 
 Rer=100     Rer=500     

Case Fx  Fy  Mz  Fx  Fy  Mz

1 -2.59 3.33 -3.85 3.33 5.45 -3.75
2 2.47 0.74 2.55 2.35 3.83 -4.29
3 1.27 0.45 0.72 2.31 4.65 -3.43
4 4.86 4.28 3.54 3.51 2.37 -2.32
5 4.83 0.47 0.25 4.34 4.39 -2.67
6 2.10 3.19 1.52 3.00 1.82 -3.96
7 1.41 0.99 3.28 4.31 2.32 -3.07

 
 
 

TABLE 7.  RELATIVE ERROR (%) OF NONDIMENSIONAL 
PEAK FORCE AND MOMENTS 

 
 Rer=100     Rer=500     

Case Fx  Fy  Mz  Fx  Fy  Mz  

1 4.40 5.07 -3.66 4.40 3.98 -4.17 
2 4.46 2.42 2.62 2.72 4.33 -2.34 
3 4.20 3.20 4.80 3.32 2.68 -4.59 
4 4.67 2.22 3.71 0.18 2.51 -2.85 
5 3.57 3.37 1.26 4.09 4.97 -3.63 
6 2.04 3.08 1.52 3.92 2.08 -4.44 
7 2.20 1.91 2.26 3.29 3.79 -4.40 

 
 



 

 
FIGURE 4. CASE 2.2 ߪ௧ ൌ 1.85, ߪ ൌ 1.885, Φ=0 ܴ݁ ൌ 100 : 

VORTICITY AT ݐ/߬ ൌ 1.05ሺLEFTሻ, 1.58(RIGHT). 
 
 
 
 

  
FIGURE 7. CASE 1 ߪ௧ ൌ 0.628, ߪ ൌ 0.628, Φ=0 : HINGE 

DEFLECTION ANGLE OVER TIME. EXPERIMENTAL RESULTS 
(–); CURRENT (- -). 

 

 
FIGURE 5. CASE 2.2 ߪ௧ ൌ 1.85, ߪ ൌ 1.885 Φ=0 ܴ݁ ൌ 100 : 3 
REFINEMENT LEVELS (INDICATED BY COLOR) AT ݐ/߬ ൌ

1.05ሺLEFTሻ, 1.58(RIGHT). 

 
FIGURE 6. CASE 2.2 ߪ௧ ൌ 1.85, ߪ ൌ 1.885 Φ=0 ܴ݁ ൌ 100	: 

DOMAIN DISTRIBUTIONS TO 24 PROCESSORS (INDICATED 
BY COLOR) AT ݐ/߬ ൌ 1.05ሺLEFTሻ, 1.58(RIGHT). 

 
 
 

 

  
FIGURE 8. CASE 2 ߪ௧ ൌ 1.85, ߪ ൌ 1.885, Φ=0 : HINGE 

DEFLECTION ANGLE OVER TIME. EXPERIMENTAL RESULTS 
(–); CURRENT (- -). 

 
 

 
FIGURE 9. CASE 4 ߪ௧ ൌ 3.770, ߪ ൌ 3.770, Φ=0 : HINGE 

DEFLECTION ANGLE OVER TIME. EXPERIMENTAL RESULTS 
(–); CURRENT (- -). 

 


