

# lomains

fo

P

tion

func

Φ

distanc

signed

σ

Of

Usage

σ

X

omple

U

<u>O</u>

edding

Emp

4.

esh

sian

ţ

ar

 $\bigcirc$ 

al

hierarchic

the

UO

tion Ъ. -+**(**)  $\mathbf{O}$ **(**) > $\sim$ σ  $\overline{\mathbf{O}}$  $\square$ 0 Ω plicit • — Ц Ц Ĺ efficie

#### \_\_\_\_\_ P $\triangleright$ \_\_\_\_ P cribe Of mid $\triangleright$ nt preso Ð the Ц Ε \_\_\_\_ Φ refin .Ц to P 0 directly S AMR

evaluate

implementation

current

 $\mathbf{O}$ 

Our

per

0

Q

conditions

boundary

ells

C

Sh

В

uses

and

only

points

 $\geq$ 

σ

σ

nn

0

 $\Box$ 

ndar

0

Ω

the

, KS

mar

0

9-

 $\bullet$ 

Sion ola values 0 and inver inter cell ate ghost

uct

nstr

00

to

accura

de

D D

1st

oscillating

Non

essary

ne

boundary

the

—  $\frown$  $\frown$ 

st 0 .= > ed B Interpolation fr construct mirrc cells (gray). • •

## sphere σ around Sti combu Q Ũ Ň Shock-ind Verification:

at vI 7) • • city • • N cells velo ignitio atios 40 constant (molar mbustion  $\times$ 0  $\sim$ Of Φ with Sh mixtur 0 C Ве induced els base lon trav AMR a Ú U with 1.5 mm sho 'gen ЧО utation oxy **khibits** tion ns en simulat radi ompr bo Û and hydr Of vel 298 K symmetric Э projectile Ū I uguo. (m)Of thr H ЦО Cylindrical and spherical Comparis 2170.6 m/s 6.67 kPa  $\bigcirc$ lacksquare $\triangleleft$ 

 $\mu \mathsf{S}$ and Ц Ц σ 50 σ  $\frown$  $\square$  $\mathsf{S}/l_{ig}$ ()σ **(**) + at പ് Ð Ω  $/l_{ig}$ visibly  $\smile$  $\mathbf{N}$ ഗ • ت ل  $\sim$ 19 tor Φ 0Z  $\mathbf{O}$ σ  $\smile$ Ч— 4 efinement tio  $\sim$ N. qu actor 0  $\boldsymbol{r}$ 



 $\circ$ tЭ ay) (gra ht). /els (rigl <u>e</u> 4 - 11 Ļ  $\infty$ en 2,  $\sim$ Ļ <u>ب</u> Υ\_ с т r N ai 0 Ο te) 4-1⁄ ש  $\mid Y_{H_2}$  (w) eft) and and 2 (lef 7 a (bla ' r1, of *p* ( with tation



ema  $\eta^{T}_{Y_{i}}$ , red: graphic a des: the Э d S t D gree epict Ō  $\epsilon_p$ blue: ierarc light l evel hid  $\epsilon_{
ho}^{\epsilon}$ lue: the Ш Ъ О S S 350 esso t PI 8 8 2 to on *l* : ositio indicators o in decompos Ļ Dor refin ght: Active dary. Ri Left: bound



σ 10.0 10.0 10.0 4.0 16

t-d

### nre struc oint

S

**(**) Q Φ S J **(**) L L trans D nt exhibit  $\cap$ Ţ  $\square$ 0 Q an ла<sup>.</sup> unstable dete Φ th 0 erently Ļ endicular inh are  $\frown$ er triple det. detonations opagate the olving at b that 6 SU Self-sustaining patter form S WaV waves sure





e t fron duate с С <u>G</u> J J epherd, lology). n č scillating I. E. Sh of Techi J. of a regularly ( age courtesy rnia Institute mages of a rgon (imag ory, Califori ato.

iple ely de an <u>م</u> • — \_\_\_\_  $\nabla$  $\cap$  $\mathbf{O}$ • — <u>.</u> 0 onf ed diti Sh istinguis ent C iff di di di 



. •

- irreg and 00 σ 0 σ N IIV Э tion σ  $\sim$ initi idth \_ Ο Э  $\square$ . . ZN qn . .  $\sim$ S 4 Ū 0 rati ngu σ akin 9  $\sigma$ \_\_\_\_\_ 0 Ω פר 1 ap σ Ch 4 . . with  $\bigcirc$ er . . igg **T** tion Ц Г Initializa Ð quickly Mixtu
- regularly σ elo σ tio σ 0 еГ ) G Sir til th U N wid tio th Ň Simulat cells
  - agnitude mesh Φ J  $\bigcirc$  $\square$ th  $\frown$ 0 4 . . .  $\mathbf{O}$  $\cup$  $\mathbf{O}$  $\smile$ els  $\geq$ Ω le< S Ð • — 4 Ċ Φ Ð C L L • a 0 <u>0</u> diti <u>0</u> Ο tio  $l_{ig}$ Э S 0 <u>0</u>. 0  $\sim$ 0
    - Ð  $\nabla$ • \_\_\_\_ Ο • — L L



σ





tly σ O t L a t Q σ σ (m refl ts Ch  $\overline{\mathbf{O}}$ σ Ð Ω. μS abl St O τ õ <u>e</u> a Ļ ig D. . 0 b G C C on ddl Ļ Û

σ σ • — • —  $\nabla$ σ  $\mathbf{O}$ 9  $\mathbf{O}$ Ο G • — Ļ Ц Ц (D) 

<sup>0</sup>d/d 01110 0 00 Q 75 75 47 65 65 78 77 77 010 0 2 4 3 0 2 1 4 0 0 0  $\begin{array}{c} p_{0} \\ p_{0} \\ p_{0} \\ p_{0} \\ p_{0} \\ p_{0} \\ p_{1} \\ p_{2} \\$ 6 6 H 6 4

A U C U I I

ent s ates first σ  $\sim \leq$  $\overline{\mathbf{D}}$ Inflo (E) the

#### Q U **L** a Ð

- 3d  $\overline{}$ Ó Q Ч Ч σ . . . .  $\mathbf{N}$ . . L • • 0
- etonation σ σ D ta Φ  $\overline{\phantom{a}}$ Э 4 0 er  $\mathbf{r}$ σ σ Φ th Of tion ula . N tio High

· 10 4.0

- eacted ~ 0 flo  $\square$ • tior σ S I  $\square$ Э Ц Ц an alile U nd Ο Simulati cit elo
- (unifor hesh  $( \cap$ Ο **(**) σ  $\odot$  $\Box$ 0 Υ  $\cap$  $\frown$ 4 σ σ  $\mathbf{N}$  $\smile$ els le< ells -+Ĺ Q Ð Ο **(**) efin  $\odot$ ditional (N S  $\square$ tio σ σ σ  $\mathbf{N}$  $'l_{ig}$ .\_ ti< dap  $\infty$ 
  - σ рГ \_\_\_\_ Ο  $\odot$  $\mathbb{N}$  $\bigcirc$ 0

ure in 2d. tion.  $\square$ • — ىــ Ú  $\sigma$ Ch σ  $\nabla$ σ 0  $\overline{}$ • — \_\_\_\_ σ σ Φ  $\square$ WaV ted sitio -**Xhib**  $\square$ σ Ð -U **D**S σ tha σ  $\sigma$ S entifi tio σ σ  $\square$ to <u>id</u> σ ()Ð **(**) σ Ω scillating • —  $\square$ ture σ  $\cup$ 3d nC ularly a K Ð  $\mathcal{O}$ 



ata displayed length. Rig tional Mach : e transverse le le L V S L



# σ Ο 4 $\mathbf{O}$ U

#### С С $\cap$ σ \_\_\_\_ σ С •— 4 σ Ζ U $\mathbf{O}$

#### Ľ 5 Q Ľ

S

U

Μ

σ

J

0

<u>۔</u>

ла. Па

1)

 $\nabla$ 

 $\mathbf{O}$ 

0

to MR) Ð Ō of 4  $\smile$ omputation Refinement ഗ ന Φ  $\mathbf{O}$ > $\mathbf{O}$ σ  $\mathbf{O}$ Φ σ th σ Q σ C 0  $\sim$ \_ tu σ 0 Sin  $\mathbf{L}$  $\mathbf{O}$  $\mathbf{r}$ S fo S 0  $\geq$ • — \_\_\_\_ Ω Ο  $\mathbf{O}$ þ •— С σ (L) U <u>Chi</u> • —  $\mathbf{L}$ G  $\mathbf{O}$ S • -----

Ο • еf \_\_\_\_ σ +  $\cap$ d

 $\mathbf{O}$ 

σ

 $\sigma$ 

Q

<u>-</u>:

**(**)

S

 $\Box$ 

σ • — **(**) na Ο Π 5 da.

BO

glo

Q • —  $\cap$ \_\_\_\_ • —

Ζ

- -Φ Ο Ū  $\cup$ Φ Iple <u>ニ</u>  $\mathbf{O}$ •— • — Ω  $\checkmark$  $\sim$ σ ><u>.</u> • — \_\_\_\_ ш  $\mathbf{+}$  $\overline{}$ Ð <u>D</u> •— Ð 0 Ľ S C ന C σ σ ىلە J σ σ chi Ο J U
- <u>.</u> σ -U \_\_\_\_\_ σ Sin σ Ο  $\sigma$  $\bigcirc$ Ţ

U

-

Ð

all

a

Ш

 $\mathbf{r}$ 

 $\cup$ 

blo

 $\frown$ 

\_

0

σ

σ

 $\nabla$ 

Ó

 $\nabla$ 

+

σ

 $\square$ 

Ο

 $\square$ 

<hr/>

trib

Dis.

•\_\_\_

Ο

Neighb

- der al p0  $\mathbf{O}$ <u>0</u> L G σ S 0 ation Q /er D 0 Q  $\cap$  $\leq$  $\mathbf{L}$ Ο **(**)  $\nabla$  $\mathbf{O}$ S  $\nabla$ Ð  $\nabla$ Ο σ pli **(**) Ũ niz Ω σ σ 0 σ U 0 ditio sid ar S rid <u>els</u> σ Ð σ \_\_\_\_ σ Ο  $\square$ =
  - $\cup$  $\mathcal{O}$ ---. . Ľ. alg tio

#### D σ Ð

De

.....

ef

Ľ

 $\leq$ 

Π

. .

- Э  $\nabla$ **(**)  $\cap$ C • —  $\cup$  $\nabla$ • — • — С  $\nabla$ • — -Ο
- $\mathbf{\nabla}$  $\land$ - $\mathcal{A}$ **—** \_\_\_\_\_  $\frown$ X  $\sim$ ----- $\frown$ X  $\sim$  $\smile$
- 0 Richa by  $\mathfrak{R}$ ť Jti \_  $\rightarrow$ σ

$$\tau_{jk}^{w} := \frac{|w(Q_{jk}(t + \Delta t)) - w(Q_{jk}(t + \Delta t))|}{2^{o+1} - 2}$$

 $\mathbf{O}$ 

Ц Ц

 $\nabla$ 

O

σ

•—

L L

σ

• \_\_\_\_

0

X

 $\neg$ 

 $\sim$ 

 $\smile$ 

Ο • \_\_\_\_\_ Ð +Ċ  $\mathbf{O}$ Ð **(**) **(**)

**(**)

 $\cup$ 

<u> </u>

 $\mathbf{O}$ 

 $\nabla$ 

 $\mathbf{O}$ 

ID

• \_\_\_\_  $\frown$  $\frown$  $\mathbf{t}$ + X *C* w( $\overline{\bigcirc}$ X Э Ε

5 3

 $\bigcirc$ .0 \_\_\_\_ 0  $\Box$  $\square$  $\overline{\mathbf{O}}$ σ • — 4  $\sigma$ Ð S **(**)

• —

Ω

 $\cap$ 

+

σ

Ļ

#### ube S 0 . . ┥ σ 0

┥

σ

Ο

Sh

 $\mathbf{O}$ 

0XV

σ Φ σ σ Ο <u>\_</u> σ • — Ч У  $\sim$ . . -. . Э S 0  $\cap$  $\mathbf{+}$ σ Ο  $\square$ σ <u>0</u> —  $\mathbf{O}$ Ο  $\nabla$  $\mathbf{O}$ ÷ σ

Φ Ũ • — U + σ σ Ð Ţ  $\nabla$ > 0 • —  $\nabla$ \_\_\_\_ S • — \_\_\_\_ \_

 $\mathbf{O}$ 

Ref

 $\mathbf{O}$ 

In

 $\cap$ 

Sh

\_\_\_\_

С

-----

0

Q

σ

رار σ  $\mathcal{O}$ •—  $\overline{}$ • — 2 •— 0 σ Ļ

ന

L L

 $\Box$ 

E E E E

25 00

ŶìĬ

- 0 0 0 0 0 0 0 0 0 0

[69M] Sineserc

Ap at



O O O Oы Ц



#### wa itio e detonation iniform resolu $\Delta x_1 = 6.25 \,\mu$ l -] noitost eseM Inotication [-] 0.01 0.008 0.006 ⊢ <sup>≖</sup> ° <sup>≖</sup> ≺≺≺ ⊢<sup>⊥</sup>0⊥<sup>∼</sup> $\triangleleft$ the α <sup>()</sup> - v. Y σ 0 natio 70 $\mu$ s -00 $\mu$ 8 8 15 10 30 20 **L A** Temperature [K] Temperature [K] O t





99 167 287 393 696 696 370

8 8 7 7 2 5

アファアア

0 0 4 4 0 0

0 0 0 0 **4** 

0 0

200

D

0

## apolation the of Mirroring tion/extr

- d• D  $ho_i$  ,  $\smile$  $\smile$ by  $\sim$ ues Jt Val  $\mathbf{t}$ ŨO primitive comp n) velocity normal N  $\smile$ of **`**T
- ent ure efinem capti tio with comput: computation  $\mathbf{O}$ ed solv 4-level Higher ອ

 $\overline{>}$ ē Ω Φ ЧO ositio Ο different slightly





### Ō Ð tripl and onation det Cellular

erely and triple points in detonations is σ tion gener temp exp field instability abl with sure, flow eby consider , N ont the effor Ð th detailed not available р σ Ţ enhanced an Despite imental onation model point Ð atur the

ulation

Ц

σ

with

10

et



σ •—  $\Delta$  $\boldsymbol{\prec}$ Э Ο  $\square$ • — 0 Q . ເບ ter : t: C σ

## equations Governing

D  $\nabla$ Φ uler We solve the inhomogeneous

$$-\nabla \cdot f(q) = s(q)$$
(

XN σ σ [-1]vector of state  $q = (\rho_1, \rho_1, \rho_2)$ with

 $\smile$  $(
ho_1 u_n,\ldots,
ho_K u_r$ 11  $f_n(q)$ 

لے ل

The

equation of state follows Dalton's law and the idea 
$$p = \sum_{i=1}^{K} p_i = \mathcal{R}T \sum_{i=1}^{K} \frac{\rho_i}{W}$$

with the caloric equation

$$h = \sum_{i=1}^{K} Y_i h_i(T) , \qquad h_i(T) = h_i^0 + \int_{T^0}^{T} c_{pi}(\sigma) d\sigma$$

U computation which requires

$$\sum_{i=1}^{K} \rho_i h_i(T) - \rho e - \mathcal{R}T \sum_{i=1}^{K} \frac{\rho_i}{W_i} = 0.$$

 $\bigcirc$  $\bigcirc$ ter Xin detailed the source for chemistry, rates reaction For

$$\dot{\omega}_{i} = \sum_{j=1}^{J} \left(\nu_{ji}^{r} - \nu_{ji}^{f}\right) \left[k_{j}^{f} \prod_{l=1}^{K} \left(\frac{\rho_{l}}{W_{l}}\right)^{\nu_{jl}^{f}} - k_{j}^{r} \prod_{l=1}^{K} \left(\frac{\rho_{l}}{W_{l}}\right)^{\nu_{jl}^{r}}\right]$$

0 nism σ all results were obtai reactions elementary In here, 34 with

## methods Numerical

Φ σ σ <u>ק</u> d ש ש ЧО σ Ο Ţ σ S with the method of fractional Numerical source term incorp and chemical time steps

ally 4 Q Π S  $\leq$ u R  $\vdash$ explicit 2nd order 0 + cells an app In most Time-

s an approximate Riemann solver with numerical flux function 
$$F(\mathbf{Q}_l,\mathbf{Q}_r)=rac{1}{2}\left(f(\mathbf{Q}_l)+f(\mathbf{Q}_r)-\sum_{\iota=1}^3|s_\iota|\mathbf{W}_\iota
ight)$$

-  $\hat{c}$ ,  $s_2 = \hat{u}_1$ ,  $s_3 = \hat{u}_1 + \hat{c}$  is u  $= \hat{u}_1$  with  $s_1$  :

N<sub>1</sub> = 
$$a_1 \hat{\mathbf{r}}_1$$
, W<sub>2</sub> =  $\sum_{m=2}^{\infty} a_m \hat{\mathbf{r}}_m$ , W<sub>3</sub> =  $a_{K+3} \hat{\mathbf{r}}_{K+3}$ , nere

 $rac{- \widehat{
ho}\widehat{c}\Delta u_1}{2\widehat{c}^2}, \ a_{i+1}$  $\Delta p$  –  $a_1$ and 4 N

$$\begin{split} \hat{\mathbf{r}}_{1} &= (\hat{Y}_{1}, \dots, \hat{Y}_{K}, \hat{u}_{1} - \hat{c}, \hat{u}_{2}, \hat{H} - \hat{u}_{1})^{T}, \\ \hat{\mathbf{r}}_{i+1} &= (\delta_{1i}, \dots, \delta_{Ki}, \hat{u}_{1}, \hat{u}_{2}, \hat{u}_{1}^{2} + \hat{u}_{2}^{2} - \hat{\phi}_{i}/(\hat{\gamma} - 1))^{T}, \\ \hat{\mathbf{r}}_{K+2} &= (0, \dots, 0, 1, \hat{u}_{2})^{T}, \\ \hat{\mathbf{r}}_{T+2} &= (\hat{Y}_{1}, \dots, \hat{Y}_{T}, \hat{u}_{1} + \hat{c}, \hat{u}_{2}, \hat{H} + \hat{u}_{1})^{T}. \end{split}$$

wit ave

th the usual Roe average given by 
$$\hat{v} := \frac{\sqrt{p_l v_l + \sqrt{p_r}}}{\sqrt{p_l} + \sqrt{p_r}}$$
 for  $u_n, Y_i, T, h_i, H := E + p/\rho$  and  $\hat{\rho} :=$  erages  
 $\hat{\gamma} := \frac{\hat{c}_p}{\hat{c}_v}$  with  $\hat{c}_{\{p/v\}} = \sum_{i=1}^K \hat{Y}_i \hat{c}_{\{p/v\}_i}, \quad \hat{c}_{\{p/v\}_i} = \frac{1}{T_r - T_l} \int_{T_l}^{T_r} c_{\{p,v\}_i}(\tau) \, d\tau$ 

and

$$\begin{split} \hat{\phi}_i &:= (\hat{\gamma} - 1) \left( \frac{\hat{u}_1^2 + \hat{u}_2^2}{2} - \hat{h}_i \right) + \hat{\gamma} \frac{\mathcal{R}}{W_i} \hat{T} \,, \quad \hat{c} &:= \left( \sum_{i=1}^K \hat{Y}_i \, \hat{\phi}_i - (\hat{\gamma} - 1) (\hat{u}_1^2 + \hat{u}_2^2 - \hat{H}) \right)^{1/2} \,. \end{split}$$
ection reads

Ľ COL The

and is applied in 1d to 
$$\iota = 1, 3$$
 with  $\eta = \frac{1}{2}(|u_{1,r}-u_{1,l}|+|c_r-c_l|)$ , where in 2d and 3d a multidimensional evaluation of  $\eta$  for all fields is used as carbuncle fix. Example:

 $\overset{\iota}{\searrow}$ 

The correction 
$$\eta_{j,k+\frac{1}{2}} = \max\left\{\eta_{j+\frac{1}{2},k}, \eta_{j-\frac{1}{2},k}, \eta_{j}, k+\frac{1}{2}, \eta_{j-\frac{1}{2}}, k+1, \eta_{j+\frac{1}{2}}, k+1\right\}$$

00  $\rho_{l/d}^{\star}$ ensures the positivity of the mass fractic and  $\mathbf{Q}_r^{\star} = \mathbf{Q}_r - \mathbf{W}_3$  are unphysical, i.e.  $ho_l^{*}$ 

$$\mathrm{F}(\mathbf{Q}_l,\mathbf{Q}_r) = \left\{ egin{array}{c} s_3 \mathbf{f}(\mathbf{Q}_l) - s_1 \mathbf{f}(\mathbf{Q}_R) + s_1 s_3 (\mathbf{Q}_r - \mathbf{Q}_l) \\ & s_3 - s_1 \\ & \mathbf{f}(\mathbf{Q}_r) \end{array}, \quad s_1 \leq 0 \leq s_3 \ & s_3 - s_1 \\ & \mathbf{f}(\mathbf{Q}_r) \end{array}, \quad 0 > s_3 \ & s_3 \end{array} \right.$$

with the wave speed estimation  $s_1 = m$ 

stiff OE Source term integration: Standard solver for  $\bullet$ 

adjustr than th Automatic stepsize smaller time scales  $\bullet$ 

npli

