
High-resolution Simulation of Detonations with
Detailed Chemistry

Ralf Deiterding1 and Georg Bader2

1 California Institute of Technology, 1200 East California Blvd., Mail-Code 158-79,
Pasadena, CA 91125, ralf@cacr.caltech.edu
2 Institut für Mathematik, Technische Universität Cottbus, Universitätsplatz 3-4,
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Abstract

Numerical simulations can be the key to the thorough understanding of the
multi-dimensional nature of transient detonation waves. But the accurate ap-
proximation of realistic detonations is extremely demanding, because a wide
range of different scales need to be resolved. This paper describes an entire
solution strategy for the Euler equations of thermally perfect gas-mixtures
with detailed chemical kinetics that is based on a highly adaptive finite vol-
ume method for blockstructured Cartesian meshes. Large-scale simulations of
unstable detonation structures of hydrogen-oxygen detonations demonstrate
the efficiency of the approach in practice.

1 Introduction

Reacting flows have been a topic of on-going research since more than hundred
years. The interaction between hydrodynamic flow and chemical kinetics can
be extremely complex and even today many phenomena are not very well
understood. One of these phenomena is the propagation of detonation waves
in gaseous media.

A detonation is a shock-induced combustion wave, which internally con-
sists of a discontinuous hydrodynamic shock wave followed by a smooth region
of decaying combustion. The adiabatic compression due to the passage of the
shock rises the temperature of the combustible mixture above the ignition
limit. The reaction results in an energy release that drives the shock wave
forward. In a self-sustaining detonation, shock and reaction zone propagate
essentially with an identical speed d

CJ
that is approximated to good accu-

racy by the classical Chapman-Jouguet (CJ) theory, cf. [37]. But up to now,
no theory exists that describes the internal flow structure satisfactory. The
Zel’dovich-von Neumann-Döring (ZND) theory is widely believed to reproduce
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Fig. 1. Left: regular detonation structure at three different time steps on triple
point trajectories, right: enlargement of a periodical triple point configuration. E:
reflected shock, F: slip line, G: diffusive extension of slip line with flow vertex.

the one-dimensional detonation structure correctly, but already early exper-
iments [7, 30] uncovered that the reduction to one space dimension is not
even justified in long combustion devices. It was found that detonation waves
usually exhibit non-neglectable instationary multi-dimensional sub-structures
and do not remain planar. The multi-dimensional instability manifests itself in
instationary shock waves propagating perpendicular to the detonation front.
A complex flow pattern is formed around each triple point, where the detona-
tion front is intersected by a transverse shock. Pressure and temperature are
increased remarkable in a triple point and the chemical reaction is enhanced
drastically giving rise to an enormous local energy release. Hence, the accu-
rate representation of triple points is essential for safety analysis, but also
in technical applications, e.g. in the pulse detonation engine. Some particu-
lar mixtures, e.g. low-pressure hydrogen-oxygen with high argon diluent, are
known to produce very regular triple point movements. The triple point tra-
jectories form regular “fish-scale” patterns, so called detonation cells, with a
characteristic length L and width λ (compare left sketch of Fig. 1).

Fig. 1 displays the hydrodynamic flow pattern of a detonation with regular
cellular structure, how it is known since the early 1970th, cf. [29, 23]. The right
sketch shows the periodic wave configuration around a triple point in detail.
It consists of a Mach reflection, a flow pattern well-known from non-reactive
supersonic hydrodynamics [4]. The undisturbed detonation front is called the
incident shock, while the transverse wave takes the role of the reflected shock.
The triple point is driven forward by a strong shock wave, called Mach stem.
Mach stem and reflected shock enclose the slip line, the contact discontinuity.

The Mach stem is always much stronger than the incident shock, what
results in a considerable reduction of the induction length lig, the distance
between leading shock and measurable reaction. The shock front inside the
detonation cell travels as two Mach stems from point A to the line BC. In
the points B and C the triple point configuration is inverted nearly instan-
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taneously and the front in the cell becomes the incident shock. Along the
symmetry line AD the change is smooth and the shock strength decreases
continuously. In D the two triple points merge exactly in a single point. The
incident shock vanishes completely and the slip line, which was necessary for
a stable triple point configuration between Mach stem and incident shock, is
torn off and remains behind. Two new triple points with two new slip lines
develop immediately after D.

But the experimental analysis of the described transient sub-structures is
difficult. Direct numerical simulation of the governing equations can be an al-
ternative here [24, 8, 11, 16, 36, 33]. In the following, we will demonstrate that
recent parallel computers of moderate size, e.g. clusters of standard personal
computers, allow detonation structure simulations in two and three space
dimensions even for detailed non-equilibrium chemistry that provide deep in-
sight into the internal flow structure far beyond previous experimental results
[29, 23].

2 Detonation Modeling

The governing equations for detonation propagation in premixed gases with re-
alistic chemistry are the Euler equations for multiple thermally perfect species
with chemically reactive source terms [10, 37]. In d-dimensional Cartesian co-
ordinates these equations can be written as an inhomogeneous conservation
law of the structure

∂

∂t
q(x, t)+

d∑
n=1

∂

∂xn
fn(q(x, t)) = s(q(x, t)) , x = (x1, . . . , xd)T ∈ Rd , t ∈ R+

0 ,

(1)
where q = q(x, t) ∈ S ⊂ RM denotes the vector of conserved quantities.
The functions fn(q) ∈ C1(S, RM ), n = 1, . . . , d are the hydrodynamic fluxes,
s(q) ∈ C1(S, RM ) is the source term.

2.1 Euler Equations for Gas-Mixtures

For the multi-component Euler equations with K species the vector of con-
served quantities has M = K + d + 1 components. We choose the form

q(x, t) = (ρ1, . . . , ρK , ρu1, . . . , ρud, ρE)T . (2)

The partial density of the ith species is denoted by ρi, where i = 1, . . . ,K.
The total density of the mixture ρ =

∑K
i=1 ρi is a conserved quantity, too. The

ratios Yi = ρi/ρ are called mass fractions. They satisfy the relation
∑K

i=1 Yi =
1. We denote the nth component of the velocity vector u = (u1, . . . , ud)T by
un and E is the total energy per unit mass. The flux functions are
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fn(q) = (ρ1un, . . . , ρKun, ρu1un + δ1np, . . . , ρudun + δdnp, un(ρE + p))T (3)

for n = 1, . . . , d. Herein, p is the hydrostatic pressure and δjn denotes the
Kronecker-Symbol. We assume that all species are ideal gases in thermal
equilibrium. Under this assumption the same temperature T can be used to
evaluate the partial pressure of all species as pi = RTρi/Wi with R denoting
the universal constant and Wi the molecular weight, respectively. According
to Dalton’s law the total pressure is given by

p =
K∑

i=1

pi = RT
K∑

i=1

ρi

Wi
. (4)

Each species is assumed to be thermally perfect and has a temperature-
dependent specific heat cpi(T ). The functions cpi(T ) are usually approximated
by polynomials of degree 4 which are valid within a restricted temperature
range, e.g. from 300 K to 5000 K [31, 20]. The enthalpies per unit mass are
written as

hi(T ) = h0
i +

∫ T

T 0
cpi(σ)dσ

with h0
i called the heat of formation at the reference temperature T 0. For the

enthalpy of the mixture h =
∑K

i=1 Yi hi(T ) holds true. Inserting this into the
thermodynamic relation ρh− ρE + ρu2/2− p = 0 and inserting Eq. (4) for p
yields

ϕ(q, T ) :=
K∑

i=1

ρi hi(T )− ρE + ρ
u2

2
−RT

K∑
i=1

ρi

Wi
= 0 . (5)

It can be proven rigorously [5], that for each q in the space of admissible
states S a unique temperature T exists that satisfies Eq. (5). Unfortunately, a
closed form of the inverse can only be derived under simplifying assumptions
and the computation of T from Eq. (5) is in general unavoidable, whenever
the pressure p has to be evaluated. The appropriate speed of sound for the
described model is the frozen speed of sound, which is given by

c2 =
(

∂p

∂ρ

)
s,Y1,...,YK

=
K∑

i=1

Yi φi − (γ − 1)
(
u2 −H

)
(6)

with H = h +
u2

2
and φi :=

∂p

∂ρi
= (γ − 1)

(u2

2
− hi(T )

)
+ γ

R
Wi

T . The

coefficient γ = γ(Y1, . . . , YK , T ) can be calculated from the mixture quantities

cp =
∑K

i=1 Yi cpi(T ) and W =
(∑K

i=1 Yi/Wi

)−1

by employing the relation

γ = cp(cp−R/W )−1. By inserting the previous expression for φi into Eq. (6)
and by applying the ideal-gas law (4) it can be shown, that the frozen speed
of sound of a thermally perfect gas-mixture satisfies the relation c2 = γp/ρ.
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Mathematical Properties

The Euler equations for thermally perfect gas-mixtures inherit most mathe-
matical properties of the standard Euler equations for a single polytropic gas
with equation of state p = (γ− 1)

(
ρE − ρu2/2

)
, cf. [28]. Utilizing expression

(6) for the speed of sound the hyperbolicity of Eq. (1) with vector of state
(2) and flux functions (3) can easily be proven [5]. For d = 2, 3 the proof
uses the validity of the rotational invariance property that carries over from
the standard Euler equations almost directly [32] and requires just the diag-
onalization of the Jacobian A1(q) = ∂f1(q)/∂q. For instance, in two space
dimensions the matrix of right eigenvectors R1(q) = (r1 | . . . |rK+d+1) that
diagonalizes A1(q) with R−1

1 (q)A1(q)R1(q) = Λ1(q) for all q ∈ S with
Λ1(q) = diag(u1 − c, u1, . . . , u1, u1 + c) takes the form

R1(q) =



Y1 1 0 . . . 0 0 Y1

0
...

...
. . .

...
...

...
0

YK 0 . . . 0 1 0 YK

u1 − c u1 . . . u1 0 u1 + c
u2 u2 . . . u2 1 u2

H − u1c u2 − φ1

γ − 1
. . . u2 − φK

γ − 1
u2 H + u1c

.


(7)

Furthermore, it can be shown that the flux functions fn(q) and their Jacobians
An(q) satisfy the homogeneity property fn(q) = An(q)q for all q ∈ S.

The Homogeneous Riemann Problem

The profound understanding of the Riemann Problem (RP) in the non-
reactive case provides the theoretical basis for the construction of a reliable
Godunov-type method in Sec. 3.2 as a key ingredient for detonation simu-
lation. For s ≡ 0 the solution structure of a quasi-one-dimensional RP with
discontinuous initial data

q(x, 0) =
{

q
l
, xn < 0

qr , xn > 0 , (8)

can be shown to be in principle identical to the standard case of a single
polytropic gas that is discussed in detail for example in [28, 12, 32]. The first
and last characteristic field with the eigenvalues un−c and un+c are genuinely
nonlinear, provided that the condition

γ(γ + 1)
(1− γ)T

6= ∂γ

∂T
(9)
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is satisfied for all q ∈ S [5]. All other characteristic fields are associated to the
eigenvalue un and are linearly degenerate. If we assume that condition (9) is
satisfied, it can be concluded that the solution of the RP consists of admissible
shocks or smooth rarefaction waves in the first and last characteristic field,
while the contributions in all other characteristic fields sum up to a single
contact discontinuity.

Unlike standard Euler equations, no complete set of Riemann invariants
can be found for the Euler equations for thermally perfect gases [22]. The only
Riemann invariants that can be derived are the mass fractions Yi, which are
constant across the first and last characteristic field [5], and the velocity un

and the pressure p, which are invariant across the contact discontinuity.

2.2 Reactive Source Terms

We write the source term of detailed chemical reaction in the form

s(q) = (W1 ω̇1, . . . ,WK ω̇K , 0, . . . , 0, 0)T
.

The chemical production of each species is expressed as product of its pro-
duction rate in molar concentration per unit volume ω̇i = ω̇i(q) ∈ C1(S, R)
and Wi. The rates ω̇i(ρ1, . . . , ρK , T ) are derived from a reaction mechanism
of J chemical reactions

K∑
i=1

νf
jiSi 


K∑
i=1

νr
jiSi , j = 1, . . . , J ,

where νf
ji and νr

ji are the stoichiometric coefficients of species Si appearing as
a reactant and as a product. The entire molar production rate of species Si

per unit volume is then given by

ω̇i =
J∑

j=1

(νr
ji − νf

ji)
[
kf

j

K∏
l=1

(
ρl

Wl

) νf
jl

− kr
j

K∏
l=1

(
ρl

Wl

) νr
jl

]
, i = 1, . . . ,K ,

(10)
with kf

j (T ) and kr
j (T ) denoting the forward and backward reaction rate of each

chemical reaction [37]. The reaction rates are calculated by the Arrhenius law

k
f/r
j (T ) = A

f/r
j T β

f/r
j exp(−E

f/r
j /RT ) . (11)

Some backward reaction rates might be derived by assuming the corresponding
chemical reaction to be in chemical equilibrium, but especially detonations
usually require mechanisms that utilize non-equilibrium backward reaction
rates at least for some of the reactions. A chemical kinetics package, e.g.
Chemkin [19], can be utilized to evaluate (10), (11) according to the reaction
mechanism and given thermodynamic data.
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3 Numerical Methods

We use the time-operator splitting approach or method of fractional steps [17]
to decouple hydrodynamic transport and chemical reaction numerically. This
technique is most frequently used for time-dependent reactive flow computa-
tions. The homogeneous partial differential equation

H(∆t) :
∂q
∂t

+
d∑

n=1

∂

∂xn
fn(q) = 0 , IC: Qκ ∆t=⇒ Q̃κ+1 (12)

and the usually stiff ordinary differential equation

S(∆t) :
∂q
∂t

= s(q) , IC: Q̃κ+1 ∆t=⇒ Qκ+1 (13)

are integrated successively with the data Q from the preceding step as initial
condition (IC).

3.1 Finite Volume Schemes

The appropriate discretization technique for conservation laws with discon-
tinuous solution is the finite volume (FV) approach. For simplicity, we assume
an equidistant discretization in two space dimensions with mesh widths ∆x1,
∆x2 and a constant time step ∆t. A conservative time-explicit finite volume
scheme for Eq. (12) has the formal structure

H(∆t) : Q̃κ+1
jk = Qκ

jk −
∆t

∆x1

[
F1

j+ 1
2 ,k − F1

j− 1
2 ,k

]
− ∆t

∆x2

[
F2

j,k+ 1
2
− F2

j,k− 1
2

]
(14)

and satisfies the important discrete conservation property
∑

j,k Q̃κ+1
jk =∑

j,k Qκ
jk for vanishing boundary fluxes. Such a scheme can easily be con-

structed by applying the idea of operator splitting also to Eq. (12) and by
using two quasi-one-dimensional FV schemes successively, e.g.

Q̃κ+ 1
2

jk = Qκ
jk−

∆t

∆x1

[
F1(Qκ

j−ν+1,k, . . . ,Qκ
j+ν,k)−F1(Qκ

j−ν,k, . . . ,Qκ
j+ν−1,k)

]
,

Q̃κ+1
jk = Q̃κ+ 1

2
jk − ∆t

∆x2

[
F2(Q̃κ+ 1

2
j,k−ν+1, . . . , Q̃

κ+ 1
2

j,k+ν)−F2(Q̃κ+ 1
2

j,k−ν , . . . , Q̃κ+ 1
2

j,k+ν−1)
]

,

i.e.H(∆t) = X (∆t)
2 X (∆t)

1 . With this definition the entire splitting method reads
Qκ+1 = S(∆t)X (∆t)

2 X (∆t)
1 (Qκ). The later method is formally only first-order

accurate, but it usually gives very satisfactory results, if high-resolution shock-
capturing schemes are employed for the operators X (∆t)

n . Formally second-
order accurate splitting methods are possible [32], but they lead to similar
results in most practical cases and we have observed only minor improve-
ments for typical detonation structure simulations [5]. For the upwind method
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formulated in Algorithm 1, the described splitting is stable under the Courant-
Friedrichs-Levy (CFL) condition

CCFL := max
j,k

(
Sj+ 1

2 ,k

∆t

∆x1
, Sj,k+ 1

2

∆t

∆x2

)
≤ 1 , (15)

where Sj+ 1
2 ,k, Sj,k+ 1

2
denote the maximal signal speeds in both space direc-

tions according to step (S12) in Algorithm 1.

3.2 High-resolution Upwind Method

The operators X (∆t)
n can be implemented effectively with a single quasi-one-

dimensional scheme that allows the canonical exchange of the velocities un and
the indices j and k. The method should achieve a higher order of accuracy in
smooth solution regions and should approximate discontinuities on the basis
of the characteristic information (upwinding) without spurious overshoots.
Today, several excellent textbooks are available, e.g. [32], which discuss the
construction of quasi-one-dimensional high-resolution methods for supersonic
hydrodynamics in great detail and we therefore sketch the basic components
of our particular method only briefly.

Our high-resolution scheme is built around a first-order Godunov-type
method that solves the Riemann problem between two neighboring cell values
Q

l
and Qr approximately, which we describe exemplary for the x1-direction.

The method is based on an extension of Roe’s linearized Riemann solver
for Euler equations for a single polytropic gas for multiple thermally perfect
species by Grossman and Cinella [13] that corresponds to the steps (S1) to
(S7) in Algorithm 1. The structure of the Roe-averaged right eigenvectors r̂m

is given in Eq. (7). In (S8), (S9) the two intermediate states of the linearized
RP are evaluated and the intrinsic problem of unphysical total densities and
internal energies near vacuum due to the Roe linearization, cf. [9], is circum-
vented by switching in case of an unphysical approximation to the simple,
but extremely robust Harten-Lax-Van Leer (HLL) Riemann solver. If Roe’s
flux approximation is applied in step (S10), violations of the entropy con-
dition are generally avoided by adding an appropriate amount of numerical
viscosity [15]. A natural choice for the parameter η for Euler equations is

Fig. 2. H-correc-
tion between the cells
(j, k) and (j, k + 1).

η = 1
2 (|u1,r − u1,l|+ |cr − cl|), cf. [27].

In one space-dimension, Eq. (16) need only be ap-
plied to ι = 1, 3 and s̄2 = s2 can be used, but two-
and three-dimensional detonation simulations usually
require the extension of Eq. (16) to ι = 2. The shock of
typical detonation waves is extraordinarily strong and
its approximation is often corrupted by the carbuncle
phenomenon, a multi-dimensional numerical crossflow
instability that occurs at strong grid-aligned shocks or
detonation waves [26]. The carbuncle phenomenon can
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(S1) Calculate ρ̂ :=
√

ρlρr and v̂ :=
√

ρlvl+
√

ρrvr√
ρl+

√
ρr

for un, Yi, H, hi, T .

(S2) Compute γ̂ := ĉp/ĉv with ĉ{p/v} =
PK

i=1 Ŷiĉ{p/v}i and

ĉ{p/v}i =
1

Tr − T
l

Z Tr

T
l

c{p,v}i(τ) dτ .

(S3) Calculate φ̂i := (γ̂ − 1)
“

û2

2
− ĥi

”
+ γ̂ R

Wi
T̂ .

(S4) Calculate ĉ :=
“PK

i=1 Ŷi φ̂i − (γ̂ − 1)(û2 − Ĥ)
”1/2

.

(S5) Use ∆Q = Qr −Q
l

and ∆p to compute the wave strengths

a1,K+d+1 =
∆p∓ ρ̂ĉ∆u1

2ĉ2
, a1+i = ∆ρi − Ŷi

∆p

ĉ2
, aK+n = ρ̂∆un.

(S6) Calculate W1 = a1 r̂1 , W2 =

K+dX
m=2

am r̂m , W3 = aK+d+1 r̂K+d+1 .

(S7) Evaluate s1 = û1 − ĉ, s2 = û1, s3 = û1 + ĉ.

(S8) Evaluate ρ?
l/r, u?

1,l/r, e?
l/r, c?

1,l/r from Q?

l
= Q

l
+ W1 and Q?

r = Qr −W3 .

(S9) If ρ?
l/r ≤ 0 or e?

l/r ≤ 0 set s1 = min(u1,l − cl, u1,r − cr),
s3 = max(u1,l + cl, u1,r + cr), use HLL flux

F(Q
l
,Qr ) =

8>>><>>>:
f(Q

l
) , 0 < s1 ,

s3f(Ql
)− s1f(QR

) + s1s3(Qr −Q
l
)

s3 − s1
, s1 ≤ 0 ≤ s3 ,

f(Qr ) , 0 > s3 ,

and go to (S12).

(S10) Evaluate Roe flux F(Q
l
,Qr ) = 1

2

`
f(Q

l
) + f(Qr )−

P3
ι=1 |s̃ι|Wι

´
with en-

tropy enforcement formula

|s̄ι| =

|sι| , |sι| ≥ 2η ,

|s2
ι |/(4η) + η , |sι| < 2η .

(16)

(S11) With Fρ :=
PK

i=1 Fi replace Fi by F?
i = Fρ ·


Y l

i , Fρ ≥ 0 ,
Y r

i , Fρ < 0 .

(S12) Evaluate maximal signal speed by S = max(|s1|, |s3|).

Algorithm 1. Hybrid Roe-HLL scheme for detonation simulation.

be avoided completely by applying Eq. (16) to all characteristic fields and eval-
uating η in a multi-dimensional way. In all computations of Sec. 5 we have
successfully utilized the “H-correction” of Sanders et al. [27] for this purpose.
For instance in the x2-direction it takes the form

η̃j,k+ 1
2

= max
{

ηj+ 1
2 ,k, ηj− 1

2 , k, ηj, k+ 1
2
, ηj− 1

2 , k+1, ηj+ 1
2 , k+1

}
in the two-dimensional case, see Fig. 2. Step (S11) ensures the positivity of the
mass fractions Yi, if the Roe approximation is applied [21]. The HLL scheme
can be proven to be positivity preserving in Yi and does not require this step.
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A detailed derivation of the entire Roe-HLL scheme and thorough numerical
comparisons with various standard methods can be found in [5].

The hybrid Riemann solver is extended to a high-resolution method with
the MUSCL-Hancock variable extrapolation technique by Van Leer [34]. The
technique uses a five-point stencil with ν = 2. In contrast to the Euler equa-
tions for a single polytropic gas, the extrapolation for the Euler equations of
Sec. 2.1 can not be formulated completely in conservative variables, because
the solvability of the nonlinear equation (5) can not be guaranteed for an ex-
trapolated vector of state. We recommend to apply the MUSCL extrapolation
to ρ, p, Yi and ρun and to derive a thermodynamically consistent extrapolated
vector of state from these. See [5] for details.

3.3 Integration of Reaction Terms

The numerical treatment of chemical reaction terms with the method of frac-
tional steps requires the solution of the ODE

∂ρi

∂t
= Wiω̇i (ρ1, . . . , ρK , T ) , i = 1, . . . ,K

with initial condition ρi(0) = ρY 0
i , i = 1, . . . ,K in every FV cell. The to-

tal density ρ in this cell, the specific energy E and the velocities un remain
unchanged during the integration, what corresponds to a reaction in an adia-
batic constant volume environment. ODEs arising from chemical kinetics are
usually stiff and we employ a semi-implicit Rosenbrock-Wanner method by
Kaps and Rentrop of fourth order with automatic step-size adjustment [18].
The computational expensive reaction rate expressions (10) are evaluated by
a mechanism-specific routine, which is produced by a source code generator
on top of the Chemkin-II library [19] in advance. The code generator imple-
ments the formulas of Sec. 2.2 without any loops and inserts the constants
ν

f/r
ji , A

f/r
j , −E

f/r
j directly into the code.

3.4 Evaluation of the Temperature

The FV method for thermally perfect gas-mixtures sketched in Sec. 3.2 and
the reaction term integration described in Sec. 3.3 require the computation of
the temperature T from a discrete vector of state Q by solving Eq. (5). As
Eq. (5) has a unique temperature solution for all admissible vectors of state
and ϕ(·, T ) can be shown to be a strict monotone function in T (see [5]), the
efficient solution of Eq. (5) is straight-forward: We start the solution procedure
with a standard Newton iteration that is initialized with the temperature
value of the preceding time step. If the Newton method does not converge in
a reasonable number of steps, a standard bisection technique is employed.

In order to speed up further the polynomial evaluation of the temperature-
dependent properties cpi(T ) and hi(T ), look-up tables for all species are con-
structed during the startup of the computational code. These tables store



High-resolution Simulation of Detonations with Detailed Chemistry 79

 0

 0.1

 0.2

 0.3

 0.4

010 515
298

1000

2000

3000

ρ 
[k

g/
m

3 ]

T 
[K

]

ρ (left axis)
T (right axis) 0

2e-6

4e-6

6e-6

05

Y H
2O

2

4 Pts/lig1 Pts/lig

Fig. 3. ZND solution for a self-sustaining hydrogen-oxygen detonation (dCJ ≈
1627m/s, lig ≈ 1.404mm) and representation of the mass fraction of H2O2 on
different meshes (right). The points represent the value in the center of a finite
volume. The abscissas display the distance behind the detonation front in mm.

cpi(T ) and hi(T ) for all integers in the valid temperature range and interme-
diate values are interpolated.

3.5 Meshes for Detonation Simulation

Numerical simulations of detonation waves require computational meshes,
which are able to represent the strong local flow changes due to the reac-
tion correctly. In particular, the shock of a detonation wave with detailed
kinetics can be very sensitive to changes of the reaction behind and, if the
mesh is too coarse to resolve all reaction details correctly, the Riemann Prob-
lem at the detonation front is changed remarkably leading to a wrong speed of
propagation. We make a simple discretization test in order to illustrate, how
fine computational meshes for accurate detonation simulations in fact have to
be. The left graph of Fig. 3 displays the flow fields of ρ and T according to the
ZND detonation model for the frequently studied H2 : O2 : Ar CJ detonation
with molar ratios 2 : 1 : 7 at T0 = 298 K and p0 = 6.67 kPa for a hydrogen-
oxygen reaction mechanism extracted from a larger hydrocarbon mechanism
assembled by Westbrook [35]. The mechanism uses 34 elementary reactions
for the 9 species H, O, OH, H2, O2, H2O, HO2, H2O2 and Ar. Throughout
this paper only this mechanism has been employed.

The right graph of Fig. 3 displays the exact distribution of YH2O2 dis-
cretized with different FV grids. Even a resolution of 4 finite volumes per
induction length (4 Pts/lig) is not sufficient to capture the maximum of the
intermediate product H2O2 correctly. This requires at least 5 to 6 Pts/lig, but
in triple points even finer resolutions are required. The discretization of typi-
cal combustors with such fine uniform grids can easily exceed 109 FV cells in
the two- and 1012 cells in the three-dimensional case. As multi-dimensional
detonations are intrinsically unstable (compare Sec. 1), numerical simulations
have to be instationary and usually involve several ten thousand time steps.
Consequently, uniform meshes are far too expensive and the application of a
sophisticated dynamically adaptive mesh refinement technique is indispens-
able.
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Fig. 4. The AMR method creates a hierarchy of rectangular subgrids.

4 Adaptive Mesh Refinement

In order to the supply the required temporal and spatial resolution efficiently,
we employ the blockstructured adaptive mesh refinement (AMR) method af-
ter Berger and Colella [2, 3] which is tailored especially for hyperbolic con-
servation laws on logically rectangular FV grids (not necessarily Cartesian).
We have implemented the AMR method in a generic, dimension-independent
object-oriented framework in C++. It is called AMROC (Adaptive Mesh Re-
finement in Object-oriented C++) and is free of charge for scientific use [6].
The adaptive algorithm has been realized completely decoupled from a partic-
ular FV method. All what the algorithm requires are specific implementations
of the operators H(·) and S(·) on a single rectangular grid G, where H(·) has
to utilize ν auxiliary cells (ghost or halo cells) around G to define discrete
boundary conditions. The entire framework has been validated extensively on
a large number of hydrodynamic standard test cases. See [5] and [6] for results.

4.1 Berger-Collela AMR Method

Instead of replacing single cells by finer ones, as it is done in cell-oriented re-
finement techniques, the Berger-Collela AMR method follows a patch-oriented
approach. Cells being flagged by various error indicators (shaded in Fig.
4) are clustered with a special algorithm [1] into non-overlapping rectangu-
lar grids Gl,m that define the domain of an entire level l = 0, . . . , lmax by
Gl :=

⋃Ml

m=1 Gl,m. Refinement grids are derived recursively from coarser ones
and a hierarchy of successively embedded levels is thereby constructed, cf.
Fig. 4. All mesh widths on level l are rl-times finer than on level l − 1, i.e.
∆tl := ∆tl−1/rl and ∆xn,l := ∆xn,l−1/rl with rl ∈ N, rl ≥ 2 for l > 0 and
r0 = 1, and a time-explicit FV scheme (in principle) remains stable under
a condition like (15) on all levels of the hierarchy. The recursive integration
order visualized in the left sketch of Fig. 5 is an important difference to usual
unstructured adaptive strategies and is one of the main reasons for the high
efficiency of the approach.
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Fig. 5. Left: Recursive integration order. Right: Sources of ghost cell values.

The numerical scheme is applied on level l by calling the single-grid routines
H(∆t), S(∆t) in a loop over all subgrids Gl,m. The execution of the numerical
loop in UpdateLevel() in Alg. 2 requires the previous setting of the ghost
cell values. Three types of boundary conditions have to be considered in the
sequential case, see right sketch of Fig. 5. Cells outside of the root domain
G0 are used to implement physical boundary conditions. Ghost cells in Gl

have a unique interior cell analogue and are set by copying the data value
from the grid, where the interior cell is contained (synchronization). On the
root level no further boundary conditions need to be considered, but for l > 0
also internal boundaries can occur. They are set by a conservative time-space
interpolation from two previously calculated time steps of level l − 1.

Beside a general data tree that stores the topology of the hierarchy (cf.
Fig. 4), the AMR method requires at most two regular arrays assigned to each
subgrid which contain the discrete vector of state Q for the actual and up-
dated time step. In the Algorithms 2 and 3 we denote by Ql(t) and Ql(t+∆tl)
the unions of these arrays on level l. The regularity of the input data for the
numerical routines allows high performance on vector and super-scalar pro-
cessors and cache optimizations. Small data arrays are effectively avoided by
leaving coarse level data structures untouched, when higher level grids are
created. Values of cells covered by finer subgrids are overwritten by averaged
fine grid values subsequently. The later operation leads to a modification of
the numerical stencil on the coarse mesh and requires a special flux correc-
tion in cells abutting a fine grid. The correction replaces the coarse grid flux
along the fine grid boundary by a sum of grid fluxes and ensures the discrete
conservation property for the hierarchical method. See [2] or [5] for details.

The basic recursive AMR algorithm is formulated in Alg. 2. Except the
regridding procedure, all operations have already been explained. New refine-
ment grids on all higher levels are created by calling Regrid() from level l.
Level l by itself is not modified. To consider the nesting of the level domains
already in the grid generation, Alg. 3 starts at the highest refineable level lc,
where 0 ≤ lc < lmax. The refinement flags are stored in grid-based integer
arrays N ι. A clustering algorithm [1] is necessary to create a new refinement
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AdvanceLevel(l)

Repeat rl times

Set ghost cells of Ql(t)
If time to regrid

Regrid(l)
UpdateLevel(l)
If level l + 1 exists

Set ghost cells of Ql(t + ∆tl)
AdvanceLevel(l + 1)

Average Ql+1(t + ∆tl) onto

Ql(t + ∆tl)

Correct Ql(t + ∆tl) with δFn,l+1

t := t + ∆tl

Alg. 2. Recursive AMR algorithm.

Regrid(l)

For ι = lc Downto l Do

Flag N ι according to Qι(t)

Generate Ğι+1 from N ι

Ensure nesting of Ğl+1, . . . , Ğlc+1

For ι = l + 1 To lc + 1 Do

Create Q̆ι(t) from Ğι

Interpolate Qι−1(t) onto Q̆ι(t)

Copy Qι(t) onto Q̆ι(t)

Set ghost cells of Q̆ι(t)

Qι(t) := Q̆ι(t)

Alg. 3. Regridding procedure.

Ğι+1 on basis of N ι until the ratio between flagged and all cells in every new
grid Ğι+1,m is above a prescribed threshold 0 < εtol < 1.

The reinitialization of the hierarchical data structures is done in the second
loop of Alg. 3 utilizing auxiliary data Q̆ι(t). Cells in newly refined regions
Ğι\Gι are initialized by interpolation, values of cells in Ğι ∩ Gι are copied.
As interpolation requires the previous synchronized reorganization of Qι−1(t),
recomposition starts on level l + 1.

4.2 Parallelization

In the AMROC framework, we follow a rigorous domain decomposition ap-
proach and partition the AMR hierarchy from the root level on. We assume
a parallel machine with P identical nodes and split the root domain G0 into
P non-overlapping portions Gp

0, p = 1, . . . , P by

G0 =
P⋃

p=1

Gp
0 with Gp

0 ∩Gq
0 = ∅ for p 6= q .

The key idea now is that all higher level domains Gi are required to follow
the decomposition of the root level, i.e.

Gp
l := Gl ∩Gp

0 . (17)

Condition (17) can cause the splitting of a subgrid Gl,m into multiple subgrids
on different processors. Under requirement (17) we estimate the work on an
arbitrary subdomain Ω ⊂ G0 by

W(Ω) =
lmax∑
l=0

[
Nl(Gl ∩Ω)

l∏
κ=0

rκ

]
. (18)

Herein, Nl(·) denotes the total number of FV cells on level l in the given
domain. The product in (18) is used to consider the time step refinement.
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A nearly equal distribution of the work necessitates

Lp :=
P · W(Gp

0)
W(G0)

≈ 1 for all p = 1, . . . , P . (19)

In AMROC, decompositions Gp
0 with similar workload are found at runtime

as the hierarchy evolves by a hierarchical partitioning algorithm based on
a generalization of Hilbert’s space-filling curve [25]. The space-filling curve
defines an ordered sequence on the cells of the root level that can easily be split
in load-balanced portions. As such curves are constructed recursively, they
are locality-preserving and therefore avoid an excessive data redistribution
overhead in the final loop of Alg. 3.

The second goal in designing an efficient parallelization strategy for dis-
tributed memory machines, the minimization of the communication costs, is
already considered in condition (17) in a natural way. Together with the use of
ghost cells this condition allows an almost local execution of Alg. 2. The only
parallel operations that have to be incorporated are the parallel ghost cell
synchronization and the application of flux correction terms across processor
borders. See [5] for implementation details.

Analogous to Alg. 2 the regridding procedure of Alg. 3 is hardly affected by
the parallelization as long as a repartitioning of the hierarchy is only allowed at
root level time steps, which is usually sufficient in practice. New refinements
Ğp

ι+1 can be found local, only a global concatenation of the new topology
Ğι+1 =

⋃
p Ğp

ι+1 is mandatory to ensure the correct proper nesting of the
new hierarchy and to create a new load-balanced root level distribution Gp

0

with the partitioner. Finally, the data distribution of parts of Qι(t) to other
processors must be incorporated.

5 Numerical Results

The self-sustaining CJ detonation of Sec. 3.5 is an ideal candidate for funda-
mental detonation structure simulations, because it produces extremely regu-
lar detonation cell patterns [29]. The application of the numerical methods of
Sec. 3 within the parallel AMROC framework allowed a two-dimensional cel-
lular structure simulation that is four-times higher resolved (44.8 Pts/lig) than
earlier calculations [24, 8, 11]. Only recently Hu et al. presented a similarly
resolved calculation for the same CJ detonation on a uniform mesh [16]. Un-
fortunately, no technical details are reported for this simulation. In our case,
the calculation ran on a small Beowulf-cluster of 7 Pentium III-850MHz-CPUs
connected with a 1Gb-Myrinet network and required 2150 h CPU-time. On
24 Athlon-1.4 GHz double-processor nodes (2Gb-Myrinet) of the HEidelberg
LInux Cluster System (Helics) our approach allowed a sufficiently resolved
computation of the three-dimensional cellular structure of a hydrogen-oxygen
detonation. The maximal effective resolution of this calculation is 16.8 Pts/lig
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Fig. 6. Flow structure around a triple point before the next collision. Left: isolines
of YOH (black) on schlieren plot of u2 (gray).

and the run required 3800 h CPU-time. Our adaptive results are in perfect
agreement with the calculations of Tsuboi et al. for the same configuration
obtained on a uniform mesh on a super-scalar vector machine [33]. Further
on, we present successful simulations of diffracting two-dimensional hydrogen-
oxygen detonations that reproduce the experimentally measured critical tube
diameter of 10 detonation cells. These computations demonstrate the advan-
tages in employing a dynamically adaptive method impressively and used
approximately 4600 h CPU-time on the Helics.

5.1 Two-dimensional Cellular Structure

We extend the one-dimensional ZND detonation of Fig. 3 to two space di-
mensions with u2 = 0 and initiate transverse disturbances by placing a small
rectangular unreacted pocket with the temperature 2086K behind the deto-
nation front, cf. [24] or [5]. After an initial period of ≈ 200 µs very regular
detonation cells with λ ≈ 3 cm and oscillation period ≈ 32 µs can be observed
in computations with a resolution finer than 7− 8 Pts/lig (see [5] for a mesh
refinement study). We exploit this regularity and simulate only a single cell.
The calculation is done in a frame of reference attached to the detonation and
requires just the computational domain 10 cm× 3 cm. The adaptive run uses
a root level grid of 200 × 40 cells and two refinement levels with r1,2 = 4. A
physically motivated combination of scaled gradients and heuristically esti-
mated relative errors is applied as adaptation criteria. See [5] for details. Two
typical snapshots with the corresponding refinement are displayed in Fig. 10.
The adaptive computation uses between 340, 000 and 390, 000 FV cells, while
a uniform grids with the same effective resolution would require 2, 048, 000
cells. About 3554 root level time steps (CCFL ≈ 0.95) to tend = 800 µs were
calculated.
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The high resolution of the simulation now admits a remarkable refinement
of the triple point pattern introduced in Sec. 1. As the two transverse waves
form a perfectly regular flow, it suffices to zoom into a single triple point and
to analyze the wave pattern between two triple point collisions in detail. Fig.
6 displays the flow situation around the primary triple point A that is mostly
preserved during the last 7 µs before a collision. An analysis of the flow field
uncovers the existence of two minor triple points B and C along the transverse
wave downstream of A. While B can be clearly identified by a characteristic
inflection, the triple point C is much weaker and very diffused. B is caused by
the interaction of the strong shock wave BD with the transverse wave. The
slip line emanating from B to K is clearly present. C seems to be caused by the
reaction front (which can be interpreted as a diffused contact discontinuity)
and generates the very weak shock wave CI. Downstream of BD a weaker
shock wave EF shows up. It is refracted in the point F, when it hits the slip
line BK. From F to G this minor shock is parallel and close to the transverse
wave, what results in a higher pressure increase in the region FG than in
the region EF. Unreacted gas crossing the transverse wave between B and
C therefore shows a shorter induction length than gas entering through AB.
The minor shock is refracted and weakened by the reaction front at point G
and forms the shock GH that is almost parallel to CI. The downstream line
of separation between particles passing through incident or Mach Stem shock
is the slip line AD. Along its extension DEL the movement of A results in a
shear flow between the reaction zones behind the Mach stem and downstream
of BD.

In the actual picture the contact discontinuity LM seems to originate in
this shear flow region, but a complete instationary analysis uncovers that it
propagates constantly downstream. The collision of two triple points in the
reinitiation of a detonation cell leads to the formation of an unreacted region
behind the detonation front that burns in less than a microsecond. The burn-
ing generates upstream traveling shock waves that prevent the appearance of
the flow field in Fig. 6 at an earlier stage. The strongest of these shocks hits
the Mach stem from behind and forms an additional triple point with the
contact discontinuity LM. In Fig. 6 shock and intermediate triple point have
already vanished in A, but the contact discontinuity LM is still left behind.
A detailed hydrodynamic analysis of the intermediate phase from reinitiation
to the almost stable situation of Fig. 6 can be found in [5].

5.2 Three-dimensional Cellular Structure

We utilize the regular oscillating solution of the preceding section as initial
condition for the three-dimensional simulation and disturb the oscillation in
the x2-direction with an unreacted pocket in the orthogonal direction. We use
a computational domain of the size 7 cm × 1.5 cm × 3 cm that exploits the
symmetry of the initial data in the x2-direction, but allows the development
of a full detonation cell in the x3-direction. The AMROC computation uses a
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Fig. 7. Comparison of the temporal development of the detonation velocity along
the line of symmetry through the middle of the detonation cells in the two- and
three-dimensional simulation, cf. Figs. 10 and 11.

two-level refinement with r1 = 2 and r2 = 3 on a base grid of 140 × 12 × 24
cells and utilizes between 1.3 M and 1.5 M cells, instead of 8.7 M cells like
a uniformly refined grid (3431 root level time steps with CCFL ≈ 0.95 to
tend = 800 µs).

After a simulation time of ≈ 600 µs a regular cellular oscillation with
identical strength in x2- and x3-direction can be observed. In both transverse
directions the strong two-dimensional oscillations is present and forces the cre-
ation of rectangular detonation cells of 3 cm width. The transverse waves form
triple point lines in three space-dimensions. During a complete detonation cell
the four lines remain mostly parallel to the boundary and hardly disturb each
other. The characteristic triple point pattern can therefore be observed in
Fig. 11 in all planes perpendicular to a triple point line. Unlike Williams
et al. [36] who presented a similar calculation for an overdriven detonation
with simplified one-step reaction model, we notice no phase-shift between
both transverse directions. In all our computations for the hydrogen-oxygen
CJ detonation only this regular three-dimensional mode, called “rectangular-
mode-in-phase” [14], or a purely two-dimensional mode with triple point lines
just in x2- or x3-direction did occur.

A direct comparison of the temporal development of the detonation ve-
locity in the two- and three-dimensional case in Fig. 7 along lines through
the center of the graphics in Figs. 10 and 11 shows that both simulations
reproduce the same oscillation period of approximately 32 µs, but the deto-
nation appears to be remarkably higher overdriven during reinitiation in the
three-dimensional case.

5.3 Structure of Diffracting Detonations

Experiments have shown that the behavior of planar CJ detonations prop-
agating out of tubes into unconfinement is determined mainly by the width
of the tube. For square tubes the critical tube width has been found to be
of the order of 10-times the cell width, i.e. 10λ [23]. For widths significantly
below 10λ the process of shock wave diffraction causes a pressure decrease
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Fig. 8. Density distribution on four refinement levels at tend = 240 µs for w = 10λ.

at the head of the detonation wave below the limit of detonability across the
entire tube width. Hydrodynamic shock and reaction front decouple and the
detonation decays to a shock-induced flame. This observation is independent
of a particular mixture. While the successful transmission of the detonation
is hardly disturbed for tubes widths � 10λ, a backward-facing re-ignition
wave reinitiates the detonation in the partially decoupled region for widths of
≈ 10λ and creates considerable vortices.

We are interested in the decoupling of shock and reaction and also in the re-
ignition phenomenon. Therefore, we simulate the two-dimensional diffraction
of the H2 : O2 : Ar CJ detonation for the tube widths w = 8λ and w =
10λ. A periodically reproduced snapshot of the regular oscillating detonation
propagating into unreacted gas at rest is used as initial condition. This is a
reasonable idealization for the flow situation in real detonation tubes directly
before the experimental setup. The symmetry of the problem is exploited by
simulating just one half.

The adaptive simulations utilize a base grid of 508×288 cells and use four
levels of refinement with r1,2,3 = 2, r4 = 4. The calculations correspond to a
uniform computation with ≈ 150 M cells and have an effective resolution of
25.5 Pts/lig in the x1-direction (with respect to the initial detonation). Both
runs are stopped 240 µs after the detonation has left the tubes (730 root level
time steps with CCFL ≈ 0.8), when the flow situations of interest are clearly
established. The enormous efficiency of the refinement is visualized in Fig.
8 for the setup with w = 10λ. At tend the calculation shown in Fig. 8 uses
≈ 3.0 M cells on all levels, where ≈ 2.4 M cells are inside one of the 2479 grids
of the highest level (εtol = 0.8).

A comparison of the flow fields in both setups after 240 µs in Fig. 9 clearly
shows the extinction of the detonation for w = 8λ and the re-ignition wave
for w = 10λ. The reappearance of triple points at the detonation front in the
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Fig. 9. Schlieren plots of ρ for a detonation diffracting out of the two different
tubes. Left: detonation failure for the width w = 8λ, right: reinitiation for w = 10λ.

lower left plot in Fig. 9 is a characteristic indicator for the preservation of
the detonation throughout the diffraction. It is interesting to note, that the
re-ignition wave by itself is a detonation. The triple point track for w = 10λ
(not shown) uncovers that it has developed out of the transverse wave of an
initial triple point.

6 Conclusions

We have described an efficient solution strategy for the numerical simulation
of gaseous detonation waves with detailed chemical reaction. All temporal
and spatial scales relevant for the complex process of detonation propagation
were successfully resolved. The achieved resolutions are significantly finer than
in earlier publications [24, 8, 11] and provide similar insight into the forma-
tion and propagation of transient detonation structures like recent large-scale
simulations on uniform meshes [16, 33].

Beside the application of the time-operator splitting technique and the
construction of a robust high-resolution shock capturing scheme, the key to
the high efficiency of the presented simulations is the generic implementa-
tion of the blockstructured AMR method after Berger and Collela [2] in the
AMROC framework [6]. AMROC provides the required high local resolution
dynamically and follows a parallelization strategy that is tailored especially for
the emerging generation of distributed memory architectures. All presented
results have been achieved on Linux-Beowulf-clusters of moderate size in a
few days real time, what demonstrates that advances in computational fluid
dynamics do not necessarily require large super-computers, but integrated ap-
proaches, which combine fast and accurate discretizations with sophisticated
techniques from computer science.
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Fig. 10. Color plots of the temperature and schlieren plots of the density on
refinement regions in the first (left) and second half (right) of a detonation cell.

Fig. 11. Schlieren plots of ρ (upper row) and YOH (lower row) in the first (left) and
second (right) half of detonation cell, mirrored at x2 = 0 cm, 5.0 cm < x1 < 7.0 cm.
The plots of YOH are overlaid by a blue isosurface of ρ that visualizes lig.
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