Adaptive high-resolution methods for simulating shock-induced hydrogen-air combustion

Ralf Deiterding

Deutsches Zentrum für Luft- und Raumfahrt
Bunsenstr. 10, Göttingen
E-mail: ralf.deiterding@dlr.de

Berlin
7th January, 2014
Outline

Introduction
 Governing equations

Numerical methods
 Finite volume schemes
 Adaptive mesh refinement
 Non-Cartesian boundaries

Computational results
 Shock-induced combustion
 Combustion induced by projectiles
 Detonation propagation

Higher order schemes
 Hybrid methods

Summary
 Conclusions
Collaboration with

- Georg Bader (BTU Cottbus)
- Bok Jik Lee (King Abdullah University of Science and Technology)
- Jack Ziegler (now National Renewable Energy Laboratory)
- Dale Pullin, Joe Shepherd (Graduate Aeronautical Laboratory, California Institute of Technology)
- Daniel Meiron, Sean Mauch (Computational and Applied Mathematics, California Institute of Technology)
Axisymmetric Navier-Stokes equations with chemical reaction

\[\frac{\partial \mathbf{q}}{\partial t} + \frac{\partial (\mathbf{f} - \mathbf{f}_v)}{\partial x} + \frac{\partial (\mathbf{g} - \mathbf{g}_v)}{\partial y} = \frac{\alpha}{y} (\mathbf{c} - \mathbf{g} + \mathbf{g}_v) + \mathbf{s} \]

\[\mathbf{q} = \begin{bmatrix} \rho_i \\ \rho u \\ \rho v \\ \rho E \end{bmatrix}, \quad \mathbf{f} = \begin{bmatrix} \rho_i u \\ \rho u^2 + p \\ \rho uv \\ u(\rho E + p) \end{bmatrix}, \quad \mathbf{g} = \begin{bmatrix} \rho_i v \\ \rho uv \\ \rho v^2 + p \\ v(\rho E + p) \end{bmatrix}, \quad \mathbf{c} = \begin{bmatrix} 0 \\ 0 \\ p - \tau_{\theta\theta} \end{bmatrix}, \quad \mathbf{s} = \begin{bmatrix} \dot{\omega}_i \\ 0 \\ 0 \end{bmatrix} \]
Axisymmetric Navier-Stokes equations with chemical reaction

\[
\frac{\partial \mathbf{q}}{\partial t} + \frac{\partial (\mathbf{f} - \mathbf{f}_v)}{\partial x} + \frac{\partial (\mathbf{g} - \mathbf{g}_v)}{\partial y} = \frac{\alpha}{y} (\mathbf{c} - \mathbf{g} + \mathbf{g}_v) + \mathbf{s}
\]

\[
\mathbf{q} = \begin{bmatrix} \rho_i \\ \rho u \\ \rho v \\ \rho E \end{bmatrix}, \quad \mathbf{f} = \begin{bmatrix} \rho_i u \\ \rho u^2 + p \\ \rho uv \\ u(\rho E + p) \end{bmatrix}, \quad \mathbf{g} = \begin{bmatrix} \rho_i v \\ \rho uv \\ \rho v^2 + p \\ v(\rho E + p) \end{bmatrix}, \quad \mathbf{c} = \begin{bmatrix} 0 \\ 0 \\ p - \tau_{\theta\theta} \\ 0 \end{bmatrix}, \quad \mathbf{s} = \begin{bmatrix} \dot{\omega}_i \\ 0 \\ 0 \end{bmatrix}
\]

\[
\mathbf{f}_v = \begin{bmatrix} \rho D_i \frac{\partial Y_i}{\partial x} \\ \tau_{xx} \\ \tau_{xy} \end{bmatrix} + \rho \sum \left(h_j D_j \frac{\partial Y_j}{\partial x} + u \tau_{xx} + \nu \tau_{xy} \right)
\]

\[
\mathbf{g}_v = \begin{bmatrix} \rho D_i \frac{\partial Y_i}{\partial y} \\ \tau_{xy} \\ \tau_{yy} \end{bmatrix} + \rho \sum \left(h_j D_j \frac{\partial Y_j}{\partial y} + u \tau_{xy} + \nu \tau_{yy} \right)
\]

\[
\tau_{xx} = -\frac{2}{3} \mu (\nabla \cdot \mathbf{v}) + 2 \mu \frac{\partial u}{\partial x}
\]

\[
\tau_{yy} = -\frac{2}{3} \mu (\nabla \cdot \mathbf{v}) + 2 \mu \frac{\partial v}{\partial y}
\]

\[
\tau_{\theta\theta} = -\frac{2}{3} \mu (\nabla \cdot \mathbf{v}) + 2 \mu \frac{\nu}{y}
\]

\[
\tau_{xy} = \mu \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right)
\]

\[
\nabla \cdot \mathbf{v} = \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\nu}{y} \right)
\]
Equation of state

Ideal gas law and Dalton’s law for gas-mixtures

\[p(\rho_1, \ldots, \rho_K, T) = \sum_{i=1}^{K} p_i = \sum_{i=1}^{K} \rho_i \frac{R}{W_i} T = \rho \frac{R}{W} T \]

with \(\sum_{i=1}^{K} \rho_i = \rho \), \(Y_i = \frac{\rho_i}{\rho} \).
Equation of state

Ideal gas law and Dalton’s law for gas-mixtures

\[
p(\rho_1, \ldots, \rho_K, T) = \sum_{i=1}^{K} p_i = \sum_{i=1}^{K} \rho_i \frac{R}{W_i} T = \rho \frac{R}{W} T \quad \text{with} \quad \sum_{i=1}^{K} \rho_i = \rho, \quad Y_i = \frac{\rho_i}{\rho}
\]

Caloric equation

\[
h(Y_1, \ldots, Y_K, T) = \sum_{i=1}^{K} Y_i h_i(T) \quad \text{with} \quad h_i(T) = h_i^0 + \int_0^T c_{pi}(s) ds
\]
Equation of state

Ideal gas law and Dalton’s law for gas-mixtures

\[p(\rho_1, \ldots, \rho_K, T) = \sum_{i=1}^{K} p_i = \sum_{i=1}^{K} \rho_i \frac{R}{W_i} T = \rho \frac{R}{W} T \quad \text{with} \quad \sum_{i=1}^{K} \rho_i = \rho, \; Y_i = \frac{\rho_i}{\rho} \]

Caloric equation

\[h(Y_1, \ldots, Y_K, T) = \sum_{i=1}^{K} Y_i h_i(T) \quad \text{with} \quad h_i(T) = h_i^0 + \int_0^T c_{pi}(s) ds \]

Computation of \(T = T(\rho_1, \ldots, \rho_K, e) \) from implicit equation

\[\sum_{i=1}^{K} \rho_i h_i(T) - R T \sum_{i=1}^{K} \frac{\rho_i}{W_i} - \rho e = 0 \]

for thermally perfect gases with \(\gamma_i(T) = c_{pi}(T)/c_{vi}(T) \) using an iterative Newton or bisection method.
Chemistry and transport properties

Arrhenius-kinetics:

\[
\dot{\omega}_i = \sum_{j=1}^{M} (\nu^r_{ji} - \nu^f_{ji}) \left[k^f_j \prod_{n=1}^{K} \left(\frac{\rho_n}{W_n} \right)^{\nu^f_{jn}} - k^r_j \prod_{n=1}^{K} \left(\frac{\rho_n}{W_n} \right)^{\nu^r_{jn}} \right] \quad i = 1, \ldots, K
\]
Chemistry and transport properties

Arrhenius-kinetics:

\[
\dot{\omega}_i = \sum_{j=1}^{M} (\nu_{ji}^r - \nu_{ji}^f) \left[k_j^f \prod_{n=1}^{K} \left(\frac{\rho_n}{W_n} \right)^{\nu_{jn}^f} - k_j^r \prod_{n=1}^{K} \left(\frac{\rho_n}{W_n} \right)^{\nu_{jn}^r} \right] \quad i = 1, \ldots, K
\]

- Parsing of mechanisms and evaluation of \(\dot{\omega}_i \) with Chemkin-II
- \(c_{pi}(T) \) and \(h_i(T) \) tabulated, linear interpolation between values
Chemistry and transport properties

Arrhenius-kinetics:

\[
\dot{\omega}_i = \sum_{j=1}^{M} (\nu^{r}_{ji} - \nu^{f}_{ji}) \left[k^f_j \prod_{n=1}^{K} \left(\frac{\rho_n}{W_n} \right)^{\nu^{f}_{jn}} - k^r_j \prod_{n=1}^{K} \left(\frac{\rho_n}{W_n} \right)^{\nu^{r}_{jn}} \right] \quad i = 1, \ldots, K
\]

- Parsing of mechanisms and evaluation of \(\dot{\omega}_i \) with Chemkin-II
- \(c_{pi}(T) \) and \(h_i(T) \) tabulated, linear interpolation between values

Mixture viscosity \(\mu = \mu(T, Y_i) \) with Wilke formula

\[
\mu = \sum_{i=1}^{K} \frac{Y_i \mu_i}{W_i \sum_{m=1}^{K} Y_m \Phi_{im}/W_m} \quad \text{with} \quad \Phi_{im} = \frac{1}{\sqrt{8}} \left(1 + \frac{W_i}{W_m} \right)^{-\frac{1}{2}} \left(1 + \left(\frac{\mu_i}{\mu_m} \right)^{\frac{1}{2}} \left(\frac{W_m}{W_j} \right)^{\frac{1}{4}} \right)^2
\]
Chemistry and transport properties

Arrhenius-kinetics:

\[
\dot{\omega}_i = \sum_{j=1}^{M} (\nu_{ji}^r - \nu_{ji}^f) \left[k_j^f \prod_{n=1}^{K} \left(\frac{\rho_n}{W_n} \right)^{\nu_{jn}^f} - k_j^r \prod_{n=1}^{K} \left(\frac{\rho_n}{W_n} \right)^{\nu_{jn}^r} \right] \quad i = 1, \ldots, K
\]

- Parsing of mechanisms and evaluation of \(\dot{\omega}_i \) with Chemkin-II
- \(c_{pi}(T) \) and \(h_i(T) \) tabulated, linear interpolation between values

Mixture viscosity \(\mu = \mu(T, Y_i) \) with Wilke formula

\[
\mu = \sum_{i=1}^{K} \frac{Y_i \mu_i}{W_i \sum_{m=1}^{K} Y_m \Phi_{im} / W_m} \quad \text{with} \quad \Phi_{im} = \frac{1}{\sqrt{8}} \left(1 + \frac{W_i}{W_m} \right)^{-\frac{1}{2}} \left(1 + \left(\frac{\mu_i}{\mu_m} \right)^{\frac{1}{2}} \left(\frac{W_m}{W_j} \right)^{\frac{1}{4}} \right)^2
\]

Mixture thermal conductivity \(k = k(T, Y_i) \) following Mathur

\[
k = \frac{1}{2} \left(W \sum_{i=1}^{K} \frac{Y_i k_i}{W_i} + \frac{1}{W \sum_{i=1}^{K} Y_i / (W_i k_i)} \right)
\]
Chemistry and transport properties

Arrhenius-kinetics:

\[\dot{\omega}_i = \sum_{j=1}^{M} (\nu_{ji}^r - \nu_{ji}^f) \left[k_j^f \prod_{n=1}^{K} \left(\frac{\rho_n}{W_n} \right)^{\nu_{jn}^f} - k_j^r \prod_{n=1}^{K} \left(\frac{\rho_n}{W_n} \right)^{\nu_{jn}^f} \right] \quad i = 1, \ldots, K \]

- Parsing of mechanisms and evaluation of \(\dot{\omega}_i \) with Chemkin-II
- \(c_{pi}(T) \) and \(h_i(T) \) tabulated, linear interpolation between values

Mixture viscosity \(\mu = \mu(T, Y_i) \) with Wilke formula

\[\mu = \sum_{i=1}^{K} \frac{Y_i \mu_i}{W_i \sum_{m=1}^{K} Y_m \Phi_{im} / W_m} \quad \text{with} \quad \Phi_{im} = \frac{1}{\sqrt{8}} \left(1 + \frac{W_i}{W_m} \right)^{-1/2} \left(1 + \left(\frac{\mu_i}{\mu_m} \right)^{1/2} \left(\frac{W_m}{W_j} \right)^{1/4} \right)^2 \]

Mixture thermal conductivity \(k = k(T, Y_i) \) following Mathur

\[k = \frac{1}{2} \left(W \sum_{i=1}^{K} \frac{Y_i k_i}{W_i} + \frac{1}{W \sum_{i=1}^{K} Y_i / (W_i k_i)} \right) \]

Mixture diffusion coefficients \(D_i = D_i(T, p, Y_i) \) from binary diffusion \(D_{mi}(T, p) \) as

\[D_i = \frac{1 - Y_i}{W \sum_{m \neq i} Y_m / (W_mD_{mi})} \]

- Evaluation with Chemkin-II Transport library
Splitting methods

\[\partial_t q + \partial_x (f - f_v) + \partial_y (g - g_v) = \frac{\alpha}{y} (c - g + g_v) + s \]
Splitting methods

\[\partial_t \mathbf{q} + \partial_x (f - f_v) + \partial_y (g - g_v) = \frac{\alpha}{y} (c - g + g_v) + s \]

Dimensional splitting for PDE

\[\mathcal{X}(\Delta t) : \partial_t \mathbf{q} + \partial_x (f(q) - f_v(q)) = 0 , \quad \text{IC: } Q(t_m) \quad \Delta t \rightarrow \tilde{Q}^{1/2} \]

\[\mathcal{Y}(\Delta t) : \partial_t \mathbf{q} + \partial_y (g(q) - g_v(q)) = 0 , \quad \text{IC: } \tilde{Q}^{1/2} \quad \Delta t \rightarrow \tilde{Q} \]
Splitting methods

\[
\partial_t q + \partial_x (f - f_v) + \partial_y (g - g_v) = \frac{\alpha}{y} (c - g + g_v) + s
\]

Dimensional splitting for PDE

\[
\mathcal{X}(\Delta t) : \quad \partial_t q + \partial_x (f(q) - f_v(q)) = 0, \quad \text{IC: } Q(t_m) \quad \Delta t \quad \tilde{Q}^{1/2}
\]

\[
\mathcal{Y}(\Delta t) : \quad \partial_t q + \partial_y (g(q) - g_v(q)) = 0, \quad \text{IC: } \tilde{Q}^{1/2} \quad \Delta t \quad \tilde{Q}
\]

Treat right-hand side as source term

\[
\mathcal{C}(\Delta t) : \quad \partial_t q = \frac{\alpha}{y} (c(q) - g(q) + g_v(q)), \quad \text{IC: } \tilde{Q} \quad \Delta t \quad \bar{Q}
\]
Splitting methods

\[\partial_t \mathbf{q} + \partial_x (f - f_v) + \partial_y (g - g_v) = \frac{\alpha}{\gamma} (c - g + g_v) + s \]

Dimensional splitting for PDE

\(\mathcal{X}(\Delta t) : \quad \partial_t \mathbf{q} + \partial_x (f(q) - f_v(q)) = 0 \), \quad IC: \quad Q(t_m) \quad \Delta t \rightarrow \tilde{Q}^{1/2} \\
\mathcal{Y}(\Delta t) : \quad \partial_t \mathbf{q} + \partial_y (g(q) - g_v(q)) = 0 \), \quad IC: \quad \tilde{Q}^{1/2} \quad \Delta t \rightarrow \tilde{Q} \\

Treat right-hand side as source term

\(\mathcal{C}(\Delta t) : \quad \partial_t \mathbf{q} = \frac{\alpha}{\gamma} (c(q) - g(q) + g_v(q)) \), \quad IC: \quad \bar{Q} \quad \Delta t \rightarrow \bar{Q} \\

Chemical source term

\(\mathcal{S}(\Delta t) : \quad \partial_t \mathbf{q} = s(q) \), \quad IC: \quad \bar{Q} \quad \Delta t \rightarrow Q(t_m + \Delta t) \)
Splitting methods

\[\partial_t q + \partial_x (f - f_v) + \partial_y (g - g_v) = \frac{\alpha}{y} (c - g + g_v) + s \]

Dimensional splitting for PDE
\[\mathcal{X}(\Delta t) : \quad \partial_t q + \partial_x (f(q) - f_v(q)) = 0 , \quad \text{IC: } Q(t_m) \xrightarrow{\Delta t} \tilde{Q}^{1/2} \]
\[\mathcal{Y}(\Delta t) : \quad \partial_t q + \partial_y (g(q) - g_v(q)) = 0 , \quad \text{IC: } \tilde{Q}^{1/2} \xrightarrow{\Delta t} \tilde{Q} \]

Treat right-hand side as source term
\[\mathcal{C}(\Delta t) : \quad \partial_t q = \frac{\alpha}{y} (c(q) - g(q) + g_v(q)) , \quad \text{IC: } \tilde{Q} \xrightarrow{\Delta t} \tilde{Q} \]

Chemical source term
\[\mathcal{S}(\Delta t) : \quad \partial_t q = s(q) , \quad \text{IC: } \bar{Q} \xrightarrow{\Delta t} Q(t_m + \Delta t) \]

Formally 1st-order algorithm

\[Q(t_m + \Delta t) = S(\Delta t)C(\Delta t)Y(\Delta t)X(\Delta t)(Q(t_m)) \]

but all sub-operators 2nd-order accurate or higher.
Finite volume discretization

Time discretization $t_n = n \Delta t$, discrete volumes $I_{jk} =$

$[x_j - \frac{1}{2} \Delta x, x_j + \frac{1}{2} \Delta x] \times [y_k - \frac{1}{2} \Delta y, y_k + \frac{1}{2} \Delta y] =: [x_{j-1/2}, x_{j+1/2}] \times [y_{k-1/2}, y_{k+1/2}]$

Approximation $Q_{jk}(t) \approx \frac{1}{|I_{jk}|} \int_{I_{jk}} q(x, t) \, dx$ and numerical fluxes

$F(Q_{jk}(t), Q_{j+1,k}(t)) \approx f(q(x_{j+1/2}, y_k, t)),$

$F_v(Q_{jk}(t), Q_{j+1,k}(t)) \approx f_v(q(x_{j+1/2}, y_k, t), \nabla q(x_{j+1/2}, y_k, t))$

yield (for simplicity)

$Q_{jk}^{n+1} = Q_{kj}^n - \frac{\Delta t}{\Delta x} \left[F(Q_{jk}^n, Q_{j+1,k}^n) - F(Q_{j-1,k}^n, Q_{jk}^n) \right] + \frac{\Delta t}{\Delta x} \left[F_v(Q_{jk}^n, Q_{j+1,k}^n) - F_v(Q_{j-1,k}^n, Q_{jk}^n) \right]$
Finite volume schemes

Finite volume discretization

Time discretization $t_n = n\Delta t$, discrete volumes $I_{jk} = [x_j - \frac{1}{2}\Delta x, x_j + \frac{1}{2}\Delta x] \times [y_k - \frac{1}{2}\Delta y, y_k + \frac{1}{2}\Delta y] =: [x_{j-1/2}, x_{j+1/2}] \times [y_{k-1/2}, y_{k+1/2}]

Approximation $Q_{jk}(t) \approx \frac{1}{|I_{jk}|} \int_{I_{jk}} q(x, t) \, dx$ and numerical fluxes

$$F\left(Q_{jk}(t), Q_{j+1,k}(t)\right) \approx f(q(x_{j+1/2}, y_k, t)),$$

$$F_v\left(Q_{jk}(t), Q_{j+1,k}(t)\right) \approx f_v(q(x_{j+1/2}, y_k, t), \nabla q(x_{j+1/2}, y_k, t))$$

yield (for simplicity)

$$Q_{jk}^{n+1} = Q_{kj}^n - \frac{\Delta t}{\Delta x} \left[F\left(Q_{jk}^n, Q_{j+1,k}^n\right) - F\left(Q_{j-1,k}^n, Q_{jk}^n\right) \right] + \frac{\Delta t}{\Delta x} \left[F_v\left(Q_{jk}^n, Q_{j+1,k}^n\right) - F_v\left(Q_{j-1,k}^n, Q_{jk}^n\right) \right]$$

- Riemann solver to approximate $F\left(Q_{jk}^n, Q_{j+1,k}^n\right)$
Finite volume discretization

Time discretization $t_n = n\Delta t$, discrete volumes $I_{jk} = [x_j - \frac{1}{2}\Delta x, x_j + \frac{1}{2}\Delta x[\times[y_k - \frac{1}{2}\Delta y, y_k + \frac{1}{2}\Delta y[\times =: [x_{j-1/2}, x_{j+1/2}[\times[y_{k-1/2}, y_{k+1/2}[$

Approximation $Q_{jk}(t) \approx \frac{1}{|I_{jk}|} \int_{I_{jk}} q(x, t) \, dx$ and numerical fluxes

$$F(Q_{jk}(t), Q_{j+1,k}(t)) \approx f(q(x_{j+1/2}, y_k, t)), \quad F_v(Q_{jk}(t), Q_{j+1,k}(t)) \approx f_v(q(x_{j+1/2}, y_k, t), \nabla q(x_{j+1/2}, y_k, t))$$

yield (for simplicity)

$$Q_{jk}^{n+1} = Q_{jk}^n - \frac{\Delta t}{\Delta x} \left[F(Q_{jk}^n, Q_{j+1,k}^n) - F(Q_{j-1,k}^n, Q_{jk}^n) \right] + \frac{\Delta t}{\Delta x} \left[F_v(Q_{jk}^n, Q_{j+1,k}^n) - F_v(Q_{j-1,k}^n, Q_{jk}^n) \right]$$

▶ Riemann solver to approximate $F(Q_{jk}^n, Q_{j+1,k}^n)$

▶ 1st-order finite differences for $F_v(Q_{jk}^n, Q_{j+1,k}^n)$ yield 2nd-order accurate central differences in (\ast)
Finite volume discretization

Time discretization $t_n = n\Delta t$, discrete volumes $I_{jk} = [x_j - \frac{1}{2}\Delta x, x_j + \frac{1}{2}\Delta x][y_k - \frac{1}{2}\Delta y, y_k + \frac{1}{2}\Delta y[\times =: [x_{j-1/2}, x_{j+1/2}][y_{k-1/2}, y_{k+1/2}[$

Approximation $Q_{jk}(t) \approx \frac{1}{|I_{jk}|} \int_{I_{jk}} q(x, t) \, dx$ and numerical fluxes

$$F \left(Q_{jk}(t), Q_{j+1,k}(t) \right) \approx f(q(x_{j+1/2}, y_k, t)),$$

$$F_v \left(Q_{jk}(t), Q_{j+1,k}(t) \right) \approx f_v(q(x_{j+1/2}, y_k, t), \nabla q(x_{j+1/2}, y_k, t))$$

yield (for simplicity)

$$Q_{jk}^{n+1} = Q_{jk}^n - \frac{\Delta t}{\Delta x} \left[F \left(Q_{jk}^n, Q_{j+1,k}^n \right) - F \left(Q_{j-1,k}^n, Q_{jk}^n \right) \right] + \frac{\Delta t}{\Delta x} \left[F_v \left(Q_{jk}^n, Q_{j+1,k}^n \right) - F_v \left(Q_{j-1,k}^n, Q_{jk}^n \right) \right]$$

- Riemann solver to approximate $F \left(Q_{jk}^n, Q_{j+1,k}^n \right)$

- 1st-order finite differences for $F_v \left(Q_{jk}^n, Q_{j+1,k}^n \right)$ yield 2nd-order accurate central differences in (\ast)

Stability condition used:

$$\max_{i,j,k} \left\{ \frac{\Delta t}{\Delta x} (|u_{jk}| + c_{jk}) + \frac{8}{3} \frac{\mu_{jk} \Delta t}{\rho_{jk} \Delta x^2}, \frac{\Delta t}{\Delta x} (|u_{jk}| + c_{jk}) + \frac{2k_j \Delta t}{c_{v,jk} \rho_j \Delta x^2}, \frac{\Delta t}{\Delta x} (|u_{jk}| + c_{jk}) + D_{i,jk} \frac{\Delta t}{\Delta x^2} \right\} \leq 1$$
Finite volume discretization – cont.

Symmetry source term $C(\Delta t)$: Use

$$Q_{jk}^{n+1} = Q_{jk}^n + \Delta t \left(\frac{\alpha}{y} (c(Q_{jk}^n) - g(Q_{jk}^n) + \frac{1}{2} (G_v(Q_{jk}^n, Q_{j,k+1}^n) + G_v(Q_{j,k-1}^n, Q_{jk}^n)) \right)$$

within explicit 2nd-order accurate Runge-Kutta method

- Gives 2nd-order central difference approximation of G_v
Finite volume schemes

Finite volume discretization – cont.

Symmetry source term $C^{(\Delta t)}$: Use

$$Q_{jk}^{n+1} = Q_{jk}^n + \Delta t \left(\frac{\alpha}{\gamma} (c(Q_{jk}^n) - g(Q_{jk}^n) + \frac{1}{2} \left(G_v(Q_{jk}^n, Q_{j,k+1}^n) + G_v(Q_{j,k-1}^n, Q_{jk}^n) \right) \right)$$

within explicit 2nd-order accurate Runge-Kutta method

- Gives 2nd-order central difference approximation of G_v
- Transport properties μ, k, D_i are stored in vector of state Q and kept constant throughout entire time step
Finite volume discretization – cont.

Symmetry source term \(C(\Delta t) \): Use

\[
Q_{jk}^{n+1} = Q_{jk}^n + \Delta t \left(\frac{\alpha}{\gamma} (c(Q_{jk}^n) - g(Q_{jk}^n)) + \frac{1}{2} (G_v(Q_{jk}^n, Q_{jk,k+1}^n) + G_v(Q_{jk,k-1}^n, Q_{jk}^n)) \right)
\]

within explicit 2nd-order accurate Runge-Kutta method

- Gives 2nd-order central difference approximation of \(G_v \)
- Transport properties \(\mu, k, D_i \) are stored in vector of state \(Q \) and kept constant throughout entire time step

Chemical source term \(S(\cdot) \):

- 4th-order accurate semi-implicit ODE-solver subcycles within each cell
- \(\rho, e, u, v \) remain unchanged!

\[
\partial_t \rho_i = W_i \dot{\omega}_i(\rho_1, \ldots, \rho_K, T) \quad i = 1, \ldots, K
\]
Flux difference splitting

Godunov-type scheme with \(\Delta Q^j_{j+1/2} = Q^j_{j+1} - Q^j_j \)

\[
Q^{n+1}_j = Q^n_j - \frac{\Delta t}{\Delta x} \left(A^- \Delta Q^n_{j+1/2} + A^+ \Delta Q^n_{j-1/2} \right)
\]
Flux difference splitting

Godunov-type scheme with $\Delta Q_{j+1/2}^n = Q_{j+1}^n - Q_j^n$

$$Q_{j}^{n+1} = Q_j^n - \frac{\Delta t}{\Delta x} \left(A^- \Delta Q_{j+1/2}^n + A^+ \Delta Q_{j-1/2}^n \right)$$

Use linearization $\tilde{f}(\bar{q}) = \hat{A}(q_L, q_R)\bar{q}$ and construct scheme for nonlinear problem as

$$Q_{j}^{n+1} = Q_j^n - \frac{\Delta t}{\Delta x} \left(\hat{A}^- (Q_j^n, Q_{j+1}^n) \Delta Q_{j+1/2}^n + \hat{A}^+ (Q_{j-1}^n, Q_j^n) \Delta Q_{j-1/2}^n \right)$$
Flux difference splitting

Godunov-type scheme with $\Delta Q_{j+1/2}^n = Q_{j+1}^n - Q_j^n$

$$Q_{j+1}^{n+1} = Q_j^n - \frac{\Delta t}{\Delta x} \left(A_- \Delta Q_{j+1/2}^n + A_+ \Delta Q_{j-1/2}^n \right)$$

Use linearization $\bar{f}(\bar{q}) = \hat{A}(q_L, q_R) \bar{q}$ and construct scheme for nonlinear problem as

$$Q_{j+1}^{n+1} = Q_j^n - \frac{\Delta t}{\Delta x} \left(\hat{A}^-(Q_j^n, Q_{j+1}^n) \Delta Q_{j+1/2}^n + \hat{A}^+(Q_{j-1}^n, Q_j^n) \Delta Q_{j-1/2}^n \right)$$

stability condition

$$\max_{j \in \mathbb{Z}} |\hat{\lambda}_{m,j+1/2}| \frac{\Delta t}{\Delta x} \leq 1 , \quad \text{for all } m = 1, \ldots, M$$

[LeVeque, 1992]
Roe’s approximate Riemann solver

Choosing \(\hat{A}(q_L, q_R) \) [Roe, 1981]:

\[
\hat{A}(q_L, q_R) \text{ has real eigenvalues}
\]

\[
\hat{A}(q_L, q_R) \rightarrow \partial f(q) / \partial q \text{ as } q_L, q_R \rightarrow q
\]

\[
\hat{A}(q_L, q_R) \Delta q = f(q_R) - f(q_L)
\]

For Euler equations:

\[
\hat{\rho} = \sqrt{\rho_L \rho_R + \sqrt{\rho_R \rho_L}} \sqrt{\rho_L + \sqrt{\rho_R}}
\]

\[
\hat{v} = \sqrt{\rho_L v_L + \sqrt{\rho_R v_R}} \sqrt{\rho_L + \sqrt{\rho_R}}
\]

for \(v = u, H \)

Wave decomposition:

\[
\Delta q = q_r - q_l = \sum m a_m \hat{r}_m F(q_L, q_R) = f(q_L) + \sum \hat{\lambda}_m < 0 a_m \hat{r}_m = f(q_R) - \sum \hat{\lambda}_m \geq 0 a_m \hat{r}_m = \frac{1}{2} f(q_L) + f(q_R) - \sum |\hat{\lambda}_m| a_m \hat{r}_m
\]
Roe’s approximate Riemann solver

Choosing \(\hat{A}(q_L, q_R) \) [Roe, 1981]:

(i) \(\hat{A}(q_L, q_R) \) has real eigenvalues

\[
\begin{align*}
\hat{\rho} & = \sqrt{\rho_L \rho_R + \sqrt{\rho_R \rho_L}} \\
\sqrt{\rho_L} & = \frac{\hat{\rho}}{\sqrt{\rho_R}} \\
\sqrt{\rho_R} & = \frac{\hat{\rho}}{\sqrt{\rho_L}}
\end{align*}
\]

for \(v = u \).

Wave decomposition:

\[
\Delta q = q_r - q_l = \sum_m a_m \hat{r}_m F(q_L, q_R) = f(q_L) + \sum \hat{\lambda}_m < 0 a_m \hat{r}_m = f(q_R) - \sum \hat{\lambda}_m \geq 0 a_m \hat{r}_m = \frac{1}{2} f(q_L) + f(q_R) - \sum |\hat{\lambda}_m| a_m \hat{r}_m
\]
Roe’s approximate Riemann solver

Choosing $\hat{A}(q_L, q_R)$ [Roe, 1981]:

(i) $\hat{A}(q_L, q_R)$ has real eigenvalues

(ii) $\hat{A}(q_L, q_R) \to \frac{\partial f(q)}{\partial q}$ as $q_L, q_R \to q$
Roe’s approximate Riemann solver

Choosing $\hat{A}(q_L, q_R)$ [Roe, 1981]:

(i) $\hat{A}(q_L, q_R)$ has real eigenvalues
(ii) $\hat{A}(q_L, q_R) \rightarrow \frac{\partial f(q)}{\partial q}$ as $q_L, q_R \rightarrow q$
(iii) $\hat{A}(q_L, q_R) \Delta q = f(q_R) - f(q_L)$
Roe’s approximate Riemann solver

Choosing $\hat{A}(q_L, q_R)$ [Roe, 1981]:

(i) $\hat{A}(q_L, q_R)$ has real eigenvalues

(ii) $\hat{A}(q_L, q_R) \to \frac{\partial f(q)}{\partial q}$ as $q_L, q_R \to q$

(iii) $\hat{A}(q_L, q_R) \Delta q = f(q_R) - f(q_L)$

For Euler equations:

$$\hat{\rho} = \frac{\sqrt{\rho_L \rho_R} + \sqrt{\rho_R \rho_L}}{\sqrt{\rho_L} + \sqrt{\rho_R}} = \sqrt{\rho_L \rho_R} \quad \text{and} \quad \hat{v} = \frac{\sqrt{\rho_L v_L} + \sqrt{\rho_R v_R}}{\sqrt{\rho_L} + \sqrt{\rho_R}} \quad \text{for} \quad v = u_n, H$$
Roe’s approximate Riemann solver

Choosing \(\hat{A}(q_L, q_R) \) [Roe, 1981]:

(i) \(\hat{A}(q_L, q_R) \) has real eigenvalues

(ii) \(\hat{A}(q_L, q_R) \to \frac{\partial f(q)}{\partial q} \) as \(q_L, q_R \to q \)

(iii) \(\hat{A}(q_L, q_R) \Delta q = f(q_R) - f(q_L) \)

For Euler equations:

\[
\hat{\rho} = \frac{\sqrt{\rho_L \rho_R} + \sqrt{\rho_R \rho_L}}{\sqrt{\rho_L} + \sqrt{\rho_R}} = \sqrt{\rho_L \rho_R} \quad \text{and} \quad \hat{v} = \frac{\sqrt{\rho_L v_L} + \sqrt{\rho_R v_R}}{\sqrt{\rho_L} + \sqrt{\rho_R}} \quad \text{for} \ v = u, H
\]

Wave decomposition: \(\Delta q = q_r - q_l = \sum_m a_m \hat{r}_m \)

\[
F(q_L, q_R) = f(q_L) + \sum_{\lambda_m < 0} \hat{\lambda}_m a_m \hat{r}_m = f(q_R) - \sum_{\lambda_m \geq 0} \hat{\lambda}_m a_m \hat{r}_m
\]

\[
= \frac{1}{2} \left(f(q_L) + f(q_R) - \sum_m |\hat{\lambda}_m| a_m \hat{r}_m \right)
\]
Riemann solver for combustion

(S1) Calculate standard Roe-averages $\hat{\rho}, \hat{u}, \hat{v}, \hat{H}, \hat{Y}_i, \hat{T}$.

(S2) Compute $\hat{\gamma} := \hat{c}_p/\hat{c}_v$ with $\hat{c}_{\{p/v\}}_i = \frac{1}{\hat{T}_R - \hat{T}_L} \int_{\hat{T}_L}^{\hat{T}_R} c_{\{p,v\}}(\tau) d\tau$.

(S3) Calculate $\hat{\phi}_i := (\hat{\gamma} - 1) \left(\frac{\hat{u}_i^2}{2} - \hat{h}_i \right) + \hat{\gamma} R \hat{T}$ with standard Roe-averages \hat{e}_i or \hat{h}_i.

(S4) Calculate $\hat{c} := \left(\sum_{i=1}^{K} \hat{Y}_i \hat{\phi}_i - (\hat{\gamma} - 1)\hat{u}^2 + (\hat{\gamma} - 1)\hat{H} \right)^{1/2}$.

(S5) Use $\Delta q = q_R - q_L$ and Δp to compute the wave strengths a_m.

(S6) Calculate $W_1 = a_1 \hat{r}_1, W_2 = \sum_{\ell=2}^{K+d} a_\ell \hat{r}_\ell, W_3 = a_{K+d+1} \hat{r}_{K+d+1}$.

(S7) Evaluate $s_1 = \hat{u} - \hat{c}, s_2 = \hat{u}, s_3 = \hat{u} + \hat{c}$.

R. Deiterding – Adaptive high-resolution methods for simulating shock-induced hydrogen-air combustion
Riemann solver for combustion

(S1) Calculate standard Roe-averages $\hat{\rho}, \hat{u}, \hat{v}, \hat{H}, \hat{Y}_i, \hat{T}$.

(S2) Compute $\hat{\gamma} := \hat{c}_p/\hat{c}_v$ with $\hat{c}_{\{p/v\}}_i = \frac{1}{\hat{T}_R - \hat{T}_L} \int_{\hat{T}_L}^{\hat{T}_R} c_{\{p,v\}}_i(\tau) \, d\tau$.

(S3) Calculate $\hat{\phi}_i := (\hat{\gamma} - 1) \left(\frac{\hat{u}^2}{2} - \hat{h}_i \right) + \hat{\gamma} R_i \hat{T}$ with standard Roe-averages \hat{e}_i or \hat{h}_i.

(S4) Calculate $\hat{c} := \left(\sum_{i=1}^{K} \hat{Y}_i \hat{\phi}_i - (\hat{\gamma} - 1)\hat{u}^2 + (\hat{\gamma} - 1)\hat{H} \right)^{1/2}$.

(S5) Use $\Delta q = q_R - q_L$ and Δp to compute the wave strengths a_m.

(S6) Calculate $\mathcal{W}_1 = a_1 \hat{r}_1$, $\mathcal{W}_2 = \sum_{\ell=2}^{K+d} a_\ell \hat{r}_\ell$, $\mathcal{W}_3 = a_{K+d+1} \hat{r}_{K+d+1}$.

(S7) Evaluate $s_1 = \hat{u} - \hat{c}$, $s_2 = \hat{u}$, $s_3 = \hat{u} + \hat{c}$.

(S8) Evaluate $\rho^*_{L/R}, u^*_{L/R}, e^*_{L/R}, c^*_{L/R}$ from $q^*_L = q_L + \mathcal{W}_1$ and $q^*_R = q_R - \mathcal{W}_3$.

(S9) If $\rho^*_{L/R} \leq 0$ or $e^*_{L/R} \leq 0$ use $F_{HLL}(q_L, q_R)$ and go to (S12).
Riemann solver for combustion

(S1) Calculate standard Roe-averages \(\hat{\rho}, \hat{u}, \hat{v}, \hat{H}, \hat{Y}_i, \hat{T} \).

(S2) Compute \(\hat{\gamma} := \frac{c_p}{c_v} \) with \(c_{i\{p/v\}} = \frac{1}{T_R - T_L} \int_{T_L}^{T_R} c_{i\{p,v\}}(\tau) d\tau. \)

(S3) Calculate \(\hat{\phi}_i := (\hat{\gamma} - 1) \left(\frac{u_i^2}{2} - h_i \right) + \hat{\gamma} R_i \hat{T} \) with standard Roe-averages \(\hat{\rho}_i \) or \(\hat{h}_i \).

(S4) Calculate \(\hat{c} := \left(\sum_{i=1}^{K} \hat{Y}_i \hat{\phi}_i - (\hat{\gamma} - 1)\hat{u}^2 + (\hat{\gamma} - 1)\hat{H} \right)^{1/2}. \)

(S5) Use \(\Delta q = q_R - q_L \) and \(\Delta p \) to compute the wave strengths \(a_m \).

(S6) Calculate \(W_1 = a_1 \hat{r}_1, W_2 = \sum_{l=2}^{K+d} a_l \hat{r}_l, W_3 = a_{K+d+1} \hat{r}_{K+d+1}. \)

(S7) Evaluate \(s_1 = \hat{u} - \hat{c}, s_2 = \hat{u}, s_3 = \hat{u} + \hat{c}. \)

(S8) Evaluate \(\rho^*_{L/R}, u^*_{L/R}, e^*_{L/R}, c^*_{L/R} \) from \(q^*_L = q_L + W_1 \) and \(q^*_R = q_R - W_3. \)

(S9) If \(\rho^*_{L/R} \leq 0 \) or \(e^*_{L/R} \leq 0 \) use \(F_{HLL}(q_L, q_R) \) and go to (S12).

(S10) Entropy correction: Evaluate \(|\tilde{s}_l| \).

\[
F_{Roe}(q_L, q_R) = \frac{1}{2} \left(f(q_L) + f(q_R) - \sum_{l=1}^{3} |\tilde{s}_l| W_l \right)
\]
Riemann solver for combustion

(S1) Calculate standard Roe-averages \(\hat{\rho}, \hat{u}, \hat{v}, \hat{H}, \hat{Y}_i, \hat{T} \).

(S2) Compute \(\hat{\gamma} := \hat{c}_p / \hat{c}_v \) with \(\hat{c}_{\{p/v\}} i = \frac{1}{T_R - T_L} \int_{T_L}^{T_R} c_{\{p/v\}} i (\tau) d\tau \).

(S3) Calculate \(\hat{\phi}_i := (\hat{\gamma} - 1) \left(\frac{u_i^2}{2} - \hat{h}_i \right) + \hat{\gamma} R_i \hat{T} \) with standard Roe-averages \(\hat{e}_i \) or \(\hat{h}_i \).

(S4) Calculate \(\hat{c} := \left(\sum_{i=1}^{K} \hat{\gamma}_i \hat{\phi}_i - (\hat{\gamma} - 1) \hat{u}^2 + (\hat{\gamma} - 1) \hat{H} \right)^{1/2} \).

(S5) Use \(\Delta q = q_R - q_L \) and \(\Delta p \) to compute the wave strengths \(a_m \).

(S6) Calculate \(W_1 = a_1 \hat{T}_1, W_2 = \sum_{i=2}^{K+d} a_i \hat{T}_i, W_3 = a_{K+d+1} \hat{T}_{K+d+1} \).

(S7) Evaluate \(s_1 = \hat{u} - \hat{c}, s_2 = \hat{u}, s_3 = \hat{u} + \hat{c} \).

(S8) Evaluate \(\rho^*_L/R, u^*_L/R, e^*_L/R, c^*_L/R \) from \(q^*_L = q_L + W_1 \) and \(q^*_R = q_R - W_3 \).

(S9) If \(\rho^*_L/R \leq 0 \) or \(e^*_L/R \leq 0 \) use \(F_{HLL}(q_L, q_R) \) and go to (S12).

(S10) Entropy correction: Evaluate \(|\bar{s}_l| \). \(F_{\text{Roe}}(q_L, q_R) = \frac{1}{2} \left(f(q_L) + f(q_R) - \sum_{l=1}^{3} |\bar{s}_l| W_l \right) \)

(S11) Positivity correction: Replace \(F_i \) by \(F^*_i = F^* \rho \cdot \left\{ \begin{array}{ll} Y_i^l, & F^* \rho \geq 0, \\ Y_i^r, & F^* \rho < 0. \end{array} \right. \)

(S12) Evaluate maximal signal speed by \(S = \max(|s_1|, |s_3|) \).
Riemann solver for combustion: carbuncle fix

Entropy corrections
Riemann solver for combustion: carbuncle fix

Entropy corrections [Harten, 1983]

1. \[|\tilde{s}_l| = \begin{cases} |s_l| & \text{if } |s_l| \geq 2\eta \\ \frac{|s_l^2|}{4\eta} + \eta & \text{otherwise} \end{cases} \]

\[\eta = \frac{1}{2} \max_l \{ |s_l(q_R) - s_l(q_L)| \} \]
Riemann solver for combustion: carbuncle fix

Entropy corrections [Harten, 1983]
[Harten and Hyman, 1983]

1. $|\tilde{s}_i| = \begin{cases}
|s_i| & \text{if } |s_i| \geq 2\eta \\
\frac{|s_i^2|}{4\eta} + \eta & \text{otherwise}
\end{cases}$

$\eta = \frac{1}{2} \max_i \{|s_i(q_R) - s_i(q_L)|\}$

2. Replace $|s_i|$ by $|\tilde{s}_i|$ only if $s_i(q_L) < 0 < s_i(q_R)$
Riemann solver for combustion: carbuncle fix

Entropy corrections [Harten, 1983] [Harten and Hyman, 1983]

1. \[|\tilde{s}_t| = \begin{cases} |s_t| & \text{if } |s_t| \geq 2\eta \\ \frac{|s_t|^2}{4\eta} + \eta & \text{otherwise} \end{cases} \]

\[\eta = \frac{1}{2} \max_t \{|s_t(q_R) - s_t(q_L)|\} \]

2. Replace \(|s_t|\) by \(|\tilde{s}_t|\) only if

\[s_t(q_L) < 0 < s_t(q_R) \]

\[\tilde{\eta}_{j+1/2,k} = \max \{ \eta_{j+1/2,k}, \eta_{j,k-1/2}, \eta_{j,k+1/2}, \eta_{j+1,k-1/2}, \eta_{j+1,k+1/2} \} \]
Riemann solver for combustion: carbuncle fix

Entropy corrections [Harten, 1983] [Harten and Hyman, 1983]

1. $|\tilde{s}_l| = \begin{cases} |s_l| & \text{if } |s_l| \geq 2\eta \\ \frac{|s_l^2|}{4\eta} + \eta & \text{otherwise} \end{cases}$

$\eta = \frac{1}{2} \max_l \{|s_l(q_R) - s_l(q_L)|\}$

2. Replace $|s_l|$ by $|\tilde{s}_l|$ only if $s_l(q_L) < 0 < s_l(q_R)$

$\tilde{\eta}_{j+1/2,k} = \max \{\eta_{j+1/2,k}, \eta_{j,k-1/2}, \eta_{j+1,k-1/2}, \eta_{j+1,k+1/2}\}$

2D modification of entropy correction [Sanders et al., 1998]:

Carbuncle phenomenon

▶ [Quirk, 1994]

▶ Test from [Deiterding, 2003]
Block-structured adaptive mesh refinement (SAMR)

For simplicity $\partial_t q(x, t) + \nabla \cdot f(q(x, t)) = 0$

- Refined blocks overlay coarser ones
Block-structured adaptive mesh refinement (SAMR)

For simplicity $\partial_t \mathbf{q}(\mathbf{x}, t) + \nabla \cdot \mathbf{f}(\mathbf{q}(\mathbf{x}, t)) = 0$

- Refined blocks overlay coarser ones
Block-structured adaptive mesh refinement (SAMR)

For simplicity $\partial_t q(x, t) + \nabla \cdot f(q(x, t)) = 0$

- Refined blocks overlay coarser ones
Block-structured adaptive mesh refinement (SAMR)

For simplicity $\partial_t q(x, t) + \nabla \cdot f(q(x, t)) = 0$

- Refined blocks overlay coarser ones
- Refinement in space and time by factor r_l
Block-structured adaptive mesh refinement (SAMR)

For simplicity $\partial_t q(x, t) + \nabla \cdot f(q(x, t)) = 0$

- Refined blocks overlay coarser ones
- Refinement in space and time by factor r_l
- Block (aka patch) based data structures

Numerical scheme

$$Q_{jk}^{n+1} = Q_{jk}^n - \frac{\Delta t}{\Delta x} \left[F_{j+\frac{1}{2}, k} - F_{j-\frac{1}{2}, k} \right]$$

$$- \frac{\Delta t}{\Delta y} \left[G_{j, k+\frac{1}{2}} - G_{j, k-\frac{1}{2}} \right]$$

only for single patch necessary
Block-structured adaptive mesh refinement (SAMR)

For simplicity $\partial_t q(x, t) + \nabla \cdot f(q(x, t)) = 0$

- Refined blocks overlay coarser ones
- Refinement in space \textit{and time} by factor r_l
- Block (aka patch) based data structures

Numerical scheme

$$Q_{jk}^{n+1} = Q_{jk}^n - \frac{\Delta t}{\Delta x} \left[F_{j+\frac{1}{2},k} - F_{j-\frac{1}{2},k} \right]$$
$$- \frac{\Delta t}{\Delta y} \left[G_{j,k+\frac{1}{2}} - G_{j,k-\frac{1}{2}} \right]$$

only for single patch necessary

- Efficient cache-reuse / vectorization possible
 - Cluster-algorithm necessary
Level transfer / setting of ghost cells

Conservative averaging (restriction):

\[
\hat{Q}_{jk} := \frac{1}{(r_l+1)^2} \sum_{\kappa=0}^{r_{l+1}-1} \sum_{\iota=0}^{r_{l+1}-1} Q_{v+\kappa, w+\iota}^{l+1}
\]
Level transfer / setting of ghost cells

Conservative averaging (restriction):

\[
\hat{Q}_{jk}^{l} := \frac{1}{(r_{l+1})^2} \sum_{\kappa=0}^{r_{l+1}-1} \sum_{\iota=0}^{r_{l+1}-1} Q_{v+\kappa,w+\iota}^{l+1}
\]
Conservative averaging (restriction):

\[q'_{jk} := \frac{1}{(n+1)^2} \sum_{\kappa=0}^{n+1} \sum_{\ell=0}^{n+1-1} q_{\ell+k, \ell+\kappa, l} \]

Synchronization:

For boundary conditions: linear time interpolation

\[\tilde{q}_l(t + \kappa \Delta t) := (1 - \kappa) \tilde{q}_l(t) + \kappa \tilde{q}_l(t + \Delta t) \text{ for } \kappa = 0, \ldots, n+1 \]
Level transfer / setting of ghost cells

Conservative averaging (restriction):

\[\hat{Q}_{jk} := \frac{1}{(r_{l+1})^2} \sum_{\kappa=0}^{r_{l+1}-1} \sum_{\nu=0}^{r_{l+1}-1} Q_{\nu+\kappa, w+\nu}^{l+1} \]

\[\hat{Q}_{jk} \] represents the conservative averaging of the variables from the fine grid to the coarse grid. The formula uses bilinear interpolation for prolongation (restriction) and linear time interpolation for synchronization.

Synchronization
Physical boundary conditions
Level transfer / setting of ghost cells

Conservative averaging (restriction):

\[\hat{Q}_{jk}^{l} := \frac{1}{(r_{l+1})^2} \sum_{\kappa=0}^{r_{l+1}-1} \sum_{\iota=0}^{r_{l+1}-1} Q_{v+\kappa, w+\iota}^{l+1} \]
Level transfer / setting of ghost cells

Conservative averaging (restriction):

\[\hat{Q}_{jk} := \frac{1}{(r_{l+1})^2} \sum_{\kappa=0}^{r_{l+1}-1} \sum_{\iota=0}^{r_{l+1}-1} Q^{l+1}_{v+\kappa, w+\iota} \]

Bilinear interpolation (prolongation):

\[\tilde{Q}_{vw}^{l+1} := (1 - f_1)(1 - f_2) Q_{j-1,k-1}^l + f_1(1 - f_2) Q_{j,k-1}^l + (1 - f_1)f_2 Q_{j-1,k}^l + f_1f_2 Q_{jk}^l \]
Level transfer / setting of ghost cells

Conservative averaging (restriction):

\[\hat{Q}_{jk}^l := \frac{1}{(r_{l+1})^2} \sum_{\kappa=0}^{r_{l+1}-1} \sum_{\nu=0}^{r_{l+1}-1} Q_{v+\kappa,w+\nu}^{l+1} \]

Bilinear interpolation (prolongation):

\[\tilde{Q}_{vw}^{l+1} := (1 - f_1)(1 - f_2) Q_{j-1,k-1}^l + f_1(1 - f_2) Q_{j,k-1}^l + (1 - f_1)f_2 Q_{j-1,k}^l + f_1f_2 Q_{jk}^l \]

For boundary conditions: linear time interpolation

\[\tilde{Q}_{l+1}^{l+1} (t + \kappa \Delta t_{l+1}) := \left(1 - \frac{\kappa}{r_{l+1}} \right) \tilde{Q}_{l+1}^{l+1} (t) + \frac{\kappa}{r_{l+1}} \tilde{Q}_{l+1}^{l+1} (t + \Delta t_{l}) \quad \text{for} \quad \kappa = 0, \ldots, r_{l+1} \]
Conservative flux correction

Example: Cell j, k

\[
\dot{Q}_{jk}(t + \Delta t_l) = Q_{jk}(t) - \frac{\Delta t_l}{\Delta x_l} \left(F^{1,l}_{j+\frac{1}{2},k} - \frac{1}{r^{l+1}_k} \sum_{\kappa=0}^{r^{l+1}_k} \sum_{\iota=0}^{r^{l+1}_k-1} F^{1,l+1}_{v+\frac{1}{2},w+\iota} (t + \kappa \Delta t_{l+1}) \right) \\
- \frac{\Delta t_l}{\Delta y_l} \left(F^{2,l}_{j,k+\frac{1}{2}} - F^{2,l}_{j,k-\frac{1}{2}} \right)
\]

Correction pass:
Conservative flux correction

Example: Cell \(j, k \)

\[
\dot{Q}_{jk}(t + \Delta t_l) = Q_{jk}(t) - \frac{\Delta t_l}{\Delta x_l} \left(F_{1,l}^{1,1,}, j+\frac{1}{2}, k - \frac{1}{r_{l+1}} \sum_{\kappa=0}^{r_{l+1}-1} \sum_{\iota=0}^{\nu_{l+1}-1} F_{1,l+1,\nu+\frac{1}{2},w+\iota} (t + \kappa \Delta t_{l+1}) \right)
- \frac{\Delta t_l}{\Delta y_l} \left(F_{2,l}^{2,1,}, j, k+\frac{1}{2} - F_{2,l}^{2,1,}, j, k-\frac{1}{2} \right)
\]

Correction pass:

1. \(\delta F_{1,l+1,}^{1,1}, j-\frac{1}{2}, k := -F_{1,l}, j-\frac{1}{2}, k \)
Conservative flux correction

Example: Cell j, k

\[
\dot{Q}_{jk}(t + \Delta t_l) = Q_{jk}(t) - \frac{\Delta t_l}{\Delta x_l} \left(\mathbf{F}_{j+\frac{1}{2},k}^{1,l} - \sum_{\kappa=0}^{r_l+1-1} \sum_{\nu=0}^{r_{l+1}-1} \mathbf{F}_{\nu+\frac{1}{2},w+\kappa}^{1,l+1}(t + \kappa \Delta t_{l+1}) \right) \\
- \frac{\Delta t_l}{\Delta y_l} \left(\mathbf{F}_{j,k+\frac{1}{2}}^{2,l} - \mathbf{F}_{j,k-\frac{1}{2}}^{2,l} \right)
\]

Correction pass:

1. \(\delta \mathbf{F}_{j-\frac{1}{2},k}^{1,l+1} := -\mathbf{F}_{j-\frac{1}{2},k}^{1,l} \)

2. \(\delta \mathbf{F}_{j-\frac{1}{2},k}^{1,l+1} := \delta \mathbf{F}_{j-\frac{1}{2},k}^{1,l+1} + \frac{1}{r_{l+1}^2} \sum_{\nu=0}^{r_{l+1}-1} \mathbf{F}_{\nu+\frac{1}{2},w+\kappa}^{1,l+1}(t + \kappa \Delta t_{l+1}) \)
Conservative flux correction

Example: Cell \(j, k\)

\[
\begin{align*}
\bar{Q}_{jk}^l(t + \Delta t_l) &= Q_{jk}^l(t) - \frac{\Delta t_l}{\Delta x_l} \left(F_{j+\frac{1}{2},k}^{1,l} - \frac{1}{r_{l+1}^2} \sum_{\kappa=0}^{r_{l+1}-1} \sum_{\iota=0}^{r_{l+1}-1} F_{v+\frac{1}{2},w+\iota}^{1,l+1} \left(t + \kappa \Delta t_{l+1} \right) \right) \\
&\hspace{1cm} - \frac{\Delta t_l}{\Delta y_l} \left(F_{j,k+\frac{1}{2}}^{2,l} - F_{j,k-\frac{1}{2}}^{2,l} \right)
\end{align*}
\]

Correction pass:

1. \(\delta F_{j-\frac{1}{2},k}^{1,l+1} := -F_{j-\frac{1}{2},k}^{1,l}\)

2. \(\delta F_{j-\frac{1}{2},k}^{1,l+1} := \delta F_{j-\frac{1}{2},k}^{1,l+1} + \frac{1}{r_{l+1}^2} \sum_{\iota=0}^{r_{l+1}-1} F_{v+\frac{1}{2},w+\iota}^{1,l+1} \left(t + \kappa \Delta t_{l+1} \right)\)

3. \(\bar{Q}_{jk}^l(t + \Delta t_l) := Q_{jk}^l(t + \Delta t_l) + \frac{\Delta t_l}{\Delta x_l} \delta F_{j-\frac{1}{2},k}^{1,l+1}\)
Heuristic error estimation for FV methods

1. Error estimation on interior cells
Heuristic error estimation for FV methods

1. Error estimation on interior cells

\[\mathcal{H}^{t_l} Q'(t_l - \Delta t_l) \]
Heuristic error estimation for FV methods

1. Error estimation on interior cells

\[\mathcal{H}^{\Delta t_l} Q^l(t_l - \Delta t_l) \]
Heurisitic error estimation for FV methods

1. Error estimation on interior cells

\[H^{\Delta t_i} Q'_i(t_i - \Delta t_i) \]

\[= H^{\Delta t_i} (H^{\Delta t_i} Q'_i(t_i - \Delta t_i)) \]

\[= H^2_{t_i} Q'_i(t_i - \Delta t_i) \]
Heuristic error estimation for FV methods

1. Error estimation on interior cells

2. Create temporary Grid coarsened by factor 2
 Initialize with fine-grid-values of preceding time step

\[H^{\Delta t_l} Q^l(t_l - \Delta t_l) = H^{\Delta t_l} (H^{\Delta t_l} Q^l(t_l - \Delta t_l)) = H^{\Delta t_l} Q^l(t_l - \Delta t_l) \]
Heuristic error estimation for FV methods

1. Error estimation on interior cells
2. Create temporary Grid coarsened by factor 2
 Initialize with fine-grid-values of preceding time step

\[
\mathcal{H}^{\Delta t_i} \mathbf{Q}_i^l(t_l - \Delta t_l) = \mathcal{H}^{\Delta t_i} (\mathcal{H}^{\Delta t_i} \mathbf{Q}_i^l(t_l - \Delta t_l)) = \mathcal{H}^{2\Delta t_i} \bar{\mathbf{Q}}_i^l(t_l - \Delta t_l)
\]
Heuristic error estimation for FV methods

1. Error estimation on interior cells
2. Create temporary Grid coarsened by factor 2
 Initialize with fine-grid-values of preceding time step
3. Compare temporary solutions

\[\mathcal{H}^{\Delta t_t} Q^l(t_l - \Delta t_t) = \mathcal{H}^{\Delta t_t} (\mathcal{H}^{\Delta t_t} Q^l(t_l - \Delta t_t)) = \mathcal{H}^{\Delta t_t} \bar{Q}^l(t_l - \Delta t_t) \]
Refinement criteria

Scaled gradient of scalar quantity \(w \)

\[
|w(Q_{j+1,k})-w(Q_{jk})| > \epsilon_w ,
|w(Q_{j,k+1})-w(Q_{jk})| > \epsilon_w ,
|w(Q_{j+1,k+1})-w(Q_{jk})| > \epsilon_w
\]
Refinement criteria

Scaled gradient of scalar quantity w

$$|w(Q_{j+1,k}) - w(Q_{jk})| > \epsilon_w, \quad |w(Q_{j,k+1}) - w(Q_{jk})| > \epsilon_w, \quad |w(Q_{j+1,k+1}) - w(Q_{jk})| > \epsilon_w$$

Usage of heuristic error estimation:
Current solution integrated tentatively 1 step with Δt_l and coarsened

$$\tilde{Q}(t_l + \Delta t_l) := \text{Restrict}\left(\mathcal{H}_2^{\Delta t_l} Q(t_l - \Delta t_l)\right)$$

Previous solution coarsened and integrated 1 step with $2\Delta t_l$

$$Q(t_l + \Delta t_l) := \mathcal{H}_{2\Delta t_l} \text{Restrict}\left(Q(t_l - \Delta t_l)\right)$$
Refinement criteria

Scaled gradient of scalar quantity w

$$|w(Q_{j+1,k})-w(Q_{jk})| > \epsilon_w, \quad |w(Q_{j,k+1})-w(Q_{jk})| > \epsilon_w, \quad |w(Q_{j+1,k+1})-w(Q_{jk})| > \epsilon_w$$

Usage of heuristic error estimation:
Current solution integrated tentatively 1 step with Δt_l and coarsened

$$\bar{Q}(t_l + \Delta t_l) := \text{Restrict} \left(H_{2}^{\Delta t_l} Q'^{(t_l - \Delta t_l)} \right)$$

Previous solution coarsened and integrated 1 step with $2\Delta t_l$

$$Q(t_l + \Delta t_l) := H_{2}^{2\Delta t_l} \text{Restrict} \left(Q'^{(t_l - \Delta t_l)} \right)$$

Local error estimation of scalar quantity w

$$\tau_{jk}^w := \frac{|w(\bar{Q}_{jk}(t + \Delta t)) - w(Q_{jk}(t + \Delta t))|}{2^{o+1} - 2}$$
Refinement criteria

Scaled gradient of scalar quantity w

$$|w(Q_{j+1,k}) - w(Q_{jk})| > \epsilon_w, \quad |w(Q_{j,k+1}) - w(Q_{jk})| > \epsilon_w, \quad |w(Q_{j+1,k+1}) - w(Q_{jk})| > \epsilon_w$$

Usage of heuristic error estimation:
Current solution integrated tentatively 1 step with Δt_I and coarsened

$$\bar{Q}(t_I + \Delta t_I) := \text{Restrict} \left(\mathcal{H}^{\Delta t_I} Q_I(t_I - \Delta t_I) \right)$$

Previous solution coarsened and integrated 1 step with $2\Delta t_I$

$$Q(t_I + \Delta t_I) := \mathcal{H}^{2\Delta t_I} \text{Restrict} \left(Q_I(t_I - \Delta t_I) \right)$$

Local error estimation of scalar quantity w

$$\tau_{jk}^w := \frac{|w(\bar{Q}_{jk}(t + \Delta t)) - w(Q_{jk}(t + \Delta t))|}{2^{o+1} - 2}$$

In practice [Deiterding, 2003] use

$$\frac{\tau_{jk}^w}{\max(|w(Q_{jk}(t + \Delta t)), S_w|)} > \eta_{w}^r$$
Non-Cartesian boundaries

Level-set method for boundary embedding

- Implicit boundary representation via distance function φ, normal $\mathbf{n} = \nabla \varphi / |\nabla \varphi|$
Level-set method for boundary embedding

- Implicit boundary representation via distance function φ, normal $\mathbf{n} = \nabla \varphi / |\nabla \varphi|$
- Complex boundary moving with local velocity \mathbf{w}, treat interface as moving rigid wall
Level-set method for boundary embedding

- Implicit boundary representation via distance function φ, normal $n = \nabla \varphi / |\nabla \varphi|$

- Complex boundary moving with local velocity w, treat interface as moving rigid wall

- Construction of values in embedded boundary cells by interpolation / extrapolation
Level-set method for boundary embedding

- Implicit boundary representation via distance function φ, normal $\mathbf{n} = \nabla \varphi / |\nabla \varphi|$
- Complex boundary moving with local velocity \mathbf{w}, treat interface as moving rigid wall
- Construction of values in embedded boundary cells by interpolation / extrapolation

$$\hat{x} = x + 2\varphi \mathbf{n}$$
Level-set method for boundary embedding

- Implicit boundary representation via distance function φ, normal $\mathbf{n} = \nabla \varphi / |\nabla \varphi|$
- Complex boundary moving with local velocity \mathbf{w}, treat interface as moving rigid wall
- Construction of values in embedded boundary cells by interpolation / extrapolation

Interpolate / constant value extrapolate values at

$$\tilde{x} = x + 2\varphi \mathbf{n}$$

Velocity in ghost cells – slip BC:

$$\mathbf{u}' = (2\mathbf{w} \cdot \mathbf{n} - \mathbf{u} \cdot \mathbf{n})\mathbf{n} + (\mathbf{u} \cdot \mathbf{t})\mathbf{t}$$

$$= 2((\mathbf{w} - \mathbf{u}) \cdot \mathbf{n})\mathbf{n} + \mathbf{u}$$

No-slip BC: $\mathbf{u}' = 2\mathbf{w} - \mathbf{u}$
Verification: shock reflection

- Reflection of a Mach 2.38 shock in nitrogen at 43° wedge
- 2nd order MUSCL scheme with Roe solver, 2nd order multidimensional wave propagation method
Verification: shock reflection

- Reflection of a Mach 2.38 shock in nitrogen at 43° wedge
- 2nd order MUSCL scheme with Roe solver, 2nd order multidimensional wave propagation method

Cartesian base grid 360×160 cells on domain of $36\text{ mm} \times 16\text{ mm}$ with up to 3 refinement levels with $r_l = 2, 4, 4$ and $\Delta x_{1,2} = 3.125\mu m$, 38 h CPU
Verification: shock reflection

- Reflection of a Mach 2.38 shock in nitrogen at 43° wedge
- 2nd order MUSCL scheme with Roe solver, 2nd order multidimensional wave propagation method

Cartesian base grid 360×160 cells on domain of $36 \text{ mm} \times 16 \text{ mm}$ with up to 3 refinement levels with $r_l = 2, 4, 4$ and $\Delta x_{1,2} = 3.125 \mu m$, 38 h CPU

GFM base grid 390×330 cells on domain of $26 \text{ mm} \times 22 \text{ mm}$ with up to 3 refinement levels with $r_l = 2, 4, 4$ and $\Delta x_{e,1,2} = 2.849 \mu m$, 200 h CPU
Verification: Shock reflection for Euler equations

\[\Delta x = 25 \text{ mm} \]
\[\Delta x = 12.5 \text{ mm} \]
\[\Delta x = 3.125 \text{ mm} \]
Verification: Shock reflection for Euler equations

\[\Delta x = 25 \text{ mm} \]
\[\Delta x = 12.5 \text{ mm} \]
\[\Delta x = 3.125 \text{ mm} \]
\[\Delta x_e = 22.8 \text{ mm} \]
\[\Delta x_e = 11.4 \text{ mm} \]
\[\Delta x_e = 2.849 \text{ mm} \]
Verification: Shock reflection for Euler equations

\[\Delta x = 25 \text{ mm} \]
\[\Delta x = 12.5 \text{ mm} \]
\[\Delta x = 3.125 \text{ mm} \]

\[\Delta x_e = 22.8 \text{ mm} \]
\[\Delta x_e = 11.4 \text{ mm} \]
\[\Delta x_e = 2.849 \text{ mm} \]

2nd order MUSCL scheme with Van Leer FVS, dimensional splitting

\[\Delta x = 12.5 \text{ mm} \]
\[\Delta x = 3.125 \text{ mm} \]
Shock reflection: solution for Navier-Stokes equations

- Convergence to correct solution but rather high boundary resolution required with this approach
Shock reflection: solution for Navier-Stokes equations

Convergence to correct solution but rather high boundary resolution required with this approach

- $\Delta x = 50 \text{ mm}$
- $\Delta x = 25 \text{ mm}$
- $\Delta x = 12.5 \text{ mm}$, SAMR
Shock reflection: solution for Navier-Stokes equations

- Convergence to correct solution but rather high boundary resolution required with this approach

\[\Delta x = 50 \text{ mm} \]
\[\Delta x = 25 \text{ mm} \]
\[\Delta x = 12.5 \text{ mm, SAMR} \]
\[\Delta x_e = 45.6 \text{ mm} \]
\[\Delta x_e = 22.8 \text{ mm} \]
\[\Delta x_e = 11.4 \text{ mm, SAMR} \]
Parallelization

Rigorous domain decomposition

- Data of all levels resides on same node
- Grid hierarchy defines unique "floor-plan"
- Workload estimation

\[
\mathcal{W}(\Omega) = \sum_{l=0}^{l_{\text{max}}} \left[\mathcal{N}_{l}(G_l \cap \Omega) \prod_{\kappa=0}^{l} r_{\kappa} \right]
\]
Parallelization

Rigorous domain decomposition

- Data of all levels resides on same node
- Grid hierarchy defines unique "floor-plan"
- Workload estimation

\[\mathcal{W}(\Omega) = \sum_{l=0}^{l_{\text{max}}} \mathcal{N}_l(G_l \cap \Omega) \prod_{\kappa=0}^{l} r_\kappa \]

- Parallel operations
 - Synchronization of ghost cells
 - Redistribution of data blocks within regridding operation
 - Flux correction of coarse grid cells

- Dynamic partitioning with space-filling curve

Parallelization

Rigorous domain decomposition

- Data of all levels resides on same node
- Grid hierarchy defines unique "floor-plan"
- Workload estimation

\[\mathcal{W}(\Omega) = \sum_{l=0}^{l_{\text{max}}} \left[N_l(G_l \cap \Omega) \prod_{\kappa=0}^{l} r_\kappa \right] \]

- Parallel operations
 - Synchronization of ghost cells
 - Redistribution of data blocks within regridding operation
 - Flux correction of coarse grid cells
- Dynamic partitioning with space-filling curve

Parallelization

Rigorous domain decomposition

▶ Data of all levels resides on same node
▶ Grid hierarchy defines unique "floor-plan"
▶ Workload estimation

$\mathcal{W}(\Omega) = \sum_{l=0}^{l_{\text{max}}} \left[\mathcal{N}_l(G_l \cap \Omega) \prod_{\kappa=0}^{l} r_\kappa \right]$

▶ Parallel operations

▶ Synchronization of ghost cells
▶ Redistribution of data blocks within regridding operation
▶ Flux correction of coarse grid cells

▶ Dynamic partitioning with space-filling curve

Parallelization

Rigorous domain decomposition

▶ Data of all levels resides on same node
▶ Grid hierarchy defines unique "floor-plan"
▶ Workload estimation

$$\mathcal{W}(\Omega) = \sum_{l=0}^{l_{\text{max}}} \left[\mathcal{N}_l(G_l \cap \Omega) \prod_{\kappa=0}^{l} r_\kappa \right]$$

▶ Parallel operations

▶ Synchronization of ghost cells
▶ Redistribution of data blocks within regridding operation
▶ Flux correction of coarse grid cells
▶ Dynamic partitioning with space-filling curve

Parallelization

Rigorous domain decomposition

- Data of all levels resides on same node
- Grid hierarchy defines unique "floor-plan"
- Workload estimation

\[W(\Omega) = \sum_{l=0}^{l_{\text{max}}} \left[N_l(G_l \cap \Omega) \prod_{\kappa=0}^{l} r_\kappa \right] \]

- Parallel operations
 - Synchronization of ghost cells
 - Redistribution of data blocks within regridding operation
 - Flux correction of coarse grid cells

- Dynamic partitioning with space-filling curve

Parallelization

Rigorous domain decomposition

- Data of all levels resides on same node
- Grid hierarchy defines unique "floor-plan"
- Workload estimation
 \[\mathcal{W}(\Omega) = \sum_{l=0}^{l_{\text{max}}} \left[N_l(G_l \cap \Omega) \prod_{\kappa=0}^{l} r_{\kappa} \right] \]

- Parallel operations
 - Synchronization of ghost cells
 - Redistribution of data blocks within regridding operation
 - Flux correction of coarse grid cells

- Dynamic partitioning with space-filling curve

Parallelization

Rigorous domain decomposition

- Data of all levels resides on same node
- Grid hierarchy defines unique "floor-plan"
- Workload estimation

\[\mathcal{W}(\Omega) = \sum_{l=0}^{l_{\text{max}}} \left[\mathcal{N}_l(G_l \cap \Omega) \prod_{\kappa=0}^{r_\kappa} \right] \]

- Parallel operations
 - Synchronization of ghost cells
 - Redistribution of data blocks within regridding operation
 - Flux correction of coarse grid cells
- Dynamic partitioning with space-filling curve

Outline

Introduction
 Governing equations

Numerical methods
 Finite volume schemes
 Adaptive mesh refinement
 Non-Cartesian boundaries

Computational results
 Shock-induced combustion
 Combustion induced by projectiles
 Detonation propagation

Higher order schemes
 Hybrid methods

Summary
 Conclusions
Detonation ignition in a shock tube

- Shock-induced detonation ignition of H$_2$: O$_2$: Ar mixture at molar ratios 2:1:7 in closed 1d shock tube
- Insufficient resolution leads to inaccurate results
Detonation ignition in a shock tube

- Shock-induced detonation ignition of $\text{H}_2 : \text{O}_2 : \text{Ar}$ mixture at molar ratios 2:1:7 in closed 1d shock tube
- Insufficient resolution leads to inaccurate results
- Reflected shock is captured correctly by FV scheme, detonation is resolution dependent

Left: Comparison of pressure distribution $t = 170 \mu s$ after shock reflection.
Detonation ignition in a shock tube

- Shock-induced detonation ignition of H₂ : O₂ : Ar mixture at molar ratios 2:1:7 in closed 1d shock tube
- Insufficient resolution leads to inaccurate results
- Reflected shock is captured correctly by FV scheme, detonation is resolution dependent
- Fine mesh necessary in the induction zone at the head of the detonation

Left: Comparison of pressure distribution $t = 170 \mu s$ after shock reflection. Right: Domains of refinement levels.
Detonation ignition in 1d - adaptive vs. uniform

Uniformly refined vs. dynamic adaptive simulations (Intel Xeon 3.4 GHz CPU)

<table>
<thead>
<tr>
<th>$\Delta x_1 [\mu m]$</th>
<th>Uniform</th>
<th>Adaptive</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cells</td>
<td>$t_m [\mu s]$</td>
</tr>
<tr>
<td>400</td>
<td>300</td>
<td>166.1</td>
</tr>
<tr>
<td>200</td>
<td>600</td>
<td>172.6</td>
</tr>
<tr>
<td>100</td>
<td>1200</td>
<td>175.5</td>
</tr>
<tr>
<td>50</td>
<td>2400</td>
<td>176.9</td>
</tr>
<tr>
<td>25</td>
<td>4800</td>
<td>177.8</td>
</tr>
<tr>
<td>12.5</td>
<td>9600</td>
<td>178.3</td>
</tr>
<tr>
<td>6.25</td>
<td>19200</td>
<td>178.6</td>
</tr>
</tbody>
</table>

$\sim 12 \text{ Pts} / l_{ig}$

R. Deiterding - Adaptive high-resolution methods for simulating shock-induced hydrogen-air combustion
Detonation ignition in 1d - adaptive vs. uniform

Uniformly refined vs. dynamic adaptive simulations (Intel Xeon 3.4 GHz CPU)

<table>
<thead>
<tr>
<th>$\Delta x_1 [\mu m]$</th>
<th>Uniform</th>
<th></th>
<th>Adaptive</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cells</td>
<td>$t_m [\mu s]$</td>
<td>Time [s]</td>
</tr>
<tr>
<td>400</td>
<td>300</td>
<td>166.1</td>
<td>31</td>
</tr>
<tr>
<td>200</td>
<td>600</td>
<td>172.6</td>
<td>90</td>
</tr>
<tr>
<td>100</td>
<td>1200</td>
<td>175.5</td>
<td>277</td>
</tr>
<tr>
<td>50</td>
<td>2400</td>
<td>176.9</td>
<td>858</td>
</tr>
<tr>
<td>25</td>
<td>4800</td>
<td>177.8</td>
<td>2713</td>
</tr>
<tr>
<td>12.5</td>
<td>9600</td>
<td>178.3</td>
<td>9472</td>
</tr>
<tr>
<td>6.25</td>
<td>19200</td>
<td>178.6</td>
<td>35712</td>
</tr>
</tbody>
</table>

~ 12 Pts/l_{ig}

Refinement criteria:

<table>
<thead>
<tr>
<th>Y_i</th>
<th>$S_{Y_i} \cdot 10^{-4}$</th>
<th>$\eta_{Y_i} \cdot 10^{-3}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_2</td>
<td>10.0</td>
<td>2.0</td>
</tr>
<tr>
<td>H_2O</td>
<td>7.8</td>
<td>8.0</td>
</tr>
<tr>
<td>H</td>
<td>0.16</td>
<td>5.0</td>
</tr>
<tr>
<td>O</td>
<td>1.0</td>
<td>5.0</td>
</tr>
<tr>
<td>OH</td>
<td>1.8</td>
<td>5.0</td>
</tr>
<tr>
<td>H_2</td>
<td>1.3</td>
<td>2.0</td>
</tr>
</tbody>
</table>

$\epsilon_{\rho} = 0.07$ kg m$^{-3}$, $\epsilon_p = 50$ kPa
Shock-induced combustion around a sphere

- Spherical projectile of radius 1.5 mm travels with constant velocity $v_I = 2170.6 \text{ m/s}$ through $\text{H}_2 : \text{O}_2 : \text{Ar}$ mixture (molar ratios 2:1:7) at 6.67 kPa and $T = 298 \text{ K}$
- Mechanism by [Westbrook, 1982]: 34 forward reactions, 9 species
- Axisymmetric Euler simulation on AMR base mesh of 70×40 cells
Shock-induced combustion around a sphere

- Spherical projectile of radius 1.5 mm travels with constant velocity $v_f = 2170.6 \text{ m/s}$ through $\text{H}_2 : \text{O}_2 : \text{Ar}$ mixture (molar ratios 2:1:7) at 6.67 kPa and $T = 298 \text{ K}$
- Mechanism by [Westbrook, 1982]: 34 forward reactions, 9 species
- Axisymmetric Euler simulation on AMR base mesh of 70×40 cells
- Comparison of 3-level computation with refinement factors 2,2 ($\sim 5 \text{ Pts/lig}$) and a 4-level computation with refinement factors 2,2,4 ($\sim 19 \text{ Pts/lig}$) at $t = 350 \mu s$

Iso-contours of p (black) and Y_{H_2} (white) on refinement domains for 3-level (left) and 4-level computation (right)
Shock-induced combustion around a sphere

- Spherical projectile of radius 1.5 mm travels with constant velocity $v_I = 2170.6 \text{ m/s}$ through $\text{H}_2 : \text{O}_2 : \text{Ar}$ mixture (molar ratios 2:1:7) at 6.67 kPa and $T = 298 \text{ K}$
- Mechanism by [Westbrook, 1982]: 34 forward reactions, 9 species
- Axisymmetric Euler simulation on AMR base mesh of 70×40 cells
- Comparison of 3-level computation with refinement factors 2,2 ($\sim 5 \text{ Pts/lig}$) and a 4-level computation with refinement factors 2,2,4 ($\sim 19 \text{ Pts/lig}$) at $t = 350 \mu\text{s}$
- Higher resolved computation captures combustion zone visibly better and at slightly different position (see below)

![Iso-contours of p (black) and Y_{H_2} (white) on refinement domains for 3-level (left) and 4-level computation (right)]
Combustion around a sphere - adaptation

Refinement indicators on $l = 2$ at $t = 350 \mu s$.
Blue: ϵ_ρ, light blue: ϵ_ρ, green shades: η_{Y_i},
red: embedded boundary

Refinement criteria:

<table>
<thead>
<tr>
<th>Y_i</th>
<th>$S_{Y_i} \cdot 10^{-4}$</th>
<th>$\eta_{Y_i}^r \cdot 10^{-4}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_2</td>
<td>10.0</td>
<td>4.0</td>
</tr>
<tr>
<td>H_2O</td>
<td>5.8</td>
<td>3.0</td>
</tr>
<tr>
<td>H</td>
<td>0.2</td>
<td>10.0</td>
</tr>
<tr>
<td>O</td>
<td>1.4</td>
<td>10.0</td>
</tr>
<tr>
<td>OH</td>
<td>2.3</td>
<td>10.0</td>
</tr>
<tr>
<td>H_2</td>
<td>1.3</td>
<td>4.0</td>
</tr>
</tbody>
</table>

$\epsilon_\rho = 0.02 \text{ kg m}^{-3}$, $\epsilon_\rho = 16 \text{ kPa}$
Combustion around a sphere - adaptation

Refinement indicators on $l = 2$ at $t = 350 \mu s$.
Blue: ϵ_ρ, light blue: ϵ_p, green shades: η_{Y_i},
red: embedded boundary

<table>
<thead>
<tr>
<th>Y_i</th>
<th>$S_{Y_i} \cdot 10^{-4}$</th>
<th>$\eta_{Y_i}^r \cdot 10^{-4}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_2</td>
<td>10.0</td>
<td>4.0</td>
</tr>
<tr>
<td>H_2O</td>
<td>5.8</td>
<td>3.0</td>
</tr>
<tr>
<td>H</td>
<td>0.2</td>
<td>10.0</td>
</tr>
<tr>
<td>O</td>
<td>1.4</td>
<td>10.0</td>
</tr>
<tr>
<td>OH</td>
<td>2.3</td>
<td>10.0</td>
</tr>
<tr>
<td>H_2</td>
<td>1.3</td>
<td>4.0</td>
</tr>
</tbody>
</table>

$\epsilon_\rho = 0.02 \text{ kg m}^{-3}$, $\epsilon_p = 16 \text{ kPa}$

Parallel performance

Scaling of different code portions
Lehr’s ballistic range experiments

- Spherical-nosed projectile of radius 1.5 mm travels with constant velocity through stoichiometric H$_2$: O$_2$: N$_2$ mixture (molar ratios 2:1:3.76) at 42.663 kPa and $T = 293$ K [Lehr, 1972]

Lehr’s ballistic range experiments

- Spherical-nosed projectile of radius 1.5 mm travels with constant velocity through stoichiometric H₂ : O₂ : N₂ mixture (molar ratios 2:1:3.76) at 42.663 kPa and $T = 293 \text{ K}$ [Lehr, 1972]

- Axisymmetric Navier-Stokes and Eulers simulations on AMR base mesh of 400 \times 200 cells, physical domain size 6 cm \times 3 cm

- 4-level computations with refinement factors 2,2,4 to final time $t = 170 \mu\text{s}$. Refinement downstream removed.
Lehr’s ballistic range experiments

- Spherical-nosed projectile of radius 1.5 mm travels with constant velocity through stoichiometric H₂ : O₂ : N₂ mixture (molar ratios 2:1:3.76) at 42.663 kPa and T = 293 K [Lehr, 1972]
- Axisymmetric Navier-Stokes and Eulers simulations on AMR base mesh of 400 × 200 cells, physical domain size 6 cm × 3 cm
- 4-level computations with refinement factors 2,2,4 to final time t = 170 µs. Refinement downstream removed.
- Main configurations
 - Velocity \(v_I = 1931 \text{ m/s} \) \((M = 4.79)\), ∼ 40 Pts/lig
 - Velocity \(v_I = 1806 \text{ m/s} \) \((M = 4.48)\), ∼ 60 Pts/lig
- Various previous studies with not entirely consistent results. E.g. [Yungster and Radhakrishnan, 1996], [Axdahl et al., 2011]
Lehr’s ballistic range experiments

- Spherical-nosed projectile of radius 1.5 mm travels with constant velocity through stoichiometric H\(_2\) : O\(_2\) : N\(_2\) mixture (molar ratios 2:1:3.76) at 42.663 kPa and \(T = 293\) K [Lehr, 1972]
- Axisymmetric Navier-Stokes and Eulers simulations on AMR base mesh of 400 \(\times\) 200 cells, physical domain size 6 cm \(\times\) 3 cm
- 4-level computations with refinement factors 2,2,4 to final time \(t = 170\) \(\mu\)s. Refinement downstream removed.
- Main configurations
 - Velocity \(v_I = 1931\) m/s \((M = 4.79)\), \(\sim 40\) Pts/\(l_{ig}\)
 - Velocity \(v_I = 1806\) m/s \((M = 4.48)\), \(\sim 60\) Pts/\(l_{ig}\)
- Various previous studies with not entirely consistent results. E.g. [Yungster and Radhakrishnan, 1996], [Axdahl et al., 2011]
- Stagnation point location and pressure tracked in every time step
Lehr’s ballistic range experiments

- Spherical-nosed projectile of radius $1.5 \, \text{mm}$ travels with constant velocity through stoichiometric $\text{H}_2 : \text{O}_2 : \text{N}_2$ mixture (molar ratios 2:1:3.76) at $42.663 \, \text{kPa}$ and $T = 293 \, \text{K}$ [Lehr, 1972]

- Axisymmetric Navier-Stokes and Eulers simulations on AMR base mesh of 400×200 cells, physical domain size $6 \, \text{cm} \times 3 \, \text{cm}$

- 4-level computations with refinement factors 2,2,4 to final time $t = 170 \, \mu\text{s}$. Refinement downstream removed.

- Main configurations
 - Velocity $v_I = 1931 \, \text{m/s}$ ($M = 4.79$), $\sim 40 \, \text{Pts/\ell}_i$
 - Velocity $v_I = 1806 \, \text{m/s}$ ($M = 4.48$), $\sim 60 \, \text{Pts/\ell}_i$

- Various previous studies with not entirely consistent results. E.g. [Yungster and Radhakrishnan, 1996], [Axdahl et al., 2011]

- Stagnation point location and pressure tracked in every time step

- All computations were on 32 cores requiring $\sim 1500 \, \text{h CPU each}$
Viscous case – $M = 4.79$

- 5619 iterations with CFL=0.9 to $t = 170 \mu s$
- Oscillation frequency in last 20 μs: ~ 722 kHz (viscous), ~ 737 kHz (inviscid)
- Experimental value: ~ 720 kHz

![Schlieren plot of density](image)
Viscous case – $M = 4.79$ – mesh adaptation
Comparison of temperature field
Comparison of temperature field

Inviscid
Viscous case – $M = 4.48$

- 5432 iterations with CFL=0.9 to $t = 170 \mu s$
- Oscillation frequency in last 20 μs: ~ 417 kHz
- Experimental value: ~ 425 kHz

![Schlieren plot of density](image.png)
Oscillation mechanism

Schlieren of density

Temperature

Mass fraction OH

Pressure

Combustion induced by projectiles

R. Deiterding – Adaptive high-resolution methods for simulating shock-induced hydrogen-air combustion
Oscillation mechanism

Schlieren of density

Temperature

Mass fraction OH

Pressure

Oscillation created by accelerated reaction due to slip line from previous triple point.
Oscillation mechanism

Schlieren of density

Temperature

Mass fraction OH

Pressure

Combustion induced by projectiles
Oscillation mechanism

Schlieren of density

Temperature

Mass fraction OH

Pressure

Combustion induced by projectiles

R. Deiterding – Adaptive high-resolution methods for simulating shock-induced hydrogen-air combustion
Oscillation mechanism

Schlieren of density

Temperature

Mass fraction OH

Pressure

Oscillation created by accelerated reaction due to slip line from previous triple point.
Oscillation mechanism

Schlieren of density

Temperature

Mass fraction OH

Pressure

Combustion induced by projectiles

R. Deiterding – Adaptive high-resolution methods for simulating shock-induced hydrogen-air combustion
Oscillation mechanism

Schlieren of density

Temperature

Mass fraction OH

Pressure

Combustion induced by projectiles

R. Deiterding – Adaptive high-resolution methods for simulating shock-induced hydrogen-air combustion
Oscillation mechanism

Schlieren of density
Temperature
Mass fraction OH
Pressure
Oscillation mechanism

Schlieren of density

Temperature

Mass fraction OH

Pressure

Combustion induced by projectiles

R. Deiterding – Adaptive high-resolution methods for simulating shock-induced hydrogen-air combustion
Oscillation mechanism

Schlieren of density

Temperature

Mass fraction OH

Pressure

Oscillation created by accelerated reaction due to slip line from previous triple point.
Oscillation mechanism

Schlieren of density

Temperature

Mass fraction OH

Pressure

Combustion induced by projectiles

R. Deiterding – Adaptive high-resolution methods for simulating shock-induced hydrogen-air combustion
Oscillation mechanism

Schlieren of density

Temperature

Mass fraction OH

Pressure

Combustion induced by projectiles
Oscillation mechanism

Schlieren of density

Temperature

Mass fraction OH

Pressure

Combustion induced by projectiles

Introduction

Numerical methods

Computational results

Higher order schemes

Summary

Oscillation created by accelerated reaction due to slip line from previous triple point.
Oscillation mechanism

Schlieren of density

Temperature

Mass fraction OH

Pressure
Oscillation mechanism

Schlieren of density

Temperature

Mass fraction OH

Pressure

Combustion induced by projectiles

R. Deiterding – Adaptive high-resolution methods for simulating shock-induced hydrogen-air combustion
Oscillation mechanism

Schlieren of density

Temperature

Mass fraction OH

Pressure

Combustion induced by projectiles

Introduction

Numerical methods

Computational results

Higher order schemes

Summary
Oscillation mechanism

- Schlieren of density
- Temperature
- Mass fraction OH
- Pressure

Oscillation created by accelerated reaction due to slip line from previous triple point.
Oscillation mechanism

Schlieren of density

Temperature

Mass fraction OH

Pressure

R. Deiterding – Adaptive high-resolution methods for simulating shock-induced hydrogen-air combustion
Oscillation mechanism

Schlieren of density

Temperature

Mass fraction OH

Pressure

Combustion induced by projectiles

R. Deiterding – Adaptive high-resolution methods for simulating shock-induced hydrogen-air combustion
Oscillation mechanism

Schlieren of density

Temperature

Mass fraction OH

Pressure

Combustion induced by projectiles

R. Deiterding – Adaptive high-resolution methods for simulating shock-induced hydrogen-air combustion
Oscillation mechanism

Schlieren of density

Temperature

Mass fraction OH

Pressure

Combustion induced by projectiles
Oscillation mechanism
Oscillation mechanism

Schlieren of density
Temperature
Mass fraction OH
Pressure

Combustion induced by projectiles
Oscillation mechanism

Schlieren of density

Temperature

Mass fraction OH

Pressure

Combustion induced by projectiles

Oscillation created by accelerated reaction due to slip line from previous triple point
Oscillation mechanism

- Oscillation created by accelerated reaction due to slip line from previous triple point
Inviscid case – $M = 4.48$

- 4048 iterations with CFL=0.9 to $t = 170 \mu s$
- Oscillation frequency in last 20 μs: ~ 395 kHz
- Experimental value: ~ 425 kHz

Schlieren plot of density
Perturbed oscillation mechanism

Schlieren of density

Temperature

Mass fraction OH

Pressure

Small perturbations can quickly create numerous triple points.
Combustion induced by projectiles

Perturbed oscillation mechanism

Schlieren of density

Temperature

Mass fraction OH

Pressure

Small perturbations can quickly create numerous triple points
Perturbed oscillation mechanism

Schlieren of density

Temperature

Mass fraction OH

Pressure

Small perturbations can quickly create numerous triple points.
Perturbed oscillation mechanism

Schlieren of density

Temperature

Mass fraction OH

Pressure

Small perturbations can quickly create numerous triple points.
Perturbed oscillation mechanism

Schlieren of density

Temperature

Mass fraction OH

Pressure

R. Deiterding – Adaptive high-resolution methods for simulating shock-induced hydrogen-air combustion
Perturbed oscillation mechanism

Schlieren of density

Temperature

Mass fraction OH

Pressure

Small perturbations can quickly create numerous triple points.
Perturbed oscillation mechanism

Schlieren of density

Temperature

Mass fraction OH

Pressure

Small perturbations can quickly create numerous triple points.

R. Deiterding – Adaptive high-resolution methods for simulating shock-induced hydrogen-air combustion
Perturbed oscillation mechanism

Schlieren of density

Temperature

Mass fraction OH

Pressure

Small perturbations can quickly create numerous triple points.

R. Deiterding – Adaptive high-resolution methods for simulating shock-induced hydrogen-air combustion
Perturbed oscillation mechanism

Schlieren of density

Temperature

Mass fraction OH

Pressure

Small perturbations can quickly create numerous triple points.
Perturbed oscillation mechanism

Schlieren of density

Temperature

Mass fraction OH

Pressure

Small perturbations can quickly create numerous triple points.
Perturbed oscillation mechanism

Schlieren of density

Temperature

Mass fraction OH

Pressure

Small perturbations can quickly create numerous triple points
Perturbed oscillation mechanism

Schlieren of density

Temperature

Mass fraction OH

Pressure

Small perturbations can quickly create numerous triple points.
Perturbed oscillation mechanism

Schlieren of density
Temperature
Mass fraction OH
Pressure

Small perturbations can quickly create numerous triple points.
Perturbed oscillation mechanism

Schlieren of density

Temperature

Mass fraction OH

Pressure

Small perturbations can quickly create numerous triple points.

R. Deiterding – Adaptive high-resolution methods for simulating shock-induced hydrogen-air combustion
Perturbed oscillation mechanism

Schlieren of density

Temperature

Mass fraction OH

Pressure

Small perturbations can quickly create numerous triple points
Perturbed oscillation mechanism

Schlieren of density

Temperature

Mass fraction OH

Pressure

Small perturbations can quickly create numerous triple points.
Perturbed oscillation mechanism

Schlieren of density

Temperature

Mass fraction OH

Pressure

Small perturbations can quickly create numerous triple points.
Perturbed oscillation mechanism

Schlieren of density

Temperature

Mass fraction OH

Pressure

Small perturbations can quickly create numerous triple points.
Perturbed oscillation mechanism

Schlieren of density

Temperature

Mass fraction OH

Pressure

Small perturbations can quickly create numerous triple points.
Perturbed oscillation mechanism

Schlieren of density

Temperature

Mass fraction OH

Pressure

Small perturbations can quickly create numerous triple points.
Perturbed oscillation mechanism

Schlieren of density

Temperature

Mass fraction OH

Pressure

Small perturbations can quickly create numerous triple points.
Perturbed oscillation mechanism

Schlieren of density

Temperature

Mass fraction OH

Pressure

Small perturbations can quickly create numerous triple points.
Perturbed oscillation mechanism

Schlieren of density

Temperature

Mass fraction OH

Pressure

Small perturbations can quickly create numerous triple points.
Perturbed oscillation mechanism

Schlieren of density
Temperature
Mass fraction OH
Pressure

Small perturbations can quickly create numerous triple points.
Perturbed oscillation mechanism

Schlieren of density

Temperature

Mass fraction OH

Pressure

Small perturbations can quickly create numerous triple points
Perturbed oscillation mechanism

Schlieren of density

Temperature

Mass fraction OH

Pressure
Combustion induced by projectiles

Perturbed oscillation mechanism

Schlieren of density
Temperature
Mass fraction OH
Pressure

Small perturbations can quickly create numerous triple points.
Perturbed oscillation mechanism

Schlieren of density

Temperature

Mass fraction OH

Pressure

Small perturbations can quickly create numerous triple points.
Perturbed oscillation mechanism

Schlieren of density

Temperature

Mass fraction OH

Pressure

Small perturbations can quickly create numerous triple points.
Perturbed oscillation mechanism

Schlieren of density

Temperature

Mass fraction OH

Pressure

Small perturbations can quickly create numerous triple points.
Perturbed oscillation mechanism

Schlieren of density

Temperature

Mass fraction OH

Pressure

Small perturbations can quickly create numerous triple points.
Perturbed oscillation mechanism

Schlieren of density

Temperature

Mass fraction OH

Pressure

Small perturbations can quickly create numerous triple points.
Perturbed oscillation mechanism

Small perturbations can quickly create numerous triple points.
Detonation cell structure in 2D

Simulation of regular structures

- CJ detonation for $\text{H}_2 : \text{O}_2 : \text{Ar}$ (2:1:7) at $T_0 = 298 \text{ K}$ and $p_0 = 10 \text{ kPa}$, cell width 1.6 cm

- Perturb 1d solution with unreacted high-pressure pocket behind front

- Triple point trajectories by tracking $\max |\omega|$ on auxiliary mesh shifted through grid with CJ velocity. $\omega = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}$

- SAMR simulation with 4 additional levels (2,2,2,4), 67.6 Pts/lig

- Configuration similar to Oran et al., J. Combustion and Flame 113, 1998.
Simulation of regular structures

- CJ detonation for $\text{H}_2 : \text{O}_2 : \text{Ar}$ (2:1:7) at $T_0 = 298$ K and $p_0 = 10$ kPa, cell width 1.6 cm
- Perturb 1d solution with unreacted high-pressure pocket behind front
- Triple point trajectories by tracking $\max|\omega|$ on auxiliary mesh shifted through grid with CJ velocity. $\omega = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}$
- SAMR simulation with 4 additional levels (2,2,2,4), 67.6 Pts/lig
- Configuration similar to Oran et al., J. Combustion and Flame 113, 1998.
Simulation of regular structures

- CJ detonation for $\text{H}_2 : \text{O}_2 : \text{Ar}$ (2:1:7) at $T_0 = 298$ K and $p_0 = 10$ kPa, cell width 1.6 cm
- Perturb 1d solution with unreacted high-pressure pocket behind front
- Triple point trajectories by tracking $\max |\omega|$ on auxiliary mesh shifted through grid with CJ velocity. $\omega = \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}$
- SAMR simulation with 4 additional levels (2,2,2,4), 67.6 Pts/lig
- Configuration similar to Oran et al., J. Combustion and Flame 113, 1998.
Triple point analysis

Double Mach reflection structure shortly before the next collision

<table>
<thead>
<tr>
<th></th>
<th>p/p_0</th>
<th>ρ/ρ_0</th>
<th>T [K]</th>
<th>u [m/s]</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.00</td>
<td>1.00</td>
<td>298</td>
<td>1775</td>
<td>5.078</td>
</tr>
<tr>
<td>B</td>
<td>31.45</td>
<td>4.17</td>
<td>2248</td>
<td>447</td>
<td>0.477</td>
</tr>
<tr>
<td>C</td>
<td>31.69</td>
<td>5.32</td>
<td>1775</td>
<td>965</td>
<td>1.153</td>
</tr>
<tr>
<td>D</td>
<td>19.17</td>
<td>3.84</td>
<td>1487</td>
<td>1178</td>
<td>1.533</td>
</tr>
<tr>
<td>E</td>
<td>35.61</td>
<td>5.72</td>
<td>1856</td>
<td>901</td>
<td>1.053</td>
</tr>
<tr>
<td>F</td>
<td>40.61</td>
<td>6.09</td>
<td>1987</td>
<td>777</td>
<td>0.880</td>
</tr>
</tbody>
</table>
Triple point analysis

Double Mach reflection structure shortly before the next collision

<table>
<thead>
<tr>
<th></th>
<th>p/p₀</th>
<th>ρ/ρ₀</th>
<th>T [K]</th>
<th>u[m/s]</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.00</td>
<td>1.00</td>
<td>298</td>
<td>1775</td>
<td>5.078</td>
</tr>
<tr>
<td>B</td>
<td>31.45</td>
<td>4.17</td>
<td>2248</td>
<td>447</td>
<td>0.477</td>
</tr>
<tr>
<td>C</td>
<td>31.69</td>
<td>5.32</td>
<td>1775</td>
<td>965</td>
<td>1.153</td>
</tr>
<tr>
<td>D</td>
<td>19.17</td>
<td>3.84</td>
<td>1487</td>
<td>1178</td>
<td>1.533</td>
</tr>
<tr>
<td>E</td>
<td>35.61</td>
<td>5.72</td>
<td>1856</td>
<td>901</td>
<td>1.053</td>
</tr>
<tr>
<td>F</td>
<td>40.61</td>
<td>6.09</td>
<td>1987</td>
<td>777</td>
<td>0.880</td>
</tr>
</tbody>
</table>
Triple point analysis

Double Mach reflection structure shortly before the next collision

<table>
<thead>
<tr>
<th></th>
<th>p/p_0</th>
<th>ρ/ρ_0</th>
<th>T [K]</th>
<th>u [m/s]</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.00</td>
<td>1.00</td>
<td>298</td>
<td>1775</td>
<td>5.078</td>
</tr>
<tr>
<td>B</td>
<td>31.45</td>
<td>4.17</td>
<td>2248</td>
<td>447</td>
<td>0.477</td>
</tr>
<tr>
<td>C</td>
<td>31.69</td>
<td>5.32</td>
<td>1775</td>
<td>965</td>
<td>1.153</td>
</tr>
<tr>
<td>D</td>
<td>19.17</td>
<td>3.84</td>
<td>1487</td>
<td>1178</td>
<td>1.533</td>
</tr>
<tr>
<td>E</td>
<td>35.61</td>
<td>5.72</td>
<td>1856</td>
<td>901</td>
<td>1.053</td>
</tr>
<tr>
<td>F</td>
<td>40.61</td>
<td>6.09</td>
<td>1987</td>
<td>777</td>
<td>0.880</td>
</tr>
</tbody>
</table>
Shock polar analysis of triple points in detonations

\[\text{Neglect reaction, but consider } c(\rho(T))\]

Data extracted point-wise from simulation

\[\text{Primary triple point } T \text{ travels exactly at tip of Mach stem} \rightarrow \text{use oblique shock relations between } A \text{ and } B \]

\[
\rho_A u_A \sin(\varphi_B) = \rho_B u_B \sin(\varphi_B - \theta_B),
\]

\[
p_A + \rho_A u_A^2 \sin^2(\varphi_B) = p_B + \rho_B u_B^2 \sin^2(\varphi_B - \theta_B),
\]

\[\text{to evaluate inflow velocity as } u_A = \frac{1}{\sin \varphi_B} \frac{\rho_B (p_B - p_A)}{\rho_A (\rho_B - \rho_A)}\]

\[\text{Measure inflow angle } \varphi_B \text{ between Mach stem and triple point trajectory} \]

\[\text{Velocity } a \text{ of } T' \text{ relative to } T \text{ cannot be derived that easily: Oblique shock relations across } C \text{ and } D \text{ hold true both in frame of reference for } T \text{ and } T' \]

\[
\rho_C u_C, n = \rho_D u_D, n,
\]

\[
p_C + \rho_C u_C^2, n = p_D + \rho_D u_D^2, n,
\]

\[\text{Velocity } a \text{ of } T' \text{ can be estimated as arbitrary } \]

\[\text{Estimate } a_t = \text{arbitrary} \]

\[\text{R. Deiterding – Adaptive high-resolution methods for simulating shock-induced hydrogen-air combustion} \]
Shock polar analysis of triple points in detonations

- Neglect reaction, but consider $c_{pi}(T)$
- Data extracted point-wise from simulation
Shock polar analysis of triple points in detonations

- Neglect reaction, but consider $c_{pi}(T)$
- Data extracted point-wise from simulation
- Primary triple point T travels exactly at tip of Mach stem → use oblique shock relations between A and B

\[
\rho_A u_A \sin(\phi_B) = \rho_B u_B \sin(\phi_B - \theta_B), \\
p_A + \rho_A u_A^2 \sin^2(\phi_B) = p_B + \rho_B u_B^2 \sin^2(\phi_B - \theta_B)
\]

To evaluate inflow velocity as $u_A = \frac{1}{\sin \phi_B} \sqrt{\frac{\rho_B(p_B - p_A)}{\rho_A(p_B - p_A)}}$
Shock polar analysis of triple points in detonations

- Neglect reaction, but consider $c_{pi}(T)$
- Data extracted point-wise from simulation
- Primary triple point T travels exactly at tip of Mach stem → use oblique shock relations between A and B

$$\rho_A u_A \sin(\phi_B) = \rho_B u_B \sin(\phi_B - \theta_B) ,$$

$$p_A + \rho_A u_A^2 \sin^2(\phi_B) = p_B + \rho_B u_B^2 \sin^2(\phi_B - \theta_B)$$

To evaluate inflow velocity as $u_A = \frac{1}{\sin \phi_B} \sqrt{\frac{\rho_B (p_B - p_A)}{\rho_A (\rho_B - \rho_A)}}$

- Measure inflow angle ϕ_B between Mach stem and triple point trajectory
Shock polar analysis of triple points in detonations

- Neglect reaction, but consider $c_{pi}(T)$
- Data extracted point-wise from simulation
- Primary triple point T travels exactly at tip of Mach stem → use oblique shock relations between A and B

\[
\begin{align*}
\rho_A u_A \sin(\phi_B) &= \rho_B u_B \sin(\phi_B - \theta_B), \\
p_A + \rho_A u_A^2 \sin^2(\phi_B) &= p_B + \rho_B u_B^2 \sin^2(\phi_B - \theta_B)
\end{align*}
\]

to evaluate inflow velocity as $u_A = \frac{1}{\sin \phi_B} \sqrt{\frac{\rho_B(p_B - p_A)}{\rho_A(p_B - p_A)}}$

- Measure inflow angle ϕ_B between Mach stem and triple point trajectory
- Velocity a of T' relative to T cannot be derived that easily: Oblique shock relations across C and D hold true both in frame of reference for T and T'

\[
\begin{align*}
\rho_C u_{C,n} &= \rho_D u_{D,n} \\
p_C + \rho_C u_{C,n}^2 &= p_D + \rho_D u_{D,n}^2 \\
u_{C,t} &= u_{D,t} \\
h_C + \frac{1}{2} u_{C,n}^2 &= h_D + \frac{1}{2} u_{D,n}^2
\end{align*}
\]
Shock polar analysis of triple points in detonations

- Neglect reaction, but consider $c_{pi}(T)$
- Data extracted point-wise from simulation
- Primary triple point T travels exactly at tip of Mach stem \rightarrow use oblique shock relations between A and B

\[
\rho_A u_A \sin(\phi_B) = \rho_B u_B \sin(\phi_B - \theta_B),
\]
\[
p_A + \rho_A u_A^2 \sin^2(\phi_B) = p_B + \rho_B u_B^2 \sin^2(\phi_B - \theta_B)
\]

to evaluate inflow velocity as $u_A = \frac{1}{\sin \phi_B} \sqrt{\frac{\rho_B (p_B - p_A)}{\rho_A (\rho_B - \rho_A)}}$

- Measure inflow angle ϕ_B between Mach stem and triple point trajectory
- Velocity a of T' relative to T cannot be derived that easily: Oblique shock relations across C and D hold true both in frame of reference for T and T'

\[
\rho_C \left(u_{C,n} - a_n \right) = \rho_D \left(u_{D,n} - a_n \right)
\]
\[
p_C + \rho_C \left(u_{C,n} - a_n \right)^2 = p_D + \rho_D \left(u_{D,n} - a_n \right)^2
\]
\[
u_{C,t} - a_t = u_{D,t} - a_t
\]
\[
h_C + \frac{1}{2} \left(u_{C,n} - a_n \right)^2 = h_D + \frac{1}{2} \left(u_{D,n} - a_n \right)^2
\]
Shock polar analysis of triple points in detonations

- Neglect reaction, but consider $c_{pi}(T)$
- Data extracted point-wise from simulation
- Primary triple point T travels exactly at tip of Mach stem → use oblique shock relations between A and B

$$\rho_A u_A \sin(\phi_B) = \rho_B u_B \sin(\phi_B - \theta_B),$$

$$p_A + \rho_A u_A^2 \sin^2(\phi_B) = p_B + \rho_B u_B^2 \sin^2(\phi_B - \theta_B)$$

to evaluate inflow velocity as $u_A = \frac{1}{\sin \phi_B} \sqrt{\frac{\rho_B (p_B - p_A)}{\rho_A (p_B - p_A)}}$

- Measure inflow angle ϕ_B between Mach stem and triple point trajectory
- Velocity a of T' relative to T cannot be derived that easily: Oblique shock relations across C and D hold true both in frame of reference for T and T'

$$\rho_C (u_{C,n} - a_n) = \rho_D (u_{D,n} - a_n)$$

$$p_C + \rho_C (u_{C,n} - a_n)^2 = p_D + \rho_D (u_{D,n} - a_n)^2 \quad \rightarrow a_n = 0, \ a_t \ \text{arbitrary}$$

Estimate $a_t = \frac{L_R}{t_{init}}$

$$u_{C,t} - a_t = u_{D,t} - a_t$$

$$h_C + \frac{1}{2} (u_{C,n} - a_n)^2 = h_D + \frac{1}{2} (u_{D,n} - a_n)^2$$
Detonation propagation through pipe bends

- 2D Simulation of CJ detonation for $\text{H}_2 : \text{O}_2 : \text{Ar}/2 : 1 : 7$ at $T_0 = 298$ K and $p_0 = 10$ kPa. Tube width of 5 detonation cells

- AMR base grid 1200×992. 4 additional refinement levels $(2,2,2,4)$. 67.6 Pts/l_{ig}

- Adaptive computations use up to $7.1 \cdot 10^6$ cells ($4.8 \cdot 10^6$ on highest level) instead of $1.22 \cdot 10^9$ cells (uniform grid)

- $\sim 70,000$ h CPU on 128 CPUs Pentium-4 2.2GHz
Detonation propagation through pipe bends

- 2D Simulation of CJ detonation for $\text{H}_2 : \text{O}_2 : \text{Ar}/2 : 1 : 7$ at $T_0 = 298\,\text{K}$ and $p_0 = 10\,\text{kPa}$. Tube width of 5 detonation cells

- AMR base grid 1200×992. 4 additional refinement levels $(2,2,2,4)$. $67.6\,\text{Pts}/l_{ig}$

- Adaptive computations use up to $7.1 \cdot 10^6$ cells ($4.8 \cdot 10^6$ on highest level) instead of $1.22 \cdot 10^9$ cells (uniform grid)

- $\sim 70,000\,\text{h} \,\text{CPU}$ on 128 CPUs Pentium-4 2.2GHz
Detonation propagation through pipe bends

- 2D Simulation of CJ detonation for $\text{H}_2 : \text{O}_2 : \text{Ar}/2 : 1 : 7$ at $T_0 = 298$ K and $p_0 = 10$ kPa. Tube width of 5 detonation cells.

- AMR base grid 1200×992. 4 additional refinement levels $(2,2,2,4)$. 67.6 Pts/l_{ig}.

- Adaptive computations use up to 7.1×10^6 cells (4.8×10^6 on highest level) instead of 1.22×10^9 cells (uniform grid).

- $\sim 70,000$ h CPU on 128 CPUs Pentium-4 2.2GHz.
Triple point tracks

Slight overdrive decreases cell size

Marginal detonation

Mach reflection, high overdrive, structure disappears

Re-ignition with transverse detonation

Detonation failure

$\varphi = 15^\circ$ (left, top), $\varphi = 30^\circ$ (left, bottom), and $\varphi = 60^\circ$ (right)
Triple point structures – $\varphi = 15^\circ$
Triple point structures – $\varphi = 15^\circ$
Triple point structures – $\varphi = 15^\circ$

Triple point re-initiation after bend with change from transitional to Double Mach reflection
Triple point structures – $\varphi = 30^\circ$
Triple point structures – $\varphi = 30^\circ$
Triple point structures – $\varphi = 30^\circ$

▶ Triple point quenching and failure as single Mach reflection
Transition criteria

Solve system of oblique shock relations numerically and determine transition boundaries [Ben-Dor, 2007].

- Regular reflection (RR): $M_B^T < 1$
- Single Mach reflection (SMR):
 $M_C^T < 1$ and $M_B^T > 1$
- Transitional Mach reflection:
 $M_C^{T'} < 1$ and $M_C^T > 1$
- Double Mach reflection: $M_C^{T'} > 1$ and $M_C^T > 1$
Transition criteria

Solve system of oblique shock relations numerically and determine transition boundaries [Ben-Dor, 2007].

▶ Regular reflection (RR): $M_B^T < 1$

▶ Single Mach reflection (SMR): $M_C^T < 1$ and $M_B^T > 1$

▶ Transitional Mach reflection: $M_C^{T'} < 1$ and $M_C^T > 1$

▶ Double Mach reflection: $M_C^{T'} > 1$ and $M_C^T > 1$

▶ Here: Nonreactive $\text{H}_2 : \text{O}_2 : \text{Ar}$ mixture at initially 298 K and 10 kPa

For detonations:

$$S := \frac{p_C - p_D}{p_D}$$

Transition criteria

Solve system of oblique shock relations numerically and determine transition boundaries [Ben-Dor, 2007].

- Regular reflection (RR): $M_B^T < 1$
- Single Mach reflection (SMR): $M_C^T < 1$ and $M_B^T > 1$
- Transitional Mach reflection: $M_C^{T'} < 1$ and $M_C^T > 1$
- Double Mach reflection: $M_C^{T'} > 1$ and $M_C^T > 1$
- Here: Nonreactive H$_2$: O$_2$: Ar mixture at initially 298 K and 10 kPa

For detonations:

$$S := \frac{p_C - p_D}{p_D}$$

Non-reactive shock wave reflection theory seems applicable to predict local triple point structure and stability.

Triple point type is determined solely by S and M. Useful to determine type in underresolved situations.
Detonation cell structure in 3D

- Simulation of only one quadrant
- $44.8 \text{ Pts}/l_{ig}$ for $\text{H}_2 : \text{O}_2 : \text{Ar}$ CJ detonation
- SAMR base grid 400x24x24, 2 additional refinement levels (2, 4)
- Simulation uses $\sim 18 \text{ M cells}$ instead of $\sim 118 \text{ M (unigrid)}$
- $\sim 51,000 \text{ h CPU}$ on 128 CPU Compaq Alpha. $\mathcal{H}: 37.6\%$, $S: 25.1\%$

Schlieren and isosurface of Y_{OH}
Detonation cell structure in 3D

- Simulation of only one quadrant
- 44.8 Pts/l_{ig} for H_{2} : O_{2} : Ar CJ detonation
- SAMR base grid 400x24x24, 2 additional refinement levels (2, 4)
- Simulation uses \sim 18 M cells instead of \sim 118 M (unigrid)
- \sim 51,000 h CPU on 128 CPU Compaq Alpha.
 \mathcal{H}: 37.6 \%, S: 25.1 \%

Schlieren and isosurface of Y_{OH}
Detonation cell structure in 3D

- Simulation of only one quadrant
- $44.8 \text{ Pts} / l_\text{ig}$ for $\text{H}_2 : \text{O}_2 : \text{Ar}$ CJ detonation
- SAMR base grid 400x24x24, 2 additional refinement levels (2, 4)
- Simulation uses $\sim 18 \text{ M}$ cells instead of $\sim 118 \text{ M}$ (unigrid)
- $\sim 51,000 \text{ h CPU}$ on 128 CPU Compaq Alpha. $\mathcal{H}: 37.6 \%, \mathcal{S}: 25.1 \%$
Hybrid methods

Convective numerical flux is defined as

\[
F_{inv}^n = \begin{cases}
F_{inv-WENO}^n, & \text{in } C \\
F_{inv-CD}^n, & \text{in } \overline{C},
\end{cases}
\]
Hybrid method

Convective numerical flux is defined as

\[F^n_{\text{inv}} = \begin{cases} F^n_{\text{inv-WENO}}, & \text{in } C \\ F^n_{\text{inv-CD}}, & \text{in } \overline{C}, \end{cases} \]

▶ For LES: 3rd order WENO method, 2nd order TCD [Hill and Pullin, 2004]
Hybrid method

Convective numerical flux is defined as

\[F_{inv}^n = \begin{cases} F_{inv-WENO}^n, & \text{in } C \\
F_{inv-CD}^n, & \text{in } \overline{C}, \end{cases} \]

- For LES: 3rd order WENO method, 2nd order TCD [Hill and Pullin, 2004]
- For DNS: Symmetric 6th order WENO, 6th-order CD scheme

Hybrid method

Convective numerical flux is defined as

\[F_{inv}^n = \begin{cases} F_{inv-WENO}^n, & \text{in } C \\ F_{inv-CD}^n, & \text{in } \overline{C}, \end{cases} \]

- For LES: 3rd order WENO method, 2nd order TCD [Hill and Pullin, 2004]
- For DNS: Symmetric 6th order WENO, 6th-order CD scheme

Use WENO scheme to only capture shock waves but resolve interface between species.
Hybrid method

Convective numerical flux is defined as

\[F_{\text{inv}}^n = \begin{cases} F_{\text{inv-WENO}}^n, & \text{in } C \\ F_{\text{inv-CD}}^n, & \text{in } \overline{C}, \end{cases} \]

- For LES: 3rd order WENO method, 2nd order TCD [Hill and Pullin, 2004]
- For DNS: Symmetric 6th order WENO, 6th-order CD scheme

Use WENO scheme to only capture shock waves but resolve interface between species.

Shock detection based on using two criteria together:

1. Lax-Liu entropy condition \(|u_R \pm a_R| < |u_* \pm a_*| < |u_L \pm a_L|\) tested with a threshold to eliminate weak acoustic waves. Used intermediate states at cell interfaces:

\[u_* = \frac{\sqrt{\rho_L u_L} + \sqrt{\rho_R u_R}}{\sqrt{\rho_L} + \sqrt{\rho_R}}, \quad a_* = \sqrt{(\gamma_* - 1)(h_* - \frac{1}{2} u_*^2)}, \ldots \]
Hybrid method

Convective numerical flux is defined as

\[
F_{inv}^n = \begin{cases}
F_{inv-WENO}^n, & \text{in } C \\
F_{inv-CD}^n, & \text{in } \overline{C},
\end{cases}
\]

- For LES: 3rd order WENO method, 2nd order TCD [Hill and Pullin, 2004]
- For DNS: Symmetric 6th order WENO, 6th-order CD scheme

Use WENO scheme to only capture shock waves but resolve interface between species.

Shock detection based on using two criteria together:

1. Lax-Liu entropy condition \(|u_R \pm a_R| < |u_* \pm a_*| < |u_L \pm a_L|\) tested with a threshold to eliminate weak acoustic waves. Used intermediate states at cell interfaces:

\[
u_* = \frac{\sqrt{\rho_L u_L} + \sqrt{\rho_R u_R}}{\sqrt{\rho_L} + \sqrt{\rho_R}}, \quad a_* = \sqrt{(\gamma_* - 1)(h_* - \frac{1}{2} u_*^2)}, \ldots
\]

2. Limiter-inspired discontinuity test based on mapped normalized pressure gradient \(\theta_j\)

\[
\phi(\theta_j) = \frac{2\theta_j}{(1 + \theta_j)^2} \quad \text{with} \quad \theta_j = \frac{|p_{j+1} - p_j|}{|p_{j+1} + p_j|}, \quad \phi(\theta_j) > \alpha_{Map}
\]

R. Deiterding – Adaptive high-resolution methods for simulating shock-induced hydrogen-air combustion
SAMR flux correction for Runge-Kutta method

Recall Runge-Kutta temporal update

\[\tilde{Q}_j^v = \alpha_v Q_j^m + \beta_v \tilde{Q}_j^{v-1} + \gamma_v \frac{\Delta t}{\Delta x_n} \Delta F^n(\tilde{Q}^{v-1}) \]

SAMR flux correction for Runge-Kutta method

Recall Runge-Kutta temporal update

\[\tilde{Q}_j^\nu = \alpha_\nu Q_j^m + \beta_\nu \tilde{Q}_j^{\nu-1} + \gamma_\nu \frac{\Delta t}{\Delta x_n} \Delta F^n(\tilde{Q}_j^{\nu-1}) \]

rewrite scheme as

\[Q_{m+1}^n = Q_m^n - \sum_{\nu=1}^{\tau} \varphi_\nu \frac{\Delta t}{\Delta x_n} \Delta F^n(\tilde{Q}_j^{\nu-1}) \text{ with } \varphi_\nu = \gamma_\nu \prod_{\nu=v+1}^{\tau} \beta_\nu \]

SAMR flux correction for Runge-Kutta method

Recall Runge-Kutta temporal update

\[\bar{Q}_j^\nu = \alpha_\nu Q_j^m + \beta_\nu \bar{Q}_j^{\nu-1} + \gamma_\nu \frac{\Delta t}{\Delta x_n} \Delta F_n(\bar{Q}^{\nu-1}) \]

rewrite scheme as

\[Q_{m+1} = Q^m - \sum_{\nu=1}^r \varphi_\nu \frac{\Delta t}{\Delta x_n} \Delta F_n(\bar{Q}^{\nu-1}) \quad \text{with} \quad \varphi_\nu = \gamma_\nu \prod_{\nu'=\nu+1}^r \beta_{\nu'} \]

Flux correction to be used

1. \[\delta F_{i-1/2,j}^{1,l+1} := -\varphi_1 F_{i-1/2,j}^{1,l}(\bar{Q}^0), \quad \delta F_{i-1/2,j}^{1,l+1} := \delta F_{i-1/2,j}^{1,l+1} - \sum_{\nu=2}^r \varphi_\nu F_{i-1/2,j}^{1,l}(\bar{Q}^{\nu-1}) \]

2. \[\delta F_{i-1/2,j}^{1,l+1} := \delta F_{i-1/2,j}^{1,l+1} + \frac{1}{r_{l+1}} \sum_{i=0}^{r_{l+1}-1} \sum_{\nu=1}^r \varphi_\nu F_{i-1/2,j}^{1,l+1}(\bar{Q}^{\nu-1}(t + \kappa \Delta t_{l+1})) \]

SAMR flux correction for Runge-Kutta method

Recall Runge-Kutta temporal update

$$\tilde{Q}_j^v = \alpha_v Q_j^m + \beta_v \tilde{Q}_j^{v-1} + \gamma_v \frac{\Delta t}{\Delta x_n} \Delta F^n(\tilde{Q}^{v-1})$$

rewrite scheme as

$$Q_{m+1}^m = Q^m - \sum_{\nu=1}^{\tau} \varphi_\nu \frac{\Delta t}{\Delta x_n} \Delta F^n(\tilde{Q}^{v-1}) \quad \text{with} \quad \varphi_\nu = \gamma_\nu \prod_{\nu=\nu+1}^{\tau} \beta_\nu$$

Flux correction to be used

1. $$\delta F_{i-\frac{1}{2}, j}^{1, l+1} := -\varphi_1 F_{i-\frac{1}{2}, j}^{1, l} (\tilde{Q}^0)$$, \quad $$\delta F_{i-\frac{1}{2}, j}^{1, l+1} := \delta F_{i-\frac{1}{2}, j}^{1, l+1} - \sum_{\nu=2}^{\tau} \varphi_\nu F_{i-\frac{1}{2}, j}^{1, l} (\tilde{Q}^{v-1})$$

2. $$\delta F_{i-\frac{1}{2}, j}^{1, l+1} := \delta F_{i-\frac{1}{2}, j}^{1, l+1} + \frac{1}{r_{l+1}^2} \sum_{i=0}^{r_{l+1}^{l+1}} \sum_{v=1}^{\tau} \varphi_\nu F_{i-\frac{1}{2}, j}^{1, l+1} (\tilde{Q}^{v-1}(t + \kappa \Delta t_{l+1}))$$

Storage-efficient SSPRK(3,3):

<table>
<thead>
<tr>
<th>ν</th>
<th>α_ν</th>
<th>β_ν</th>
<th>γ_ν</th>
<th>φ_ν</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>$\frac{1}{6}$</td>
</tr>
<tr>
<td>2</td>
<td>$\frac{3}{2}$</td>
<td>$\frac{1}{3}$</td>
<td>$\frac{1}{4}$</td>
<td>$\frac{1}{6}$</td>
</tr>
<tr>
<td>3</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{3}$</td>
<td>$\frac{1}{3}$</td>
<td>$\frac{1}{3}$</td>
</tr>
</tbody>
</table>

Hybrid methods

DNS of shear layer in detonation triple point

- Calorically perfect two-species model with $\gamma = 1.29499$ and $h_0 = 54,000$ J/mol and one-step Arrhenius reaction with parameters $E_a = 30,000$ J/mol, $A = 6 \cdot 10^5$ s$^{-1}$, $W = 0.029$ kg/mol \longrightarrow 1d ZND theory predicts $d_{CJ} = 1587.8$ m/s
- For dynamic viscosity, heat conductivity, and mass diffusion simple Sutherland models are used
- Distance $L(t) = d_{CJ} \sin(\theta)t$ is used to define a Reynolds number as $Re = \frac{\rho_0 a_0 L(t)}{\mu_0}$
- Viscous shear layer thickness, thermal heat conduction layer thickness, and mass diffusion layer thickness grow as $\delta_{\text{visc}} \approx \sqrt{\frac{\mu}{\rho}} t$, $\delta_{\text{cond}} \approx \sqrt{\frac{k_{\text{ref}}}{\rho c_p}} t$, $\delta_{\text{mass},i} \approx \sqrt{\frac{D_i}{\rho}} t$
- Only shock thickness not resolved \longrightarrow “pseudo-DNS”
- Computations with WENO/CD/RK3 use SAMR base mesh 320×160 and up to 8 levels refined by factor 2, domain: 40 mm \times 20 mm
- Computations with MUSCL scheme use base mesh 590×352 and up to 7 levels refined by factor 2, domain: 40 mm \times 22 mm
DNS of shear layer in detonation triple point

- Calorically perfect two-species model with $\gamma = 1.29499$ and $h_0 = 54,000$ J/mol and one-step Arrhenius reaction with parameters $E_a = 30,000$ J/mol, $A = 6 \cdot 10^5$ s$^{-1}$, $W = 0.029$ kg/mol \rightarrow 1d ZND theory predicts $d_{CJ} = 1587.8$ m/s
- For dynamic viscosity, heat conductivity, and mass diffusion simple Sutherland models are used
- Distance $L(t) = d_{CJ} \sin(\theta) t$ is used to define a Reynolds number as $Re = \frac{\rho_0 a_0 L(t)}{\mu_0}$
- Viscous shear layer thickness, thermal heat conduction layer thickness, and mass diffusion layer thickness grow as $\delta_{visc} \approx \sqrt{\frac{\mu}{\rho}} t$, $\delta_{cond} \approx \sqrt{\frac{k_{ref}}{\rho c_v}} t$, $\delta_{mass,i} \approx \sqrt{\frac{D_i}{\rho}} t$
- Only shock thickness not resolved \rightarrow “pseudo-DNS”
- Computations with WENO/CD/RK3 use SAMR base mesh 320×160 and up to 8 levels refined by factor 2, domain: 40 mm $\times 20$ mm
- Computations with MUSCL scheme use base mesh 590×352 and up to 7 levels refined by factor 2, domain: 40 mm $\times 22$ mm
DNS of shear layer in detonation triple point

- Calorically perfect two-species model with $\gamma = 1.29499$ and $h_0 = 54,000 \text{ J/mol}$ and one-step Arrhenius reaction with parameters $E_a = 30,000 \text{ J/mol}$, $A = 6 \cdot 10^5 \text{ s}^{-1}$, $W = 0.029 \text{ kg/mol}$ → 1d ZND theory predicts $d_{\text{CJ}} = 1587.8 \text{ m/s}$
- For dynamic viscosity, heat conductivity, and mass diffusion simple Sutherland models are used
- Distance $L(t) = d_{\text{CJ}} \sin(\theta) t$ is used to define a Reynolds number as $Re = \frac{\rho_0 a_0 L(t)}{\mu_0}$
- Viscous shear layer thickness, thermal heat conduction layer thickness, and mass diffusion layer thickness grow as $\delta_{\text{visc}} \approx \sqrt{\frac{\mu}{\rho}} t$, $\delta_{\text{cond}} \approx \sqrt{\frac{k_{\text{ref}}}{\rho c_v}} t$, $\delta_{\text{mass},i} \approx \sqrt{\frac{D_i}{\rho}} t$
- Only shock thickness not resolved → “pseudo-DNS”
- Computations with WENO/CD/RK3 use SAMR base mesh 320×160 and up to 8 levels refined by factor 2, domain: $40 \text{ mm} \times 20 \text{ mm}$
- Computations with MUSCL scheme use base mesh 590×352 and up to 7 levels refined by factor 2, domain: $40 \text{ mm} \times 22 \text{ mm}$
Computational results for shear layer

WENO/CD - 6 levels
\[\Delta x_{\text{min}} = 3.91 \cdot 10^{-6} \text{ m} \]
MUSCL - 7 levels
\[\Delta x_{\text{min}} = 1.05 \cdot 10^{-6} \text{ m} \]

WENO/CD - 7 levels
\[\Delta x_{\text{min}} = 1.95 \cdot 10^{-6} \text{ m} \]
MUSCL - 7 levels - Euler
\[\Delta x_{\text{min}} = 1.05 \cdot 10^{-6} \text{ m} \]

WENO/CD - 8 levels
\[\Delta x_{\text{min}} = 9.77 \cdot 10^{-7} \text{ m} \]
Usage of WENO for WENO/CD - 8 levels

R. Deiterding – Adaptive high-resolution methods for simulating shock-induced hydrogen-air combustion
Hybrid methods

Computational results for shear layer

- **WENO/CD - 6 levels**
 - $\Delta x_{\text{min}} = 3.91 \cdot 10^{-6}$ m

- **WENO/CD - 7 levels**
 - $\Delta x_{\text{min}} = 1.95 \cdot 10^{-6}$ m
 - MUSCL - 7 levels - Euler
 - $\Delta x_{\text{min}} = 1.05 \cdot 10^{-6}$ m

- **WENO/CD - 8 levels**
 - $\Delta x_{\text{min}} = 9.77 \cdot 10^{-7}$ m

- **Usage of WENO for WENO/CD - 8 levels**

- WENO/CD/RK3 gives results comparable to 4x finer resolved optimal 2nd-order scheme, but CPU times with SAMR 2-3x larger
Hybrid methods

Computational results for shear layer

WENO/CD - 6 levels
\[\Delta x_{\text{min}} = 3.91 \times 10^{-6} \text{ m} \]

WENO/CD - 7 levels
\[\Delta x_{\text{min}} = 1.95 \times 10^{-6} \text{ m} \]

WENO/CD - 8 levels
\[\Delta x_{\text{min}} = 9.77 \times 10^{-7} \text{ m} \]

MUSCL - 7 levels
\[\Delta x_{\text{min}} = 1.05 \times 10^{-6} \text{ m} \]

MUSCL - 7 levels - Euler
\[\Delta x_{\text{min}} = 1.05 \times 10^{-6} \text{ m} \]

Usage of WENO for WENO/CD - 8 levels

- WENO/CD/RK3 gives results comparable to 4x finer resolved optimal 2nd-order scheme, but CPU times with SAMR 2-3x larger
- Gain in CPU time from higher-order scheme roughly one order
Conclusions

- For smaller mechanisms, detailed detonation structure simulations are nowadays possible for realistic 2d geometries.
- Accurate studies for idealized 3d configurations feasible.
Conclusions

▶ For smaller mechanisms, detailed detonation structure simulations are nowadays possible for realistic 2d geometries
▶ Accurate studies for idealized 3d configurations feasible
▶ Resolution down to the scale of secondary triple points can be provided on parallel capacity computing systems
▶ Shock wave patterns can be accurately analyzed
Conclusions

- For smaller mechanisms, detailed detonation structure simulations are nowadays possible for realistic 2d geometries.
- Accurate studies for idealized 3d configurations feasible.
- Resolution down to the scale of secondary triple points can be provided on parallel capacity computing systems.
- Shock wave patterns can be accurately analyzed.
- Enabling components:
 - Splitting methods combined with high-resolution FV schemes for hydrodynamic transport.
Conclusions

- For smaller mechanisms, detailed detonation structure simulations are nowadays possible for realistic 2d geometries.
- Accurate studies for idealized 3d configurations feasible.
- Resolution down to the scale of secondary triple points can be provided on parallel capacity computing systems.
- Shock wave patterns can be accurately analyzed.
- Enabling components:
 - Splitting methods combined with high-resolution FV schemes for hyrodynamic transport.
 - SAMR provides a sufficient spatial and temporal resolution. Savings from SAMR for pipe bend simulations: up to $\geq 680\times$.
Conclusions

- For smaller mechanisms, detailed detonation structure simulations are nowadays possible for realistic 2d geometries.
- Accurate studies for idealized 3d configurations feasible.
- Resolution down to the scale of secondary triple points can be provided on parallel capacity computing systems.
- Shock wave patterns can be accurately analyzed.
- Enabling components:
 - Splitting methods combined with high-resolution FV schemes for hyrodynamic transport.
 - SAMR provides a sufficient spatial and temporal resolution. Savings from SAMR for pipe bend simulations: up to $\geq 680\times$.
- Incorporation of higher order FV methods also possible. Future work will concentrate on higher order schemes with low numerical dissipation.
The Virtual Test Facility

- AMROC V2.0 plus solid mechanics solvers
- Implements explicit SAMR with different finite volume solvers
- Embedded boundary method, fluid-structure coupling
- \(~ \sim \) 430,000 lines of code total in C++, C, Fortran-77, Fortran-90
- autoconf / automake environment with support for typical parallel high-performance system
- http://www.cacr.caltech.edu/asc
AMROC V2.0 plus solid mechanics solvers
- Implements explicit SAMR with different finite volume solvers
- Embedded boundary method, fluid-structure coupling
- \(\sim 430,000 \) lines of code total in C++, C, Fortran-77, Fortran-90
- autoconf / automake environment with support for typical parallel high-performance system
- http://www.cacr.caltech.edu/asc
- AMROC V3.0 presently in private repository, will be released eventually again on http://amroc.sourceforge.net
Detonation-driven plastic deformation

Chapman-Jouguet detonation in a tube filled with a stoichiometric ethylene and oxygen ($\text{C}_2\text{H}_4 + 3\text{ O}_2$, 295 K) mixture. Euler equations with single exothermic reaction $A \rightarrow B$

$$
\partial_t \rho + \partial_x (\rho u) = 0, \quad \partial_t (\rho u_k) + \partial_x (\rho u_k u + \delta_{kn} p) = 0, \quad k = 1, \ldots, d
$$

$$
\partial_t (\rho E) + \partial_x (u (\rho E + p)) = 0, \quad \partial_t (Y \rho) + \partial_x (Y \rho u) = \psi
$$

with

$$
p = (\gamma - 1)(\rho E - \frac{1}{2}\rho u^n u - \rho Y q_0) \quad \text{and} \quad \psi = -k Y \rho \exp \left(\frac{-E_A \rho}{p}\right)
$$
Detonation-driven plastic deformation

Chapman-Jouguet detonation in a tube filled with a stoichiometric ethylene and oxygen ($C_2H_4 + 3 O_2$, 295 K) mixture. Euler equations with single exothermic reaction $A \rightarrow B$

\[
\partial_t \rho + \partial_x (\rho u) = 0, \quad \partial_t (\rho u_k) + \partial_x (\rho u_k u + \delta_{kn} p) = 0, \quad k = 1, \ldots, d
\]

\[
\partial_t (\rho E) + \partial_x (u (\rho E + p)) = 0, \quad \partial_t (Y \rho) + \partial_x (Y \rho u) = \psi
\]

with

\[
p = (\gamma - 1)(\rho E - \frac{1}{2} \rho u u - \rho Y q_0) \quad \text{and} \quad \psi = -k Y \rho \exp \left(\frac{-E_A \rho}{p} \right)
\]

modeled with heuristic detonation model by [Mader, 1979]

\[
V := \rho^{-1}, \quad V_0 := \rho_0^{-1}, \quad V_{CJ} := \rho_{CJ}
\]

\[
Y' := 1 - (V - V_0)/(V_{CJ} - V_0)
\]

If $0 \leq Y' \leq 1$ and $Y > 10^{-8}$ then

- If $Y < Y'$ and $Y' < 0.9$ then $Y' := 0$
- If $Y' < 0.99$ then $p' := (1 - Y') p_{CJ}$
- else $p' := p$

\[
\rho_A := Y' \rho
\]

\[
E := p'/(\rho (\gamma - 1)) + Y' q_0 + \frac{1}{2} u u
\]
Detonation-driven plastic deformation

Chapman-Jouguet detonation in a tube filled with a stoichiometric ethylene and oxygen ($\text{C}_2\text{H}_4 + 3\text{O}_2$, 295 K) mixture. Euler equations with single exothermic reaction $A \rightarrow B$

$$\partial_t \rho + \partial_x (\rho u_n) = 0, \quad \partial_t (\rho u_k) + \partial_x (\rho u_k u_n + \delta_{kn} p) = 0, \quad k = 1, \ldots, d$$

$$\partial_t (\rho E) + \partial_x (u_n (\rho E + p)) = 0, \quad \partial_t (Y \rho) + \partial_x (Y \rho u_n) = \psi$$

with

$$p = (\gamma - 1)(\rho E - \frac{1}{2} \rho u_n u_n - \rho Y q_0) \quad \text{and} \quad \psi = -k Y \rho \exp \left(\frac{-E_A \rho}{p} \right)$$

modeled with heuristic detonation model by [Mader, 1979]

$$V := \rho^{-1}, \quad V_0 := \rho_0^{-1}, \quad V_{\text{CJ}} := \rho_{\text{CJ}}$$

$$Y' := 1 - (V - V_0)/(V_{\text{CJ}} - V_0)$$

If $0 \leq Y' \leq 1$ and $Y > 10^{-8}$ then

If $Y < Y'$ and $Y' < 0.9$ then $Y' := 0$

If $Y' < 0.99$ then $p' := (1 - Y') \rho_{\text{CJ}}$

else $p' := p$

$$\rho_A := Y' \rho$$

$$E := p'/(\rho (\gamma - 1)) + Y' q_0 + \frac{1}{2} u_n u_n$$

Comparison of the pressure traces in the experiment and in a 1d simulation
Tube with flaps

Fluid density and displacement in y-direction in solid

Schlieren plot of fluid density on refinement levels

64+8 processors 2.2 GHz AMD Opteron, PCI-X 4x Infiniband network, \(\sim 4320 \) h CPU to \(t_{end} = 450 \mu s \)

References II

