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1 Introduction

The accurate incorporation of source terms into high-resolution methods for hyperbolic con-
servation laws and the treatment of multicomponent gas flows are two import topics of current
numerical research.

In [7] R. J. LeVeque proposes a modification of the wave propagation method to accurately
capture the behaviour of quasi-steady flows.

In this paper, we derive the method for the case of the Euler equations under gravitational
influence and apply it to flows of two nonmixing ideal gases. We present results of a numerical
simulation of the behaviour of an instable interface between two gases driven by the standard
gravitational field (Rayleigh-Taylor-instability).

The wave propagation method is a high resolution finite volume method of Godunov-type.
By solving Riemann problems normal to the cell interfaces the flux-difference at each interface
is split into a left-going and a right-going part. The update of a cell is defined by summing
up all flux-difference fractions entering the particular cell. Second-order accuracy for smooth
solutions is achieved by applying standard limiters to the waves. See [4] for details of the
method.

An import property of the wave propagation method is it’s applicability to hyperbolic
equations that are not in conservation form. Instead of following the common approach to
seperate the two gases by two continuity equations, we use a transport equation for the adi-
abatic coefficient v [8][9]. Roe’s approximate Riemann solver, based on multiple continuity
equations, tends to create numerical oscillations at contact-discontinuities. For Euler equa-
tions without source terms, it has been proven, that these oscillations can be avoided by
applying the y-based model [9].

2 Treatment of source terms in quasi-steady flows
We consider the hyperbolic conservation law with source term

g+ (@) = ¥(q). (1)

A common approach to incorporate source terms into numerical methods is to use a fractional
step method that alternates between solving the homogenous PDE

q: + f(Q)z =0 (2)
and the ODE

at = (q) - (3)



These splitting schemes have the advantage, that the PDE can be treated with a high reso-
lution method, while the ODE can be solved seperately with a standard ODE-solver.

But, fractional step methods must fail for quasi-steady flows, because they are based on
the assumption |g¢| = |¥(q)|. Near steady state, the relations

lgt| < 17 (9)e| = [9(g)]

hold and the source term nearly has to be balanced by the flux gradient [7].
A splitting-like approach for the quasi-steady state can be based on the equations

f(@)e =¥(q) (4)
Qt+f(Q)w:O- (5)

Fractional step methods make use of intermediate values of ¢ in time. A numerical method
based on (4) and (5) naturely uses intermediate values of ¢ in space. Such a method has to
fulfill the implicit condition (4) and must remain conservative on the original space discretiza-
tion.

The quasi-steady version of the wave propagation method is based on the above idea
[6][7]. Instead of employing the discrete value g; to solve Riemann problems at the interfaces
between neighboring cells, two intermediate values, qlT" and ¢; are introduced. The Riemann
problem at the right cell interface is solved using q;', while the Riemann problem at the left
uses ¢; . A half cell is assigned to each intermediate value.

As a first order approximation to (4) we set

flgh) — f(g7) = Azyp(gs) - (6)

To get a conservative scheme, the intermediate values qZT" and ¢; have to fulfill the relation

%(q,-*+q{)=qi- (7)
This condition is true for qijE =q; t Sq,u

The flux difference f(g;") — f(g;") of the newly-introduced Riemann problem equals the
source term t(q;). Hence, the effect of 1(g;) is exactly canceled out by the waves resulting
from solving the Riemann problem between qi+ and g; . By ignoring the source term and
the Riemann problem, the required steady state balance is achieved. As the indermediate
Riemann problems are omitted, the quasi-steady wave propagation method is stable up to
Courant number 1 [7].

The jump magnitude bg; could be calculated from (6) by an iterative method. But, for
particular cases, sufficient approximations can be derived directly.

3 One-dimensional Euler equations with gravity

We consider the one-dimensional Euler equations under influence of the standard gravitational
field

pe+ (pu)e = 0 (8)
(pu)e + (pu® +p)s = —pg 9)
Ei+[(E+pul, = —pug (10)

with the ideal-gas-law p=p(y —1)(E — pu?/2)



We apply the quasi-stationary approach defined by (6)-(7) to the fluxes and source terms of
(8)-(10). The continuity equation (8) yields (pu)™ = (pu)~. With m = pu we receive from
momentum and energy equation

2 2
(m—+ +p+> - (m—_ +p_> = —Azpg (11)
p p
(E+ +p+) % — (E_ +p_) pﬂf = —Azxmg. (12)
We introduce d,, 65 € (—1,1) and define
pt = p:I:SB = p(1£9,)

E* = E+ép = E(1+g).

Incorporating these definitions and p* = (y — 1)(E — m?2/2pT) into equations (11) and (12)
gives the fourth order polynoms

2(~ _ _
m (72 3)(Ser [2(7 1)E5E+Amg] (1-62) =0
p p

2m? 2vE
7(7 —1)d, + [T(JE —d,)+(1— Jz)Amg] (1- 512,) =0.

From these equations the following second-order accurate approximations to J, and Jg can
be derived:

= g xXr .’173
% = G/ aEy )t TR

_ —gp B m?(3 —7) . 3
% = SEH 1) [1 (7—1)(m2F—2E7p)]A T O(Az)

Further explanations for the derivation of the jump magnitudes dp and §E can be found in

[6].

4 Implementation of boundary conditions

Physical boundary conditions for the wave propagation algorithm can easily be handled by
utilizing two ghost cells with fictious values [5]. An implementation of the quasi-steady
extension has to ensure, that these fictious values are set in respect to the indermediate cell
values. Otherwise, unphysical waves would emerge from the boundary.

We introduce jump magnitudes dg; for the ghost cells as well. After each time step, ghost
cell values are first of all created from unmodified internal cell values in the usual way. Values
of §g; for the ghost cells are created under consideration to internal jump quantities. Applying
all jump magnitudes yields appropriate Riemann problems at the boundary.



As an example, we consider a boundary at the right side of cell M. In case of the equations
(8)-(10), a reflective boundary is implemented by mirroring the internal cells into the ghost
cells [11]. For the quasi-steady method we set

Pruit = P By = EY mM+1 = —MM

pL—i—l = p]T/I EE\F/I—H = E]T/I (13)
Pri2 = pi—Mfl By = EE\_'—/Ifl my+2 = —MpM-1

PI/I+2 = Pmu-a EE\F/I—|—2 = By -

For the jump magnitudes of the ghost cells M + 1 and M + 2 we receive

dpmy1 = —Opm dp.M+1 = —dmMm

dpM+2 = —0pn—1 dp.M+2 = —Omm—1-

At a zero order outflow boundary no change in flux should occur [11]. We achieve Riemann
problems with zero flux-difference by setting

Prusr = pj\—l Eyy = EJT/I my+1 = My
M+1 M M+1 M (14)
Puy2 = Pm Eﬂ\_4+2 = E{\FJ mM+2 = MM
Pmi2 = Pum By = Ey-
The jump magnitudes are
dopMy1 = —O,m OdEMy1 = —OpM
dp M2 = oM dp.M+2 = OBM-

In the present case, a practical implementation can employ an auxiliary array, which con-
tains the gravitational constant in each cell. Jump magnitudes according to the boundary
conditions can be achieved by using negative gravitational constants for the ghost cells.

5 Three-dimensional Euler equations with gravity

We consider the three-dimensional Euler equations with standard gravitational field acting in
z-direction

pt + (pu)e +  (pv)y + (pw). =0

(pw)e + (pu®+p)z + (puv)y + (puw), =0

() + (puv)e + (p’+p)y  + (pow), =0 (15)
(pw)e + (puw)s +  (pvw)y + (pw’+p), = —pg

B+ [WE+p), + (E+D), + [wE+p)], = —pug

The quasi-stationary algorithm, derived in the previous sections for the one-dimensional Euler
equations, can easily be extended to three dimensions. Under influence of the standard
gravitational field the basic approach of the quasi-stationary method defined in (4) and (5)



carries over directly. According to (4) and (5) the quasi-stationary method for (15) is based
on

h(q). = ¥(q) (16)

¢+ f(@)e +9(0)y + h(q). =0. (17)

The method derived from (16) and (17) modifies just the Riemann problems in z-direction.
The Riemann problems in z- and y-direction remain unaltered. The method can easily be
implemented using the three-dimensional wave propagation algorithm, because the algorithm
calculates the Riemann problems in each coordinate direction in a seperate pass. By solving
”transverse” Riemann problems a multidimensional second order accurate method is achieved
[3].

We treat the two gases with different adiabatic coefficients v using the non-conservative
transport equation

() (), e

For the homogenous Euler equations it is proven, that the use of (18) avoids spurious nu-
merical oscillations at moving contact discontinuities [9]. These oscillations are typical for
numerical methods based on Riemann problems, if multiple continuity equations are used
[8]. Although these theoretical results have not been extended to Euler equations with grav-
itational influence yet, we utilize the same, unmodified seperation model for our numerical
investigations.

6 Computational results

We consider a two-dimensional example from [1] and expand it cylindrical symmetric to
three dimensions. Standard gravitation acts in z-direction. In this example, air with density
1.225kg/m? lies above the lighter gas helium with a density of 0.1694kg/m3. The gases are
initially at rest and the pressure is 1bar everywhere. The domain is 2m in z- and y-direction
and 3m in z-direction. The interface between the gases is initially defined by a cylindrical
symmetric sine with wavelength 1m and amplitude 5¢m. The sine wave smoothly changes to
a straight line normal to z at the outer regions. We choose a reflective boundary at the lower
side and a constant inflow equal to the initial values at the upper side. In z- and y-direction
outflow is assumed. By exploiting the symmetry of the problem the calculation domain is
reduced to a quarter.

Two-dimensional reference calculations exploit the cylindrical symmetry of the problem.
In this case the system of equations (15) reduces to

Pt + (pu)y + (pw): = &

(pu) + (pu+p) + (puw), =

(pw)e + (puw), + (pw?+p), = -  —pg (19)
B, + E+p)], + wE+p), = -2 _pug
p=p(1-1|E-p(Y+Y%



The y-equation (18) gives

(), e (), e (), o

The additional source term in (19) arising from lowering the dimension is numerically treated
by Strang splitting.

Figure 1: Comparison of 2D (left) and 3D (middle and right) computational results at times
t = 0.0158s and 0.0316s. The accurate 2D computation uses a 240 x 720 grid. The 3D results
have been obtained with an adaptive mesh refinement algorithm. The resolution corresponds

to a 80 x 80 x 240 grid.
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Figure 2: Computational results for the Rayleigh-Taylor-instability at times ¢ = 0.0474s,
0.0632s, 0.0791s.



