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Collaboration on lattice Boltzmann methods with

I Stephen Wood (Joint Insitute of Computational Science, University
Tennessee Knoxville, USA)

I Kai Feldhusen, Claus Wagner (German Aerospace Center – DLR)

I Moritz Fragner (Technical University Cottbus, Germany)

I Cinar Laloglu (Marmara University, Turkey)
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Construction principles

Approximation of Boltzmann equation

Is based on solving the Boltzmann equation with a simplified collision operator

∂t f + u · ∇f = ω(f eq − f )

I Kn = lf /L� 1, where lf is replaced with ∆x

I Weak compressibilty and small Mach number assumed

I Assume a simplified phase space

Equation is approximated with a splitting approach.

1.) Transport step solves ∂t fα + eα · ∇fα = 0

Operator: T : f̃α(x + eα∆t, t + ∆t) = fα(x, t)

ρ(x, t) =
8∑
α=0

fα(x, t), ρ(x, t)ui (x, t) =
8∑
α=0

eαi fα(x, t)
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Discrete velocities:
e0 = (0, 0), e1 = (1, 0)c, e2 = (−1, 0)c, e3 = (0, 1)c, e4 = (1, 1)c, ...

c =
∆x

∆t
, Physical speed of sound: cs =

c√
3
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Construction principles

Approximation of equilibrium state

2.) Collision step solves ∂t fα = ω(f eq
α − fα)

Operator C:

fα(·, t + ∆t) = f̃α(·, t + ∆t) + ωL∆t
(
f̃ eq
α (·, t + ∆t)− f̃α(·, t + ∆t)

)

with equilibrium function

f eq
α (ρ, u) = ρtα

[
1 +

3eαu

c2
+

9(eαu)2

2c4
− 3u2

2c2

]
with tα = 1

9

{
4, 1, 1, 1, 1

4
, 1

4
, 1, 1

4
, 1

4

}
Pressure δp =

∑
α f eq
α c2

s = ρc2
s .

Dev. stress Σij =
(

1− ωL∆t
2

)∑
α eαi eαj (f

eq
α − fα)

Is derived by assuming a Maxwell-Boltzmann distribution of f eq
α and

approximating the involved exp() function with a Taylor series to second-order
accuracy.
Using the third-order equilibrium function

f eq
α (ρ, u) = ρtα

[
1 +

3eαu

c2
+

9(eαu)2

2c4
− 3u2

2c2
+

eαu

3c2

(
9(eαu)2

2c4
− 3u2

2c2

)]
allows higher flow velocities.
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Construction principles

Relation to Navier-Stokes equations

Inserting a Chapman-Enskog expansion, that is,

fα = fα(0) + εfα(1) + ε2fα(2) + ...

and using

∂

∂t
= ε

∂

∂t1
+ ε2 ∂

∂t2
+ ..., ∇ = ε∇1 + ε2∇2 + ...

into the LBM and summing over α one can show that the continuity and
moment equations are recoverd to O(ε2) [Hou et al., 1996]

∂tρ+∇ · (ρu) = 0

∂tu + u · ∇u = −∇p + ν∇2u

Kinematic viscosity and collision time are connected by

ν =
1

3

(
τL

∆t
− 1

2

)
c∆x

from which one gets with
√

3cs = ∆x
∆t

[Hähnel, 2004]

ωL = τ−1
L =

c2
s

ν + ∆tc2
s /2

R. Deiterding – Adaptive LBM for high-fidelity aerodynamics simulation 7



Adaptive lattice Boltzmann method Aerodynamics cases Wind turbine wake aerodynamics Conclusions

Construction principles

Relation to Navier-Stokes equations

Inserting a Chapman-Enskog expansion, that is,

fα = fα(0) + εfα(1) + ε2fα(2) + ...

and using

∂

∂t
= ε

∂

∂t1
+ ε2 ∂

∂t2
+ ..., ∇ = ε∇1 + ε2∇2 + ...

into the LBM and summing over α one can show that the continuity and
moment equations are recoverd to O(ε2) [Hou et al., 1996]

∂tρ+∇ · (ρu) = 0

∂tu + u · ∇u = −∇p + ν∇2u

Kinematic viscosity and collision time are connected by

ν =
1

3

(
τL

∆t
− 1

2

)
c∆x

from which one gets with
√

3cs = ∆x
∆t

[Hähnel, 2004]

ωL = τ−1
L =

c2
s

ν + ∆tc2
s /2

R. Deiterding – Adaptive LBM for high-fidelity aerodynamics simulation 7



Adaptive lattice Boltzmann method Aerodynamics cases Wind turbine wake aerodynamics Conclusions

Construction principles

Turbulence modeling

Pursue a large-eddy simulation approach with f̄α and f̄ eq
α , i.e.

1.) ˜̄fα(x + eα∆t, t + ∆t) = f̄α(x, t)

2.) f̄α(·, t + ∆t) = ˜̄fα(·, t + ∆t) + 1
τ?

∆t
(

˜̄f eq
α (·, t + ∆t)− ˜̄fα(·, t + ∆t)

)

Effective viscosity: ν? = ν + νt =
1

3

(
τ?L
∆t
− 1

2

)
c∆x with τ?L = τL + τt

Use Smagorinsky model to evaluate νt , e.g., νt = (Csm∆x)2S̄ , where

S̄ =

√
2
∑

i,j

S̄ij S̄ij

The filtered strain rate tensor S̄ij = (∂j ūi + ∂i ūj )/2 can be computed as a
second moment as

S̄ij =
Σij

2ρc2
s τ?L

(
1− ωL∆t

2

) =
1

2ρc2
s τ?L

∑
α

eαi eαj (f̄
eq
α − f̄α)

τt can be obtained as [Yu, 2004, Hou et al., 1996]

τt =
1

2

(√
τ 2

L + 18
√

2(ρ0c2)−1C 2
sm∆xS̄ − τL

)

R. Deiterding – Adaptive LBM for high-fidelity aerodynamics simulation 8
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Σij

2ρc2
s τ?L

(
1− ωL∆t

2

) =
1

2ρc2
s τ?L

∑
α

eαi eαj (f̄
eq
α − f̄α)

τt can be obtained as [Yu, 2004, Hou et al., 1996]

τt =
1

2

(√
τ 2

L + 18
√

2(ρ0c2)−1C 2
sm∆xS̄ − τL

)
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Construction principles
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Boundary conditions

Initial and boundary conditions

I Initial conditions are constructed as f eq
α (ρ(t = 0), u(t = 0))

Boundary conditions (applied before streaming step)

No-slip

b

b

b

b

Slip

b

b

b

b

Symmetry

bb

I Outlet basically copies all distributions (zero gradient)

I Inlet and pressure boundary conditions use f eq
α
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Boundary conditions

Level-set method for boundary embedding

I Implicit boundary representation via distance
function ϕ, normal n = ∇ϕ/|∇ϕ|.

I Complex boundary moving with local velocity w,
treat interface as moving rigid wall.

I Construction of macro-values in embedded
boundary cells by interpolation / extrapolation.

I Then use f eq
α (ρ′, u′) to construct distributions in

embedded ghost cells.

Interpolate / constant value extrap-
olate values at

x̃ = x + 2ϕn

Macro-velocity in ghost cells for
no-slip: u′ = 2w − u
slip:

u′ = (2w · n− u · n)n + (u · t)t

= 2 ((w − u) · n) n + u

ρj−1 ρj ρj ρj−1

uj−1 uj 2w − uj 2w − uj−1

ut

ut

ut

w

uj

2w − uj
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Boundary conditions

Normalization

The method is implemented on the unit lattice with ∆x̃ = ∆t̃ = 1

∆x

l0
= 1,

∆t

t0
= 1 −→ c = 1

Lattice viscosity ν̃ = 1
3

(
τ − 1

2

)
and lattice sound speed c̃s = 1√

3
yield again

ωL =
c̃2

s

ν′ + c̃2
s /2

=
c2

s

ν + ∆tc2
s /2

Velocity normalization factor: u0 = l0
t0

, density ρ0

Re =
uL

ν
=

u/u0 · l/l0
ν/(u0l0)

=
ũl̃

ν̃

Trick for scheme acceleration: Use ū = Su and ν̄ = Sν which yields

ω̄L =
c2

s

Sν + ∆t/S c2
s /2

For instance, the physical hydrodynamic pressure is then obtained for a caloric
gas as

p = (ρ̃− 1)c̃2
s
u2

0

S2
ρ0 +

c2
s ρ0

γ
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ω̄L =
c2

s

Sν + ∆t/S c2
s /2

For instance, the physical hydrodynamic pressure is then obtained for a caloric
gas as

p = (ρ̃− 1)c̃2
s
u2

0

S2
ρ0 +

c2
s ρ0

γ

R. Deiterding – Adaptive LBM for high-fidelity aerodynamics simulation 11



Adaptive lattice Boltzmann method Aerodynamics cases Wind turbine wake aerodynamics Conclusions

Boundary conditions

Normalization

The method is implemented on the unit lattice with ∆x̃ = ∆t̃ = 1

∆x

l0
= 1,

∆t

t0
= 1 −→ c = 1

Lattice viscosity ν̃ = 1
3

(
τ − 1

2

)
and lattice sound speed c̃s = 1√

3
yield again

ωL =
c̃2

s

ν′ + c̃2
s /2

=
c2

s

ν + ∆tc2
s /2

Velocity normalization factor: u0 = l0
t0

, density ρ0

Re =
uL

ν
=

u/u0 · l/l0
ν/(u0l0)

=
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Adaptive mesh refinement for LBM

Block-structured adaptive mesh refinement (SAMR)

I Refined blocks overlay coarser ones

I Recursive refinement in space and time
by factor rl [Berger and Colella, 1988]
ideal for LBM

I Block (aka patch) based data
structures

I Most efficient LBM implementation
with patch-wise for-loops

I LBM implemented on finite volume
grids

I AMROC V3.0 with significantly
enhanced parallelization.

I Papers: [Deiterding, 2011,
Deiterding et al., 2007,
Deiterding et al., 2006]

G2,1

G2,2

G1,1

G1,2

G1,3

G0,1
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Adaptive mesh refinement for LBM

Adaptive LBM

1. Complete update on coarse grid: f C ,n+1
α := CT (f C ,n

α )

2. Interpolate f C ,n
α,in onto f f ,n

α,in to fill fine halos. Set physical boundary
conditions.

3. f̃ f ,n
α := T (f f ,n

α ) on whole fine mesh. f
f ,n+1/2
α := C(f̃ f ,n

α ) in interior.

4. f̃
f ,n+1/2
α := T (f

f ,n+1/2
α ) on whole fine mesh. f f ,n+1

α := C(f̃
f ,n+1/2
α ) in

interior.

R. Deiterding – Adaptive LBM for high-fidelity aerodynamics simulation 13
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α ) on whole fine mesh. f f ,n+1

α := C(f̃
f ,n+1/2
α ) in

interior.

f̃
f ,n+1/2
α,out , f̃

f ,n+1/2
α,in

5. Average f̃
f ,n+1/2
α,out (inner halo layer), f̃ f ,n

α,out

(outer halo layer) to obtain f̃ C ,n
α,out .

6. Revert transport into halos:
f̄ C ,n
α,out := T −1(f̃ C ,n

α,out)

7. Parallel synchronization of f C ,n
α , f̄ C ,n

α,out

8. Cell-wise update where correction is needed:
f C ,n+1
α := CT (f C ,n

α , f̄ C ,n
α,out)
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Algorithm equivalent to [Chen et al., 2006].
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Verification

Flow over 2D cylinder, d = 2 cm

I Air with
ν = 1.61 · 10−5 m2/s,
ρ = 1.205 kg/m3

I Domain size
[−8d , 24d ]× [−8d , 8d ]

I Dynamic refinement based
on velocity. Last level to
refine structure further.

I Inflow from left.
Characteristic boundary
conditions [Schlaffer, 2013]
elsewhere.

I Base lattice 320× 160, 3 additional levels with factors 2, 4, 4.

I Resolution: ∼ 320 points in diameter d

I Computation of CD on 400 equidistant points along circle and averaged
over time. Comparison above with [Henderson, 1995].
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Verification

Oscillating cylinder – Setup

Motion imposed on cylinder
Case At ft = fθ VR U∞ Re

1a D/4 0.6 0.5 0.0606 1322

1b D/2 0.6 1.0 0.0606 1322

2a D/4 3.0 0.5 0.3030 6310

2b D/2 3.0 1.0 0.3030 6310

y(t) = At sin(2πftt), θ(t) = Aθ sin(2πfθt)

I Setup follows [Nazarinia et al., 2012]. Here Aθ = 1 for all cases.

I Natural frequency of cylinder fN ≈ 0.6154 s−1.

I Strouhal number Stt = ftD/U∞ ≈ 0.198 for all cases.

I Chosen here D = 20mm

I Fluid is water with cs = 1482m/s, ν = 9.167 · 10−7 m2/s,
ρ = 1016 kg/m3

I Constant coefficient model deactivated for Case 1, active for Case 2 with
Csm = 0.2

C. Laloglu, RD. Proc. 5th Int. Conf. on Parallel, Distributed, Grid and Cloud Computing for Engineering, Civil-Comp Press, 2017.
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Verification

Case 1b, VR = 1, Re = 1322

Mesh refinement Distribution to 4 processors

I Visualization enlargement of cylinder region

I Base mesh is discretized with 320× 160 cells, 3 additional levels with
factor rl = 2, 2, 2

I 80 cells within D on highest level

I Speedup S = 2000

I Basically identical setup in commercial code XFlow for comparison
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Verification

Case 1b, VR = 1, ft = fθ = 0.6, Re = 1322
AMROC XFlow
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I Increase of rotational velocity leads to formation of a vortex pair plus single
vortex. Drag and lift amplitude roughly doubled.

I Laminar results in good agreement with experiments of [Nazarinia et al., 2012].
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Verification

Case 2a, VR = 0.5, ft = fθ = 3, Re = 6310
AMROC XFlow
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I Oscillation period: T = 1/ft = 0.33 s. 10 regular vortices in 1.67 s.

I CPU time on 6 cores for AMROC: 635.8 s, XFlow ∼ 50 % more expensive when
normalized based on number of cells
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Thermal LBM

An LBM for thermal transport

Consider the Navier-Stokes equations under Boussinesq approximation

∇ · u = 0

∂u

∂t
+∇ · (uu) = −∇p + ν∇2u + F

∂T

∂t
+∇ · (uT ) = D∇2T

with F = gβ (T − Tref ).

An LBM for this system needs to use two distribution functions fα and gα.
1.) Transport step T :

f̃α(x + eα∆t, t + ∆t) = fα(x, t), g̃α(x + eα∆t, t + ∆t) = gα(x, t)

2.) Collision step C:

fα(·, t + ∆t) = f̃α(·, t + ∆t) + ωL,ν∆t
(
f̃ eq
α (·, t + ∆t)− f̃α(·, t + ∆t)

)
+ ∆tFα

gα(·, t + ∆t) = g̃α(·, t + ∆t) + ωL,D∆t (g̃ eq
α (·, t + ∆t)− g̃α(·, t + ∆t))

with collision frequencies

ωL,ν =
c2

s

ν + c2
s ∆t/2

, ωL,D =
3
2
c2

s

D + 3
2
c2

s ∆t/2
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Thermal LBM

Equilibrium operators
This incompressible method uses in 2D [Guo et al., 2002]

f (eq)
α =

{
−4σ0p − sα(u), for α = 0,

σαp + sα(u), for α = 1, . . . , 8,

where

sα (u) = tα

[
3eαu

c2
+

9(eαu)2

2c4
− 3u2

2c2

]
b

b

b

b

b bb

b

b
3

0

4

1

768

2

5

with tα = 1
9

{
4, 1, 1, 1, 1

4
, 1

4
, 1, 1

4
, 1

4

}
and σα = 1

3

{
−5, 1, 1, 1, 1

4
, 1

4
, 1, 1

4
, 1

4

}

g (eq)
α =

T

4
[1 + 2eα · u] for α = 1, . . . , 4

Forces are applied in y -direction only:

Fα =
1

2
(δi3 − δi6) ei · F

Moments: u =
∑
α>0

ei fα, p =
1

4σ

[∑
α>0

fα + s0(u)

]
, T =

4∑
α=1

gα
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Thermal LBM

Heated rotating cylinder

I R = 15, domain: [−6R, 16R]× [−8R, 8R]

I Re = 2U∞R/ν = 200, U∞ = 0.01

I Peripheral velocity V = ΩR, V /U∞ = 0.5

I Base grid 288× 240 refined by three levels
with r1 = 2, r2,3 = 4 using scaled
gradients of u, v , T v = 0, ∂u

∂y
= 0, ∂T

∂y
= 0

∂u
∂x

= 0
∂v
∂x

= 0
∂T
∂x

= 0

v = 0, ∂u
∂y

= 0, ∂T
∂y

= 0

u = U∞

v = 0

T = TC

TH

u = 0, v = 0

ω

t = 12
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t
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t
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=12 (UNI - NewBC)
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t
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 = 6 (FVM)

Temperature T along x-axis
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Thermal LBM

Natural convection
Characterized by

Ra =
gβ∆TH3

νD

a = AMROC-LBM,
b = [Fusegi et al., 1991] (NS - uniform)

Ref. umax ymax vmax xmax Nuave

Ra = 103 a 0.132 0.195 0.132 0.829 1.099
b 0.131 0.200 0.132 0.833 1.105

Ra = 104 a 0.197 0.194 0.220 0.887 2.270
b 0.201 0.183 0.225 0.883 2.302

Ra = 105 a 0.141 0.152 0.242 0.935 4.583
b 0.147 0.145 0.247 0.935 4.646

TH TC

H

H

H

g

x

y

z

Isosurfaces of temperature and refinement levels

Ra = 104

Ra = 105

K. Feldhusen, RD, C. Wagner. J. Applied Math. Comp. Science 26(4): 735–747, 2016.
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Adaptive lattice Boltzmann method
Construction principles
Boundary conditions
Adaptive mesh refinement for LBM
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Thermal LBM

Realistic aerodynamics computations
Vehicle geometries

Wind turbine wake aerodynamics
Mexico benchmark
Wake interaction prediction

Conclusions
Conclusions and outlook
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Vehicle geometries

Wind tunnel simulation of a prototype car
Fluid velocity and pressure on vehicle

I Inflow 40 m/s. LES model active. Characteristic boundary conditions.
I To t = 0.5 s (∼ 4 characteristic lengths) with 31,416 time steps on finest level in ∼ 37 h on

200 cores (7389 h CPU). Channel: 15 m× 5 m× 3.3 m

R. Deiterding – Adaptive LBM for high-fidelity aerodynamics simulation 24



Adaptive lattice Boltzmann method Aerodynamics cases Wind turbine wake aerodynamics Conclusions

Vehicle geometries

Mesh adaptation
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Vehicle geometries

Mesh adaptation
Used refinement blocks and levels (indicated by color)

I SAMR base grid 600× 200× 132 cells, r1,2,3 = 2 yielding
finest resolution of ∆x = 3.125 mm

I Adaptation based on level set and scaled gradient of
magnitude of vorticity vector

I 236M cells vs. 8.1 billion (uniform) at t = 0.4075 s

Refinement at t = 0.4075 s

Level Grids Cells
0 11,605 15,840,000
1 11,513 23,646,984
2 31,382 144,447,872
3 21,221 52,388,336

R. Deiterding – Adaptive LBM for high-fidelity aerodynamics simulation 25
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Vehicle geometries

Next Generation Train (NGT)

I 1:25 train model of 74,670 triangles

I Wind tunnel: air at room temperature with
33.48m/s, Re = 250, 000, yaw angle 30o

I Comparison between LBM (fluid air) and
incompressible OpenFOAM solvers

Averaged vorticity OpenFOAM-LES

M. M. Fragner, RD. Int. J. Comput. Fluid Dynamics, 30(6): 402–407, 2016.
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Vehicle geometries

NGT model
I LBM-AMR computation with 5 additional levels,

factor 2 refinement (uniform: 120.4e9 cells)

I Dynamic AMR until Tc = 34, then static for
∼ 12TC to obtain average coefficients

I OpenFOAM simulations by M. Fragner (DLR)

Simulation Mesh CFX CFY CMX
Wind tunnel – -0.06 -5.28 -3.46

DDES low -0.40 -5.45 -3.61
Σ only low 0.10 -0.04 -0.05

LES high -0.45 -6.07 -4.14
DDES high -0.43 -5.72 -3.77

LBM - p only – -0.30 -5.09 -3.46

LBM DDES(l) LES DDES(h)
Cells 147M 34.1M 219M 219M
y + 43 3.2 1.7 1.7

x+, z+ 43 313 140 140
∆x wake [mm] 0.936 3.0 1.5 1.5
Runtime [TC ] 34 35.7 10.3 9.2

Processors 200 80 280 280
CPU [h] 34,680 49,732 194,483 164,472
TC/∆t 1790 1325 1695 1695

CPU [h]/TC /1M cells 5.61 39.75 86.4 81.36

Adaptive LBM code 16x
faster than OpenFOAM
with PISO algorithm on
static mesh!
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Vehicle geometries

Strong scalability test (1:25 train)
I Computation is restarted from disk checkpoint at

t = 0.526408 s from 96 core run.

I Time for initial re-partitioning removed from
benchmark.

I 200 coarse level time steps computed.

I Regridding and re-partitioning every 2nd level-0 step.

I Computation starts with 51.8M cells (l3: 10.2M, l2:
15.3M, l1: 21.5M, l0= 4.8M) vs. 19.66 billion
(uniform).

I Portions for parallel communication quite
considerable (4 ghost cells still used).

48 96 192 288 384 576 768

101

102

CPUs

se
c

Time per coarse level step

SAMR

Ideal

Time in % spent in main operations
Cores 48 96 192 288 384 576 768
Time per step 132.43s 69.79s 37.47s 27.12s 21.91s 17.45s 15.15s
Par. Efficiency 100.0 94.88 88.36 81.40 75.56 63.24 54.63
LBM Update 5.91 5.61 5.38 4.92 4.50 3.73 3.19
Regridding 15.44 12.02 11.38 10.92 10.02 8.94 8.24
Partitioning 4.16 2.43 1.16 1.02 1.04 1.16 1.34
Interpolation 3.76 3.53 3.33 3.05 2.83 2.37 2.06
Sync Boundaries 54.71 59.35 59.73 56.95 54.54 52.01 51.19
Sync Fixup 9.10 10.41 12.25 16.62 20.77 26.17 28.87
Level set 0.78 0.93 1.21 1.37 1.45 1.48 1.47
Interp./Extrap. 3.87 3.81 3.76 3.49 3.26 2.75 2.39
Misc 2.27 1.91 1.79 1.67 1.58 1.38 1.25

R. Deiterding – Adaptive LBM for high-fidelity aerodynamics simulation 28



Adaptive lattice Boltzmann method Aerodynamics cases Wind turbine wake aerodynamics Conclusions

Mexico benchmark

Mexico experimental turbine – 0o inflow

I Setup and measurements by Energy Research Centre of the Netherlands (ECN) and the
Technical University of Denmark (DTU) [Schepers and Boorsma, 2012]

I Inflow velocity 14.93 m/s in wind tunnel of 9.5 m× 9.5 m cross section.
I Rotor diameter D = 4.5 m. Prescribed motion with 424.5 rpm: tip speed 100 m/s,

Rer ≈ 75839 TSR 6.70
I Simulation with three additional levels with factors 2, 2, 4. Resolution of rotor and tower

∆x = 1.6 cm
I 149.5 h on 120 cores Intel-Xeon (17490 h CPU) for 10 s

I Data collected as average during t ∈ [5, 10]. Load on blade 1 as it passes through θ = 0o

(pointing vertically upwards), 35 rotations
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Mexico benchmark

Mexico experimental turbine – 30o yaw

I 157.6 h on 120 cores Intel-Xeon for 10 s (70.75 revolutions) −→ ∼ 22.25 h CPU/1M
cells/revolution

I ∼ 12 M cells in total – level 0: 768,000, level 1: ∼ 1.5 M, level 2: ∼ 6.8 M, level 3:
∼ 3.0 M

I For comparison [Schepers and Boorsma, 2012]:

I Wind Multi-Block Liverpool University (34 M cells): 209 h CPU/1M cells/revolution

I EllipSys3D (28.3 M cell mesh): ∼ 40.7 h CPU/1M cells/revolution, but ∼ 15% error in Fx

and Tx already for 0◦ inflow [Sørensen et al., 2014]

R. Deiterding – Adaptive LBM for high-fidelity aerodynamics simulation 30



Adaptive lattice Boltzmann method Aerodynamics cases Wind turbine wake aerodynamics Conclusions

Mexico benchmark

Mexico experimental turbine – 30o yaw

I 157.6 h on 120 cores Intel-Xeon for 10 s (70.75 revolutions) −→ ∼ 22.25 h CPU/1M
cells/revolution

I ∼ 12 M cells in total – level 0: 768,000, level 1: ∼ 1.5 M, level 2: ∼ 6.8 M, level 3:
∼ 3.0 M

I For comparison [Schepers and Boorsma, 2012]:

I Wind Multi-Block Liverpool University (34 M cells): 209 h CPU/1M cells/revolution

I EllipSys3D (28.3 M cell mesh): ∼ 40.7 h CPU/1M cells/revolution, but ∼ 15% error in Fx

and Tx already for 0◦ inflow [Sørensen et al., 2014]

R. Deiterding – Adaptive LBM for high-fidelity aerodynamics simulation 30



Adaptive lattice Boltzmann method Aerodynamics cases Wind turbine wake aerodynamics Conclusions

Mexico benchmark

Comparison along transects – 30o yaw
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I Blade loads: Fx : Ref = 13.66 N, cur. = 14.8 N (8.3%)
I Tx : Ref = 7.72 Nm, cur. = 8.36 Nm (8.3%)

RD, S. L. Wood. Proc. of TORQUE 2016. J. Phys. Conference Series 753: 082005, 2016.
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Wake interaction prediction

Single Vestas V27

I Inflow velocity u∞ = 8m/s. Prescribed motion of rotor with nrpm = 33,
r = 14.5m: tip speed 46.7m/s, Rer ≈ 919, 700 TSR 5.84

I Simulation with three additional levels with refinement factors 2, 2, 4.

I Refinement based on vorticity and level set.

I Sampled rotor and circular regions (rc = 1.5r) every 0.034 s over t = [8, 18] s

I Computing 84,806 highest level iterations to te = 18 s.

I ∼ 24 time steps for 1o rotation

R. Deiterding – Adaptive LBM for high-fidelity aerodynamics simulation 32
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Wake interaction prediction

Simulation of the SWIFT array
I Three Vestas V27 turbines (geometric details prototypical). 225 kW power

generation at wind speeds 14 to 25m/s (then cut-off)

I Prescribed motion of rotor with 33 and 43 rpm. Inflow velocity 8 and 25m/s

I TSR: 5.84 and 2.43, Rer ≈ 919, 700 and 1,208,000

I Simulation domain 448m×240m×100m

I Base mesh 448× 240× 100 cells with
refinement factors 2, 2,4. Resolution of
rotor and tower ∆x = 6.25 cm

I 94,224 highest level iterations to te = 40 s
computed, then statistics are gathered for
10 s [Deiterding and Wood, 2016a]
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Wake interaction prediction

Vorticity – inflow at 30o, u = 8m/s, 33 rpm

I Top view in plane in z-direction at 30 m (hub height)
I Turbine hub and inflow at 30o yaw leads to off-axis wake impact.
I 160 cores Intel-Xeon E5 2.6 GHz, 33.03 h wall time for interval [50, 60] s (including

gathering of statistical data)
I ∼ 6.01 h per revolution (961 h CPU) −→ ∼ 5.74 h CPU/1M cells/revolution

R. Deiterding – Adaptive LBM for high-fidelity aerodynamics simulation 34
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Wake interaction prediction

Levels – inflow at 30o, u = 8m/s, 33 rpm

I At 63.8 s approximately 167M cells used vs. 44 billion (factor
264)

I ∼ 6.01 h per revolution (961 h CPU) −→ ∼ 5.74 h CPU/1M
cells/revolution

Level Grids Cells
0 2,463 10,752,000
1 6,464 20,674,760
2 39,473 131,018,832
3 827 4,909,632

R. Deiterding – Adaptive LBM for high-fidelity aerodynamics simulation 35
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Wake interaction prediction

Vorticity development – inflow at 0o, u = 8m/s, 33 rpm

I Refinement of wake up to level 2 (∆x = 25 cm).
I Vortex break-up before 2nd turbine is reached.
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Wake interaction prediction

Refinement – inflow at 0o, u = 8m/s, 33 rpm
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Wake interaction prediction

Mean point values – inflow at 0o,
I Turbines located at (0, 0, 0),

(135, 0, 0), (−5.65, 80.80, 0)

I Lines of 13 sensors with
∆y = 5m, z = 37m (approx.
center of rotor)

I u and p measured over
[40 s, 50 s] (1472 level-0 time
steps) and averaged

u = 25 m/s, 43 rpm, TSR=2.43
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I Velocity deficits larger for higher TSR.

I Velocity deficit before 2nd turbine more homogenous for small TSR.

RD, S. L. Wood. New Results in Numerical and Experimental Fluid Mechanics X, pages 845-857, Springer, 2016.
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I Developed a general parallel system for implementing block-based
dynamically adaptive LBMs with moving boundaries

I Verification versus conventional Navier-Stokes solvers has been shown

I Validation achieved even for complex 3D testcases

I Adaptive LBM significantly faster than conventional CFD solvers, ×16
faster than OpenFOAM [Fragner and Deiterding, 2016].

I Thanks to the low dissipation property of the LBM, the approach is very
suitable for wake prediction and direct numerical simulation (DNS).
Hierachical meshes are vital for efficiency.

I Currently testing more complex LES turbulence models: dynamic
Smagorinsky, a wall-adaptive linear eddy, and a coherent structure LES
turbulence model.
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Outlook

I For accurate prediction of shear flows and boundary layers, a wall-function
model for high Re flows will be implemented.

S825 airfoil – α = 13.1◦, Re = 2 · 106
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Motion solver

Based on the Newton-Euler method solution of dynamics equation of kinetic chains
[Tsai, 1999](
F
τP

)
=

(
m1 −m[c]×

m[c]×Icm −m[c]×[c]×

)(
aP
α

)
+

(
m[ω]×[ω]×c

[ω]×(Icm −m[c]×[c]×)ω

)
.

m = mass of the body, 1 = the 4×4 homogeneous identity matrix,
ap = acceleration of link frame with origin at p in the preceding link’s frame,
Icm = moment of inertia about the center of mass,
ω = angular velocity of the body,
α = angular acceleration of the body,
c is the location of the body’s center of mass,
and [c]× , [ω]× denote skew-symmetric cross product matrices.

Here, we additionally define the total force and torque acting on a body,
F = (FFSI + Fprescribed ) · Cxyz and

τ = (τFSI + τprescribed ) · Cαβγ respectively.

Where Cxyz and Cαβγ are the translational and rotational constraints,
respectively.
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