Principles of SAMR	Multiresolution techniques	Euler equation	MHD	Conclusions

Design and application of wavelet-based refinement criteria for hyperbolic conservation laws within the AMROC mesh adaptation framework

Ralf Deiterding* and Margarete O. Domingues[†]

* Aerodynamics and Flight Mechanics Research Group University of Southampton Highfield Campus, Southampton SO17 1BJ, UK E-mail: r.deiterding@soton.ac.uk

[†]INPE - National Institute for Space Research LAC/CTE Sao Jose dos Campos, Brazil

September 21, 2017

Principles of SAMR	Multiresolution techniques	Euler equation	MHD	Conclusions

Outline

Principles of SAMR

Block-structured adaptive mesh refinement Common refinement criteria Implementation in AMROC

Multiresolution techniques

Multiresolution principles New MR refinement criteria

Computational results for Euler equations

Verification Lax–Liu test cases

Computational results for magneto-hydrodynamics

Ideal magneto-hydrodynamics simulation

Conclusions

Summary and outlook

<u> </u>				
Principles of SAMR	Multiresolution techniques	Euler equation	MHD	Conclusions

Collaboration with

- ▶ Kai Schneider and Oliver Roussel (University of Marseille, France)
- Muller Moreira Lopes (INPE LAC/CTE)

Principles of SAMR	Multiresolution techniques	Euler equation	MHD	Conclusions
00000				
Block-structured adaptive mesh refinement				

For simplicity $\partial_t \mathbf{q}(\mathbf{x}, t) + \nabla \cdot \mathbf{f}(\mathbf{q}(\mathbf{x}, t)) = 0$

Refined blocks overlay coarser ones

Principles of SAMR	Multiresolution techniques	Euler equation	MHD	Conclusions	
00000					
Block-structured adaptive mesh refinement					

For simplicity $\partial_t \mathbf{q}(\mathbf{x}, t) + \nabla \cdot \mathbf{f}(\mathbf{q}(\mathbf{x}, t)) = 0$

Refined blocks overlay coarser ones

Principles of SAMR	Multiresolution techniques	Euler equation	MHD	Conclusions	
00000					
Block-structured adaptive mesh refinement					

For simplicity $\partial_t \mathbf{q}(\mathbf{x}, t) + \nabla \cdot \mathbf{f}(\mathbf{q}(\mathbf{x}, t)) = 0$

Refined blocks overlay coarser ones

Principles of SAMR	Multiresolution techniques	Euler equation	MHD	Conclusions
00000				
Block-structured adaptive mesh refinement				

For simplicity $\partial_t \mathbf{q}(\mathbf{x}, t) + \nabla \cdot \mathbf{f}(\mathbf{q}(\mathbf{x}, t)) = 0$

- Refined blocks overlay coarser ones
- Refinement in space and time by factor r_l
- Block (aka patch) based data structures
- + Numerical scheme

$$\mathbf{Q}_{jk}^{n+1} = \mathbf{Q}_{jk}^{n} - \frac{\Delta t}{\Delta x} \left[\mathbf{F}_{j+\frac{1}{2},k} - \mathbf{F}_{j-\frac{1}{2},k} \right] \\ - \frac{\Delta t}{\Delta y} \left[\mathbf{G}_{j,k+\frac{1}{2}} - \mathbf{G}_{j,k-\frac{1}{2}} \right]$$

only for single patch necessary

- + Efficient cache-reuse / vectorization possible
 - Cluster-algorithm necessary

Principles of SAMR	Multiresolution techniques	Euler equation	MHD	Conclusions		
00000						
Block-structured adaptive mesh refinement						

Level transfer / setting of ghost cells

$$\hat{\mathbf{Q}}_{jk}^{\prime} := rac{1}{\left(r_{l+1}
ight)^2} \sum_{\kappa=0}^{r_{l+1}-1} \sum_{\iota=0}^{r_{l+1}-1} \mathbf{Q}_{\mathbf{v}+\kappa,\mathbf{w}+\iota}^{\prime+1}$$

Principles of SAMR	Multiresolution techniques	Euler equation	MHD	Conclusions
00000				
Block-structured adaptive me	esh refinement			
1 1.	c / c			

Level transfer / setting of ghost cells

$$\hat{\mathbf{Q}}_{jk}^{\prime} := rac{1}{(r_{l+1})^2} \sum_{\kappa=0}^{r_{l+1}-1} \sum_{\iota=0}^{r_{l+1}-1} \mathbf{Q}_{\mathbf{v}+\kappa,\mathbf{w}+\iota}^{\prime+1}$$

Principles of SAMR	Multiresolution techniques	Euler equation	MHD	Conclusions
00000				
Block-structured adaptive mes	h refinement			
loval transf	or / cotting of gh	act colle		
Level transi	er / setting of gr	IOST CEIIS		

$$\hat{\mathbf{Q}}'_{jk} := rac{1}{\left(r_{l+1}
ight)^2} \sum_{\kappa=0}^{r_{l+1}-1} \sum_{\iota=0}^{r_{l+1}-1} \mathbf{Q}'^{l+1}_{\nu+\kappa,w+\iota}$$

Principles of SAMR	Multireso	lution techniques	Euler equation	MHD	Conclusions
00000					
Block-structured adaptive	mesh refinement				
	- /	_			

Level transfer / setting of ghost cells

$$\hat{\mathbf{Q}}'_{jk} := rac{1}{(r_{l+1})^2} \sum_{\kappa=0}^{r_{l+1}-1} \sum_{\iota=0}^{r_{l+1}-1} \mathbf{Q}'^{l+1}_{\nu+\kappa,w+\iota}$$

Principles of SAMR	Multiresolution techniques	Euler equation	MHD	Conclusions
00000				
Block-structured adaptive mes	h refinement			
I I.				

Level transfer / setting of ghost cells

Conservative averaging (restriction):

$$\hat{\mathbf{Q}}'_{jk} := rac{1}{\left(r_{l+1}
ight)^2} \sum_{\kappa=0}^{r_{l+1}-1} \sum_{\iota=0}^{r_{l+1}-1} \mathbf{Q}'^{l+1}_{\nu+\kappa,w+\iota}$$

Bilinear interpolation (prolongation):

$$egin{aligned} \check{\mathbf{Q}}_{\mathsf{vw}}^{l+1} &:= (1-f_1)(1-f_2)\,\mathbf{Q}_{j-1,k-1}^l \ &+ f_1(1-f_2)\,\mathbf{Q}_{j,k-1}^l + \ &(1-f_1)f_2\,\mathbf{Q}_{j-1,k}^l + f_1f_2\,\mathbf{Q}_{jk}^l \end{aligned}$$

For boundary conditions: linear time interpolation

$$\tilde{\mathbf{Q}}^{l+1}(t+\kappa\Delta t_{l+1}) := \left(1-\frac{\kappa}{r_{l+1}}\right)\,\check{\mathbf{Q}}^{l+1}(t) + \frac{\kappa}{r_{l+1}}\,\check{\mathbf{Q}}^{l+1}(t+\Delta t_l)\quad\text{for }\kappa=0,\ldots r_{l+1}$$

Principles of SAMR	Multiresolution techniques	Euler equation	Conclusions
00000			
Block-structured adaptive mesh refine	ment		

Example: Cell j, k

$$\begin{split} \check{\mathbf{Q}}_{jk}^{\prime}(t+\Delta t_l) &= \mathbf{Q}_{jk}^{\prime}(t) - \frac{\Delta t_l}{\Delta x_l} \left(\mathbf{F}_{j+\frac{1}{2},k}^{1,l} - \frac{1}{r_{l+1}^2} \sum_{\kappa=0}^{r_{l+1}-1} \sum_{\iota=0}^{r_{l+1}-1} \mathbf{F}_{\nu+\frac{1}{2},w+\iota}^{1,l+1}(t+\kappa\Delta t_{l+1}) \right) \\ &- \frac{\Delta t_l}{\Delta y_l} \left(\mathbf{F}_{j,k+\frac{1}{2}}^{2,l} - \mathbf{F}_{j,k-\frac{1}{2}}^{2,l} \right) \end{split}$$

Correction pass:

Principles of SAMR	Multiresolution techniques	Euler equation	Conclusions
00000			
Block-structured adaptive mesh refine	ment		

Example: Cell j, k

$$\begin{split} \check{\mathbf{Q}}_{jk}^{\prime}(t+\Delta t_l) &= \mathbf{Q}_{jk}^{\prime}(t) - \frac{\Delta t_l}{\Delta x_l} \left(\mathbf{F}_{j+\frac{1}{2},k}^{1,l} - \frac{1}{r_{l+1}^2} \sum_{\kappa=0}^{r_{l+1}-1} \sum_{\iota=0}^{r_{l+1}-1} \mathbf{F}_{\nu+\frac{1}{2},w+\iota}^{1,l+1}(t+\kappa\Delta t_{l+1}) \right) \\ &- \frac{\Delta t_l}{\Delta y_l} \left(\mathbf{F}_{j,k+\frac{1}{2}}^{2,l} - \mathbf{F}_{j,k-\frac{1}{2}}^{2,l} \right) \end{split}$$

Correction pass:

1.
$$\delta \mathbf{F}_{j-\frac{1}{2},k}^{1,l+1} := -\mathbf{F}_{j-\frac{1}{2},k}^{1,l}$$

Principles of SAMR	Multiresolution techniques	Euler equation	Conclusions
00000			
Block-structured adaptive mesh refine	ment		

Example: Cell j, k

$$\begin{split} \check{\mathbf{Q}}_{jk}^{\prime}(t+\Delta t_l) &= \mathbf{Q}_{jk}^{\prime}(t) - \frac{\Delta t_l}{\Delta x_l} \left(\mathbf{F}_{j+\frac{1}{2},k}^{1,l} - \frac{1}{r_{l+1}^2} \sum_{\kappa=0}^{r_{l+1}-1} \sum_{\iota=0}^{r_{l+1}-1} \mathbf{F}_{\nu+\frac{1}{2},w+\iota}^{1,l+1}(t+\kappa\Delta t_{l+1}) \right) \\ &- \frac{\Delta t_l}{\Delta y_l} \left(\mathbf{F}_{j,k+\frac{1}{2}}^{2,l} - \mathbf{F}_{j,k-\frac{1}{2}}^{2,l} \right) \end{split}$$

Correction pass:

1.
$$\delta \mathbf{F}_{j-\frac{1}{2},k}^{1,l+1} := -\mathbf{F}_{j-\frac{1}{2},k}^{1,l}$$

2. $\delta \mathbf{F}_{j-\frac{1}{2},k}^{1,l+1} := \delta \mathbf{F}_{j-\frac{1}{2},k}^{1,l+1} + \frac{1}{r_{l+1}^2} \sum_{\iota=0}^{r_{l+1}-1} \mathbf{F}_{\nu+\frac{1}{2},\nu+\iota}^{1,l+1}(t+\kappa\Delta t_{l+1})$

Principles of SAMR	Multiresolution techniques	Euler equation	Conclusions
00000			
Block-structured adaptive mesh refine	ment		

Example: Cell j, k

$$\begin{split} \check{\mathbf{Q}}_{jk}^{\prime}(t+\Delta t_l) &= \mathbf{Q}_{jk}^{\prime}(t) - \frac{\Delta t_l}{\Delta x_l} \left(\mathbf{F}_{j+\frac{1}{2},k}^{1,l} - \frac{1}{r_{l+1}^2} \sum_{\kappa=0}^{r_{l+1}-1} \sum_{\iota=0}^{r_{l+1}-1} \mathbf{F}_{\nu+\frac{1}{2},w+\iota}^{1,l+1}(t+\kappa\Delta t_{l+1}) \right) \\ &- \frac{\Delta t_l}{\Delta y_l} \left(\mathbf{F}_{j,k+\frac{1}{2}}^{2,l} - \mathbf{F}_{j,k-\frac{1}{2}}^{2,l} \right) \end{split}$$

Correction pass:

1. $\delta \mathbf{F}_{j-\frac{1}{2},k}^{1,l+1} := -\mathbf{F}_{j-\frac{1}{2},k}^{1,l}$ 2. $\delta \mathbf{F}_{j-\frac{1}{2},k}^{1,l+1} := \delta \mathbf{F}_{j-\frac{1}{2},k}^{1,l+1} + \frac{1}{r_{l+1}^2} \sum_{\iota=0}^{r_{l+1}-1} \mathbf{F}_{\nu+\frac{1}{2},w+\iota}^{1,l+1}(t+\kappa\Delta t_{l+1})$ 3. $\mathbf{\check{Q}}_{jk}^{l}(t+\Delta t_{l}) := \mathbf{Q}_{jk}^{l}(t+\Delta t_{l}) + \frac{\Delta t_{l}}{\Delta x_{l}} \delta \mathbf{F}_{j-\frac{1}{2},k}^{1,l+1}$

Principles of SAMR	Multiresolution techniques	Euler equation	Conclusions
00000			
Common refinement criteria			

Refinement criteria

Scaled gradient of scalar quantity w

 $|w(\mathbf{Q}_{j+1,k}) - w(\mathbf{Q}_{jk})| > \epsilon_w \ , \ |w(\mathbf{Q}_{j,k+1}) - w(\mathbf{Q}_{jk})| > \epsilon_w \ , \ |w(\mathbf{Q}_{j+1,k+1}) - w(\mathbf{Q}_{jk})| > \epsilon_w$

Principles of SAMR	Multiresolution techniques	Euler equation	MHD	Conclusions
00000				
Common refinement criteria				
_ ~				

Refinement criteria

Scaled gradient of scalar quantity w

$$|w(\mathbf{Q}_{j+1,k}) - w(\mathbf{Q}_{jk})| > \epsilon_w \ , \ |w(\mathbf{Q}_{j,k+1}) - w(\mathbf{Q}_{jk})| > \epsilon_w \ , \ |w(\mathbf{Q}_{j+1,k+1}) - w(\mathbf{Q}_{jk})| > \epsilon_w$$

2. Create temporary Grid coarsened by factor 2 Initialize with fine-grid-1. Richardson-type ervalues of preceding 3. Compare temporor estimation on intetime step rary solutions rior cells $\mathcal{H}^{\Delta t_l} \, \mathbf{Q}^l(t_l - \Delta t_l) \qquad \mathcal{H}^{\Delta t_l} (\mathcal{H}^{\Delta t_l} \, \mathbf{Q}^l(t_l - \Delta t_l)) = \mathcal{H}_2^{\Delta t_l} \, \mathbf{Q}^l(t_l - \Delta t_l)$

 $\mathcal{H}^{2\Delta t_l} \, \bar{\mathbf{Q}}^l (t_l - \Delta t_l)$

Principles of SAMR	Multiresolution techniques	Euler equation	Conclusions
00000			
Implementation in AMROC			

UML design of AMROC

 Classical framework approach with generic main program in C++

Principles of SAMR	Multiresolution techniques	Euler equation	Conclusions
00000			
Implementation in AMROC			

UML design of AMROC

- Classical framework approach with generic main program in C++
- Customization / modification in Problem.h include file by derivation from base classes and redefining virtual interface functions

Principles of SAMR	Multiresolution techniques	Euler equation	Conclusions
00000			
Implementation in AMROC			

UML design of AMROC

- Classical framework approach with generic main program in C++
- Customization / modification in Problem.h include file by derivation from base classes and redefining virtual interface functions
- Predefined, scheme-specific classes provided for standard simulations

Principles of SAMR	Multiresolution techniques	Euler equation	Conclusions
	•••		
Multiresolution principles			

Multiresolution (MR) principles

- Multiresolution analysis is a tool to construct wavelet functions and consequently wavelet transforms
 - Information can be organized in different scale levels
 - Scale can be associated to periods bands
- Information in a certain level can be obtained by the combination of the coarser levels with the wavelet coefficient contributions and vice-versa

$$\mathbf{Q}^{\ell+1} \underset{prediction}{\stackrel{\text{projection}}{\Rightarrow}} \mathbf{Q}_{\mathsf{MR}}^{\ell+1} = \{\mathbf{Q}^{\ell}\} \cup \{d^{\ell}\},$$

Principles of SAMR	Multiresolution techniques	Euler equation	Conclusions
	000		
Multiresolution principles			

Multiresolution (MR) principles

- Multiresolution analysis is a tool to construct wavelet functions and consequently wavelet transforms
 - Information can be organized in different scale levels
 - Scale can be associated to periods bands
- Information in a certain level can be obtained by the combination of the coarser levels with the wavelet coefficient contributions and vice-versa

$$\mathbf{Q}^{\ell+1} \underset{prediction}{\stackrel{\text{projection}}{\rightleftharpoons}} \mathbf{Q}_{\mathsf{MR}}^{\ell+1} = \{\mathbf{Q}^{\ell}\} \cup \{d^{\ell}\},$$

- ▶ PDE approach: **Harten's cell average MR** is used, which is compatible with the underlying FV discretization [Rousell et al., 2003]
- Wavelet coefficients are used to characterize the local regularity of the solution
 - Iow amplitudes of the coefficients are associated to regions where the solution is smooth
 - high amplitudes appear only in regions where the solution is less regular.

Principles of SAMR	Multiresolution techniques	Euler equation	MHD	Conclusions
	000			
Multiresolution principles				

MR operations for FV methods

1 Projection (restriction):

 $P_{\ell+1}^{\ell}: \mathbf{Q}^{\ell+1} o \mathbf{Q}^{\ell}$

2 Prediction (prolongation):

$$\left\{ \ P_\ell^{\ell+1}: \mathbf{Q}^\ell o \mathbf{ ilde Q}^{\ell+1}
ight\}$$

$$P_{\ell+1}^{\ell} : \mathbf{Q}_{i}^{\ell} = \frac{1}{2} \left(\mathbf{Q}_{2i}^{\ell+1} + \mathbf{Q}_{2i+1}^{\ell+1} \right) \qquad P_{\ell,0}^{\ell+1} : \tilde{\mathbf{Q}}_{2i}^{\ell+1} = \mathbf{Q}_{i}^{\ell} - \frac{1}{8} (\mathbf{Q}_{i+1}^{\ell} - \mathbf{Q}_{i-1}^{\ell}),$$
$$P_{\ell,1}^{\ell+1} : \tilde{\mathbf{Q}}_{2i+1}^{\ell+1} = \mathbf{Q}_{i}^{\ell} + \frac{1}{8} (\mathbf{Q}_{i+1}^{\ell} - \mathbf{Q}_{i-1}^{\ell})$$

2nd order polynomial interpolation as proposed by [Harten, 1995].

Principles of SAMR	Multiresolution techniques	Euler equation	MHD	Conclusions
	000			
New MR refinement criteria				

Use of wavelet transform for adaptation

Wavelet coefficients:

$$\mathbf{d}^\ell = \mathbf{Q}^{\ell+1} - \mathbf{P}_\ell^{\ell+1} \, \mathbf{Q}^\ell$$
 prediction error

Use of predicton error as refinement criterion:

$$|\mathbf{Q}^{\ell} - P_{\ell-1}^{\ell} P_{\ell}^{\ell-1} \mathbf{Q}^{\ell}| > \epsilon$$

Choice of ϵ :

Principles of SAMR	Multiresolution techniques	Euler equation	MHD	Conclusions
	000			
New MR refinement criteria				

Use of wavelet transform for adaptation

Wavelet coefficients:

$$\mathbf{d}^{\ell} = \mathbf{Q}^{\ell+1} - \mathbf{P}_{\ell}^{\ell+1} \, \mathbf{Q}^{\ell}$$
 prediction error

Use of predicton error as refinement criterion:

$$|\mathbf{Q}^{\ell} - P_{\ell-1}^{\ell} P_{\ell}^{\ell-1} \mathbf{Q}^{\ell}| > \epsilon$$

Choice of ϵ :

- level-independent threshold parameter $\epsilon \equiv \epsilon_{\ell}$
- Harten's thresholding strategy:

$$\epsilon^{\ell} = rac{\epsilon}{|\Omega|} 2^{2(\ell+1-L)}, \ \ 0 \leq \ell < L$$

 vector-valued threshold in Eucledian norm of velocity field component of Q

Marine Ca			
Verification			
		• 00 0000	
Principles of SAMR	Multiresolution techniques	Euler equation	Conclusions

Moving Gaussian bump

Initial condition:

$$\rho(x,y) = 1 + \exp\left(-\frac{x^2 + y^2}{\frac{1}{16}}\right), \ u_x(x,y) = u_y(x,y) \equiv 1, \ \rho(x,y) \equiv 1$$

- Domain size: $[-1,1] \times [-1,1]$
- Periodic boundary conditions
- The exact solution is a bump moving along the diagonal x = y, without changing its shape.
- Base grid of $80 \times 80 + 3$ levels (all refined by a factor 2)
- Finite volume scheme is the Van Leer flux-vector splitting, second order accurate MUSCL slope-limiting method combined with dimensional splitting.
- Clustering efficiency $\eta = 0.95$.
- Final time: t_e = 2

Principles of SAMR	Multiresolution techniques	Euler equation	MHD	Conclusions
		000000		
Verification				

Moving Gausian bump - refinement meshes

Hierchical threshold

Gradient based

Richardson estimation

 $\epsilon = \text{const.}$

MR based, scalar

MR based, scalar

MR based, vector

MR based, vector

► Level-wise adaptation error: $L_{1,AMR}(\mathbf{Q}, G_{\ell}) = \sum_{i,j} |\mathbf{Q}_{i,j} - \mathbf{Q}_{i,j}^r| \Delta x_{\ell} \Delta y_{\ell}$. $\mathbf{Q}_{i,j}^r$ is reference solution from uniform at highest resolution

- ► Level-wise adaptation error: $L_{1,AMR}(\mathbf{Q}, G_{\ell}) = \sum_{i,j} |\mathbf{Q}_{i,j} \mathbf{Q}_{i,j}^r| \Delta x_{\ell} \Delta y_{\ell}$. $\mathbf{Q}_{i,j}^r$ is reference solution from uniform at highest resolution
- Since the errors satisfy $L_1(\mathbf{Q}) L_{1,uni}(\mathbf{Q}) \le L_{1,AMR}(\mathbf{Q})$ and $L_{1,uni}$ is a constant, monotone behavior in $L_{1,AMR}$ will be preserved in L_1 .

- Level-wise adaptation error: $L_{1,AMR}(\mathbf{Q}, G_{\ell}) = \sum_{i,j} |\mathbf{Q}_{i,j} \mathbf{Q}_{i,j}^r| \Delta x_{\ell} \Delta y_{\ell}$. $\mathbf{Q}_{i,j}^r$ is reference solution from uniform at highest resolution
- Since the errors satisfy $L_1(\mathbf{Q}) L_{1,uni}(\mathbf{Q}) \le L_{1,AMR}(\mathbf{Q})$ and $L_{1,uni}$ is a constant, monotone behavior in $L_{1,AMR}$ will be preserved in L_1 .
- all MR criteria are more efficient than the SG and the Richardson estimation criteria

Principles of SAMR	Multiresolution techniques	Euler equation	MHD	Conclusions
		0000000		
Lax-Liu test cases				

Lax-Liu configurations

Variables	Domain position			
	Ι	II	III	IV
$Density(\rho)$	1.00	2.00	1.00	3.00
Pressure (p)	1.00	1.00	1.00	1.00
Velocity component (v_1)	0.75	0.75	-0.75	-0.75
Velocity component (v_2)	-0.50	0.50	0.50	-0.50

Initial Values for the Lax-Liu configuration #6.

 x_2

- 2nd-order accurate shock-capturing MUSCL-Hancock scheme with Minmod limiter and AUSMDV flux-vector splitting.
- Base mesh of 8 × 8 cells, with 8 additional levels refined by factor 2
- Full mesh of 2048×2048 cells, final time of $t_e = 0.8$.
- Left: cluster threshold η also varied. Total number of cells accumulated over all time steps.

 $L^{\rho}_{1,AMR}$

Principles of SAMR	Multiresolution techniques	Euler equation	MHD	Conclusions
		0000000		
Lax–Liu test cases				

Configuration #6 at $t_e = 0.8$ – Refinement

SAMR with SG criterion, $\epsilon^{\rho}=0.05$

SAMR with MR criterion, $\epsilon=0.0025$

2-Aris 0.8

1024²

 2048^{2}

R. Deiterding, M. O. Domingues - Design and application of wavelet-based refinement criteria

Principles of SAMR	Multiresolution techniques	Euler equation	MHD	Conclusions
		000000		
Lax–Liu test cases				

Summary of Lax–Liu configuration tests

• We studied 19 configurations at 12 threshold values. For $\eta = 0.8$, the average cell savings of the MR approach versus SG are:

The majority of configurations involve all three wave types and for those the new MR criteria are most efficient.

Principles of SAMR	Multiresolution techniques	Euler equation	MHD	Conclusions
		000000		
Lax–Liu test cases				

Summary of Lax–Liu configuration tests

• We studied 19 configurations at 12 threshold values. For $\eta = 0.8$, the average cell savings of the MR approach versus SG are:

- The majority of configurations involve all three wave types and for those the new MR criteria are most efficient.
- For the few configurations, that are dominated at large by isolated global discontinuites, especially #3, SG can be slightly more effective than MR.
| Principles of SAMR | Multiresolution techniques | Euler equation | MHD | Conclusions |
|--------------------|----------------------------|----------------|-----|-------------|
| | | 000000 | | |
| Lax–Liu test cases | | | | |
| | | | | |

Summary of Lax-Liu configuration tests

• We studied 19 configurations at 12 threshold values. For $\eta = 0.8$, the average cell savings of the MR approach versus SG are:

- The majority of configurations involve all three wave types and for those the new MR criteria are most efficient.
- For the few configurations, that are dominated at large by isolated global discontinuites, especially #3, SG can be slightly more effective than MR.
- The simple SG criterion is basically unaffected by numerical artefacts from the FV method, the MR criteria tend to over-refine those

Principles of SAMR	Multiresolution techniques	Euler equation	MHD	Conclusions	
			000000		
Ideal magneto-hydrodynamics simulation					

Governing equations

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) &= \mathbf{0} \\ \frac{\partial \rho \mathbf{u}}{\partial t} + \nabla \cdot \left[\rho \mathbf{u}^{\mathsf{t}} \mathbf{u} + \left(p + \frac{\mathbf{B} \cdot \mathbf{B}}{2} \right) \mathbf{I} - \mathbf{B}^{\mathsf{t}} \mathbf{B} \right] &= \mathbf{0} \\ \frac{\partial \rho E}{\partial t} + \nabla \cdot \left[\left(\rho E + p + \frac{\mathbf{B} \cdot \mathbf{B}}{2} \right) \mathbf{u} - (\mathbf{u} \cdot \mathbf{B}) \mathbf{B} \right] &= \mathbf{0} \\ \frac{\partial \mathbf{B}}{\partial t} + \nabla \cdot \left(\mathbf{u}^{\mathsf{t}} \mathbf{B} - \mathbf{B}^{\mathsf{t}} \mathbf{u} \right) &= \mathbf{0} \end{aligned}$$

with equation of state

$$p = (\gamma - 1) \left(\rho E - \rho \frac{\mathbf{u}^2}{2} - \frac{\mathbf{B}^2}{2} \right)$$

The ideal MDH model is still hyperbolic, yet by re-writing the induction equation, one finds that the magnetic field has to satisfy at all times t the elliptic constraint

$$\nabla \cdot \mathbf{B} = 0.$$

Principles of SAMR	Multiresolution techniques	Euler equation	MHD	Conclusions	
			00000		
Ideal magneto-hydrodynamics simulation					

Generalized Lagrangian multipliers for divergence control

Hyperbolic-parabolic correction of 2d ideal MHD model [Dedner et al., 2002]:

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \frac{\partial \rho u_x}{\partial x} + \frac{\partial \rho u_y}{\partial y} &= 0 \\ \frac{\partial (\rho u_x)}{\partial t} + \frac{\partial}{\partial x} \left[\rho u_x^2 + \rho \left(\rho + \frac{\mathbf{B} \cdot \mathbf{B}}{2} \right) - B_x^2 \right] + \frac{\partial}{\partial y} \left(\rho u_x u_y - B_x B_y \right) &= 0 \\ \frac{\partial (\rho u_y)}{\partial t} + \frac{\partial}{\partial x} \left(\rho u_x u_y - B_x B_y \right) + \frac{\partial}{\partial y} \left[\rho u_y^2 + \rho \left(\rho + \frac{\mathbf{B} \cdot \mathbf{B}}{2} \right) - B_y^2 \right] &= 0 \\ \frac{\partial (\rho u_z)}{\partial t} + \frac{\partial}{\partial x} \left(\rho u_z u_x - B_z B_x \right) + \frac{\partial}{\partial y} \left(\rho u_z u_y - B_z B_y \right) &= 0 \\ \frac{\partial \rho E}{\partial t} + \frac{\partial}{\partial x} \left[\left(\rho E + \rho + \frac{\mathbf{B} \cdot \mathbf{B}}{2} \right) \mathbf{u}_x - (\mathbf{u} \cdot \mathbf{B}) B_x \right] + \frac{\partial}{\partial y} \left[\left(\rho E + \rho + \frac{\mathbf{B} \cdot \mathbf{B}}{2} \right) \mathbf{u}_y - (\mathbf{u} \cdot \mathbf{B}) B_y \right] &= 0 \\ \frac{\partial B_x}{\partial t} + \frac{\partial \psi}{\partial x} + \frac{\partial}{\partial y} \left(u_y B_x - B_y u_x \right) &= 0 \\ \frac{\partial B_y}{\partial t} + \frac{\partial}{\partial x} \left(u_x B_y - B_x u_y \right) + \frac{\partial \psi}{\partial y} &= 0 \\ \frac{\partial B_z}{\partial t} + \frac{\partial}{\partial x} \left(u_x B_z - B_z u_x \right) + \frac{\partial}{\partial y} \left(u_y B_z - B_y u_z \right) &= 0 \\ \frac{\partial \psi}{\partial t} + c_h^2 \left(\frac{\partial B_x}{\partial x} + \frac{\partial B_y}{\partial y} \right) &= -\frac{c_h^2}{c_h^2} \psi \end{aligned}$$

Principles of SAMR	Multiresolution techniques	Euler equation	MHD	Conclusions	
			000000		
Ideal magneto-hydrodynamics simulation					

- Adaptive solution on 50 \times 50 grid with 4 additional levels refined by $r_l = 2$
- Initial condition

$$\begin{aligned} \rho(x, y, 0) &= \gamma^2, \quad u_x(x, y, 0) = -\sin(y), \quad u_y(x, y, 0) = \sin(x), \quad u_z(x, y, 0) = 0\\ \rho(x, y, 0) &= \gamma, \quad B_x(x, y, 0) = -\sin(y), \quad B_y(x, y, 0) = 2\sin(x), \quad B_z(x, y, 0) = 0 \end{aligned}$$

Principles of SAMR	Multiresoli 000		Euler equation	MHD 000000	Conclusions O
Ideal magneto-hydrody	namics simulation				
Orszag-T	ang vorte	x			
 Ada Initi 	aptive solution on 5 ial condition	0 $ imes$ 50 grid with 4 ad	ditional levels refined by	$r_{l} = 2$	
	$\rho(x,y,0)=\gamma^2,$	$u_x(x,y,0)=-\sin(y)$	$u_y(x, y, 0) = \sin(x)$	$u_z(x,y,0)=0$	
	$p(x, y, 0) = \gamma, B$	$B_x(x, y, 0) = -\sin(y)$	$, B_y(x,y,0)=2\sin(x)$	$x), B_z(x, y, 0) = 0$)
time=0.3	314159		time=0.314159		
4.0- 5.0- 2.0-			60- 50- 60- 7.0-		
2.0			2.0		

3.0

Scaled gradient of ρ

4.0

5.0

6.0

1.0

2.0

3.0

Multi-resolution criterion with

hierarchical thresholding

4.0

1.0

2.0

5.0

6.0

Principles of SAMR	Multireso			MHD	Conclusions
00000	000		0000000	00000	
Ideal magneto-hydrodyna	amics simulation				
Orszag-T	ang vorte	ex			
 Adar Initia 	otive solution on al condition	50 $ imes$ 50 grid with 4 addit	ional levels refined by r_l	= 2	
	$\rho(x, y, 0) = \gamma^2,$	$u_x(x, y, 0) = -\sin(y),$	$u_y(x, y, 0) = \sin(x),$	$u_z(x,y,0)=0$	
ŀ	$p(x, y, 0) = \gamma,$	$B_x(x,y,0)=-\sin(y),$	$B_y(x,y,0)=2\sin(x),$	$B_z(x,y,0)=0$	
time=0.62	8319		time=0.628319		
6.0			i.o-		

Principles of SAMR	Multiresolution techniques	Euler equation	MHD	Conclusions	
			000000		
Ideal magneto-hydrodynamics simulation					

- Adaptive solution on 50 \times 50 grid with 4 additional levels refined by $r_l = 2$
- Initial condition

$$\begin{split} \rho(x, y, 0) &= \gamma^2, \quad u_x(x, y, 0) = -\sin(y), \quad u_y(x, y, 0) = \sin(x), \quad u_z(x, y, 0) = 0\\ \rho(x, y, 0) &= \gamma, \quad B_x(x, y, 0) = -\sin(y), \quad B_y(x, y, 0) = 2\sin(x), \quad B_z(x, y, 0) = 0 \end{split}$$

time=0.942478

time=0.942478

Principles of SAMR	Multiresolution techniques	Euler equation	MHD	Conclusions	
			000000		
Ideal magneto-hydrodynamics simulation					

- Adaptive solution on 50 \times 50 grid with 4 additional levels refined by $r_l = 2$
- Initial condition

$$\begin{split} \rho(x, y, 0) &= \gamma^2, \quad u_x(x, y, 0) = -\sin(y), \quad u_y(x, y, 0) = \sin(x), \quad u_z(x, y, 0) = 0\\ \rho(x, y, 0) &= \gamma, \quad B_x(x, y, 0) = -\sin(y), \quad B_y(x, y, 0) = 2\sin(x), \quad B_z(x, y, 0) = 0 \end{split}$$

time=1.25664

time=1.25664

Principles of SAMR	Multiresolution techniques	Euler equation	MHD	Conclusions	
			000000		
Ideal magneto-hydrodynamics simulation					

- Adaptive solution on 50 \times 50 grid with 4 additional levels refined by $r_l = 2$
- Initial condition

$$\begin{split} \rho(x, y, 0) &= \gamma^2, \quad u_x(x, y, 0) = -\sin(y), \quad u_y(x, y, 0) = \sin(x), \quad u_z(x, y, 0) = 0\\ \rho(x, y, 0) &= \gamma, \quad B_x(x, y, 0) = -\sin(y), \quad B_y(x, y, 0) = 2\sin(x), \quad B_z(x, y, 0) = 0 \end{split}$$

time=1.5708

Principles of SAMR	Multiresolution techniques	Euler equation	MHD	Conclusions	
			000000		
Ideal magneto-hydrodynamics simulation					

- Adaptive solution on 50 \times 50 grid with 4 additional levels refined by $r_l = 2$
- Initial condition

$$\begin{split} \rho(x, y, 0) &= \gamma^2, \quad u_x(x, y, 0) = -\sin(y), \quad u_y(x, y, 0) = \sin(x), \quad u_z(x, y, 0) = 0\\ \rho(x, y, 0) &= \gamma, \quad B_x(x, y, 0) = -\sin(y), \quad B_y(x, y, 0) = 2\sin(x), \quad B_z(x, y, 0) = 0 \end{split}$$

time=1.88496

time=1.88496

Principles of SAMR	Multiresolution techniques	Euler equation	MHD	Conclusions	
			000000		
Ideal magneto-hydrodynamics simulation					

- Adaptive solution on 50 \times 50 grid with 4 additional levels refined by $r_l = 2$
- Initial condition

$$\begin{split} \rho(x, y, 0) &= \gamma^2, \quad u_x(x, y, 0) = -\sin(y), \quad u_y(x, y, 0) = \sin(x), \quad u_z(x, y, 0) = 0\\ \rho(x, y, 0) &= \gamma, \quad B_x(x, y, 0) = -\sin(y), \quad B_y(x, y, 0) = 2\sin(x), \quad B_z(x, y, 0) = 0 \end{split}$$

time=2.19911

time=2.19911

Principles of SAMR	Multiresolution techniques	Euler equation	MHD	Conclusions	
			000000		
Ideal magneto-hydrodynamics simulation					

- Adaptive solution on 50 \times 50 grid with 4 additional levels refined by $r_l = 2$
- Initial condition

$$\begin{split} \rho(x, y, 0) &= \gamma^2, \quad u_x(x, y, 0) = -\sin(y), \quad u_y(x, y, 0) = \sin(x), \quad u_z(x, y, 0) = 0\\ \rho(x, y, 0) &= \gamma, \quad B_x(x, y, 0) = -\sin(y), \quad B_y(x, y, 0) = 2\sin(x), \quad B_z(x, y, 0) = 0 \end{split}$$

time=2.51327

time=2.51327

Principles of SAMR	Multiresolution techniques	Euler equation	MHD	Conclusions
			000000	
Ideal magneto-hydrodynamics simulation				

- Adaptive solution on 50 \times 50 grid with 4 additional levels refined by $r_l = 2$
- Initial condition

$$\rho(x, y, 0) = \gamma^2, \quad u_x(x, y, 0) = -\sin(y), \quad u_y(x, y, 0) = \sin(x), \quad u_z(x, y, 0) = 0$$

$$p(x, y, 0) = \gamma$$
, $B_x(x, y, 0) = -\sin(y)$, $B_y(x, y, 0) = 2\sin(x)$, $B_z(x, y, 0) = 0$

time=2.82743

time=2.82743

Principles of SAMR	Multiresolution techniques	Euler equation	MHD	Conclusions	
			000000		
Ideal magneto-hydrodynamics simulation					

- Adaptive solution on 50 \times 50 grid with 4 additional levels refined by $r_l = 2$
- Initial condition

$$\rho(x, y, 0) = \gamma^2$$
, $u_x(x, y, 0) = -\sin(y)$, $u_y(x, y, 0) = \sin(x)$, $u_z(x, y, 0) = 0$

$$p(x, y, 0) = \gamma$$
, $B_x(x, y, 0) = -\sin(y)$, $B_y(x, y, 0) = 2\sin(x)$, $B_z(x, y, 0) = 0$

time=3.14159

time=3.14159

Principles of SAMR	Multiresolution techniques	Euler equation	MHD	Conclusions	
			000000		
Ideal magneto-hydrodynamics simulation					

Orszag-Tang vortex - cells on finest level vs. error

- > This is work in progress, and for now, the error is evaluated in ρ only.
- Compared are SG and MR with hierarchical threshold also applied to ρ only.

Principles of SAMR	Multiresolution techniques	Euler equation	MHD	Conclusions
			000000	
Ideal magneto-hydrodynamics simulat	ion			

- Adaptive solution on $32 \times 32 \times 32$ grid with 3 additional levels refined by $r_l = 2$
- Initial condition

$$\begin{split} \rho(x, y, z) &= \gamma^2, \quad p(x, y, 0) = \gamma, \quad e = 0.2, \quad \gamma = 5/3, \quad u_z(x, y, z) = e\sin(2\pi z) \\ u_x(x, y, z) &= -(1 + e\sin(2\pi z))\sin(2\pi y), \quad u_y(x, y, z) = (1 + e\sin(2\pi z))\sin(2\pi x) \\ B_x(x, y, z) &= -\sin(2\pi y), \quad B_y(x, y, z) = \sin(4\pi x), \quad B_z(x, y, z) = 0 \end{split}$$

Principles of SAMR	Multiresolution techniques	Euler equation	MHD	Conclusions
			000000	
Ideal magneto-hydrodynamics simulat	ion			

- Adaptive solution on $32 \times 32 \times 32$ grid with 3 additional levels refined by $r_l = 2$
- Initial condition

$$\begin{split} \rho(x, y, z) &= \gamma^2, \quad p(x, y, 0) = \gamma, \quad e = 0.2, \quad \gamma = 5/3, \quad u_z(x, y, z) = e\sin(2\pi z) \\ u_x(x, y, z) &= -(1 + e\sin(2\pi z))\sin(2\pi y), \quad u_y(x, y, z) = (1 + e\sin(2\pi z))\sin(2\pi x) \\ B_x(x, y, z) &= -\sin(2\pi y), \quad B_y(x, y, z) = \sin(4\pi x), \quad B_z(x, y, z) = 0 \end{split}$$

Principles of SAMR	Multiresolution techniques	Euler equation	MHD	Conclusions
			000000	
Ideal magneto-hydrodynamics simulation				

- Adaptive solution on $32 \times 32 \times 32$ grid with 3 additional levels refined by $r_l = 2$
- Initial condition

$$\begin{split} \rho(x, y, z) &= \gamma^2, \quad p(x, y, 0) = \gamma, \quad e = 0.2, \quad \gamma = 5/3, \quad u_z(x, y, z) = e\sin(2\pi z) \\ u_x(x, y, z) &= -(1 + e\sin(2\pi z))\sin(2\pi y), \quad u_y(x, y, z) = (1 + e\sin(2\pi z))\sin(2\pi x) \\ B_x(x, y, z) &= -\sin(2\pi y), \quad B_y(x, y, z) = \sin(4\pi x), \quad B_z(x, y, z) = 0 \end{split}$$

Principles of SAMR	Multiresolution techniques	Euler equation	MHD	Conclusions
			000000	
Ideal magneto-hydrodynamics simulat	ion			

- Adaptive solution on $32 \times 32 \times 32$ grid with 3 additional levels refined by $r_l = 2$
- Initial condition

$$\begin{aligned} \rho(x, y, z) &= \gamma^2, \quad p(x, y, 0) = \gamma, \quad e = 0.2, \quad \gamma = 5/3, \quad u_z(x, y, z) = e\sin(2\pi z) \\ u_x(x, y, z) &= -(1 + e\sin(2\pi z))\sin(2\pi y), \quad u_y(x, y, z) = (1 + e\sin(2\pi z))\sin(2\pi x) \\ B_x(x, y, z) &= -\sin(2\pi y), \quad B_y(x, y, z) = \sin(4\pi x), \quad B_z(x, y, z) = 0 \end{aligned}$$

Principles of SAMR	Multiresolution techniques	Euler equation	MHD	Conclusions	
			000000		
Ideal magneto-hydrodynamics simulation					

Principles of SAMR	Multiresolution techniques	Euler equation	MHD	Conclusions	
			000000		
Ideal magneto-hydrodynamics simulation					

Principles of SAMR	Multiresolution techniques	Euler equation	MHD	Conclusions	
			000000		
Ideal magneto-hydrodynamics simulation					

Principles of SAMR	Multiresolution techniques	Euler equation	MHD	Conclusions	
			000000		
Ideal magneto-hydrodynamics simulation					

Principles of SAMR	Multiresolution techniques	Euler equation	MHD	Conclusions
			000000	
Ideal magneto-hydrodynamics simulation				

Principles of SAMR	Multiresolution techniques	Euler equation	MHD	Conclusions			
			000000				
Ideal magneto-hydrodynamics simulation							

Principles of SAMR	Multiresolution techniques	Euler equation	MHD	Conclusions			
			000000				
Ideal magneto-hydrodynamics simulation							

Principles of SAMR Multiresolution technique			Conclusions		
				•	
Summary and outlook					
Conclusions					
CONCIDENTIA					

- ► For the first time, wavelet-based multi-resolution has been implemented as refinement criterion in a general and parallel structured AMR framework.
- An approach has been devised to quantify the efficiency of mesh adaptation criteria using the adaptation error for arbitrary problems.

Principles of SAMR Multiresolution techniques		Euler equation	MHD	Conclusions	
				•	
Summary and outlook					
Conclusions					

- ► For the first time, wavelet-based multi-resolution has been implemented as refinement criterion in a general and parallel structured AMR framework.
- An approach has been devised to quantify the efficiency of mesh adaptation criteria using the adaptation error for arbitrary problems.
- Initial tests for shock-capturing FV method for Euler equations and ideal MHD equations are very promising:
 - In complex configurations, involving discontinuities as well as rarefactions, the MR criterion is shown to be significantly more effective than currently used criteria.
 - In rare situations, consisting primarily of global discontinuities, the SG criterion can be most efficient; however, the MR criterion can be tuned to give almost comparable performance.

Principles of SAMR Multiresolution techniques		Euler equation	MHD	Conclusions	
				•	
Summary and outlook					
Conclusions					

- ► For the first time, wavelet-based multi-resolution has been implemented as refinement criterion in a general and parallel structured AMR framework.
- An approach has been devised to quantify the efficiency of mesh adaptation criteria using the adaptation error for arbitrary problems.
- Initial tests for shock-capturing FV method for Euler equations and ideal MHD equations are very promising:
 - In complex configurations, involving discontinuities as well as rarefactions, the MR criterion is shown to be significantly more effective than currently used criteria.
 - In rare situations, consisting primarily of global discontinuities, the SG criterion can be most efficient; however, the MR criterion can be tuned to give almost comparable performance.
- Next steps will be to
 - Replace the SAMR interpolation with the wavelet prediction for consistency (where possible)
 - Test more complex MHD cases in combination with the MR criteria

References I

- [Bell et al., 1994] Bell, J., Berger, M., Saltzman, J., and Welcome, M. (1994). Three-dimensional adaptive mesh refinement for hyperbolic conservation laws. SIAM J. Sci. Comp., 15(1):127–138.
- [Berger, 1986] Berger, M. (1986). Data structures for adaptive grid generation. SIAM J. Sci. Stat. Comput., 7(3):904-916.
- [Berger and Rigoutsos, 1991] Berger, M. and Rigoutsos, I. (1991). An algorithm for point clustering and grid generation. IEEE Transactions on Systems, Man, and Cybernetics, 21(5):1278–1286.
- [Dedner et al., 2002] Dedner, A., Kemm, F., Kröner, D., Munz, C.-D., Schnitzer, T., and Wesenberg, M. (2002). Hyperbolic divergence cleaning for the MHD equations. J. Comput. Phys., 175:645–673.
- [Harten, 1995] Harten, A. (1995). Multiresolution algorithms for the numerical solution of hyperbolic conservation laws. Commun. Pur. Appl. Math., 48:1305–1342.
- [Rousell et al., 2003] Rousell, O., Schneider, K., Tsigulin, A., and Bockhorn, H. (2003). A conservative fully adaptative multiresolution algorithm for parabolic PDEs. J. Comput. Phys., 188:493–523.

Clustering by signatures

			х	х	х	х	х	х	6
			х	х	х	х	х	х	6
		х	х	х					3
х	х	х							3
х	х								2
х	х								2
х	х								2
									0
х	х								2
х	х								2
6	6	2	3	2	2	2	2	2	-

Clustering by signatures

			х	х	х	х	х	х	6
			х	х	х	х	х	х	6
		х	х	х					3
х	х	х							3
х	х								2
х	х								2
х	х								2
									0
х	х								2
х	х								2
6	6	2	3	2	2	2	2	2	

Clustering by signatures

Clustering by signatures

Λ

Recursive generation of $\check{G}_{l,m}$

- 1. 0 in Υ
- 2. Largest difference in Δ
- 3. Stop if ratio between flagged and unflagged cell $> \eta_{tol}$

Λ

Recursive generation of $\check{G}_{l,m}$

- 1. 0 in Υ
- 2. Largest difference in Δ
- 3. Stop if ratio between flagged and unflagged cell $>\eta_{tol}$
Υ

Λ

Recursive generation of $\check{G}_{l,m}$

- 1. 0 in Υ
- 2. Largest difference in Δ
- 3. Stop if ratio between flagged and unflagged cell $>\eta_{tol}$

Υ

Λ

Recursive generation of $\check{G}_{l,m}$

- 1. 0 in Υ
- 2. Largest difference in Δ
- 3. Stop if ratio between flagged and unflagged cell $>\eta_{tol}$

Rigorous domain decomposition

- Data of all levels resides on same node
- Grid hierarchy defines unique "floor-plan"
- Workload estimation

$$\mathcal{W}(\Omega) = \sum_{l=0}^{l_{\max}} \left[\mathcal{N}_l(G_l \cap \Omega) \prod_{\kappa=0}^l r_\kappa
ight]$$

Rigorous domain decomposition

- Data of all levels resides on same node
- Grid hierarchy defines unique "floor-plan"
- Workload estimation

$$\mathcal{W}(\Omega) = \sum_{l=0}^{l_{\max}} \left[\mathcal{N}_l(G_l \cap \Omega) \prod_{\kappa=0}^l r_{\kappa}
ight]$$

- Parallel operations
 - Synchronization of ghost cells
 - Redistribution of data blocks within regridding operation
 - Flux correction of coarse grid cells
- Dynamic partitioning with space-filling curve

Rigorous domain decomposition

- Data of all levels resides on same node
- Grid hierarchy defines unique "floor-plan"
- Workload estimation

$$\mathcal{W}(\Omega) = \sum_{l=0}^{l_{\max}} \left[\mathcal{N}_l(G_l \cap \Omega) \prod_{\kappa=0}^l r_\kappa
ight]$$

- Parallel operations
 - Synchronization of ghost cells
 - Redistribution of data blocks within regridding operation
 - Flux correction of coarse grid cells
- Dynamic partitioning with space-filling curve

Rigorous domain decomposition

- Data of all levels resides on same node
- Grid hierarchy defines unique "floor-plan"
- Workload estimation

$$\mathcal{W}(\Omega) = \sum_{l=0}^{l_{\max}} \left[\mathcal{N}_l(\mathcal{G}_l \cap \Omega) \prod_{\kappa=0}^l r_\kappa
ight]$$

- Parallel operations
 - Synchronization of ghost cells
 - Redistribution of data blocks within regridding operation
 - Flux correction of coarse grid cells
- Dynamic partitioning with space-filling curve

Rigorous domain decomposition

- Data of all levels resides on same node
- Grid hierarchy defines unique "floor-plan"
- Workload estimation

$$\mathcal{W}(\Omega) = \sum_{l=0}^{l_{\max}} \left[\mathcal{N}_l(G_l \cap \Omega) \prod_{\kappa=0}^l r_\kappa
ight]$$

- Parallel operations
 - Synchronization of ghost cells
 - Redistribution of data blocks within regridding operation
 - Flux correction of coarse grid cells
- Dynamic partitioning with space-filling curve

Rigorous domain decomposition

- Data of all levels resides on same node
- Grid hierarchy defines unique "floor-plan"
- Workload estimation

$$\mathcal{W}(\Omega) = \sum_{l=0}^{l_{\max}} \left[\mathcal{N}_l(G_l \cap \Omega) \prod_{\kappa=0}^l r_\kappa
ight]$$

- Parallel operations
 - Synchronization of ghost cells
 - Redistribution of data blocks within regridding operation
 - Flux correction of coarse grid cells
- Dynamic partitioning with space-filling curve

Rigorous domain decomposition

- Data of all levels resides on same node
- Grid hierarchy defines unique "floor-plan"
- Workload estimation

$$\mathcal{W}(\Omega) = \sum_{l=0}^{l_{\max}} \left[\mathcal{N}_l(G_l \cap \Omega) \prod_{\kappa=0}^l r_\kappa
ight]$$

- Parallel operations
 - Synchronization of ghost cells
 - Redistribution of data blocks within regridding operation
 - Flux correction of coarse grid cells
- Dynamic partitioning with space-filling curve

Rigorous domain decomposition

- Data of all levels resides on same node
- Grid hierarchy defines unique "floor-plan"
- Workload estimation

$$\mathcal{W}(\Omega) = \sum_{l=0}^{l_{\max}} \left[\mathcal{N}_l(G_l \cap \Omega) \prod_{\kappa=0}^l r_\kappa
ight]$$

- Parallel operations
 - Synchronization of ghost cells
 - Redistribution of data blocks within regridding operation
 - Flux correction of coarse grid cells
- Dynamic partitioning with space-filling curve

RD (2005). Adaptive Mesh Refinement - Theory and Applications, pages 361-372, Springer.

DB: trace8__0.vtk

