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Block-structured adaptive mesh refinement

Block-structured adaptive mesh refinement (SAMR)

For simplicity ∂tq(x, t) +∇ · f(q(x, t)) = 0

I Refined blocks overlay coarser ones

I Refinement in space and time by
factor rl

I Block (aka patch) based data
structures

+ Numerical scheme

Qn+1
jk = Qn

jk −
∆t

∆x

[
Fj+ 1

2
,k − Fj− 1

2
,k

]
− ∆t

∆y

[
Gj,k+ 1

2
− Gj,k− 1

2

]
only for single patch necessary

+ Efficient cache-reuse / vectorization
possible

- Cluster-algorithm necessary

G2,1

G2,2

G1,1

G1,2

G1,3

G0,1
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Block-structured adaptive mesh refinement

Level transfer / setting of ghost cells

Conservative averaging
(restriction):

Q̂l
jk :=

1

(rl+1)2

rl+1−1∑
κ=0

rl+1−1∑
ι=0

Ql+1
v+κ,w+ι

Bilinear interpolation
(prolongation):

Q̌l+1
vw := (1− f1)(1− f2) Ql

j−1,k−1

+ f1(1− f2) Ql
j,k−1+

(1− f1)f2 Ql
j−1,k + f1f2 Ql

jk

For boundary conditions: linear time interpolation

Q̃l+1(t+κ∆tl+1) :=

(
1− κ

rl+1

)
Q̌l+1(t)+

κ

rl+1
Q̌l+1(t+∆tl ) for κ = 0, . . . rl+1
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Block-structured adaptive mesh refinement

Conservative flux correction

Example: Cell j , k

Q̌l
jk (t + ∆tl ) = Ql

jk (t)− ∆tl

∆xl

F1,l
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r 2
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Common refinement criteria

Refinement criteria
Scaled gradient of scalar quantity w

|w(Qj+1,k )−w(Qjk )| > εw , |w(Qj,k+1)−w(Qjk )| > εw , |w(Qj+1,k+1)−w(Qjk )| > εw

1. Richardson-type er-
ror estimation on inte-
rior cells

2. Create temporary Grid
coarsened by factor 2

Initialize with fine-grid-
values of preceding
time step

3. Compare tempo-
rary solutions

H∆tl Ql (tl −∆tl ) H∆tl (H∆tl Ql (tl −∆tl ))

= H∆tl
2 Ql (tl −∆tl )

H2∆tl Q̄l (tl −∆tl )

R. Deiterding, M. O. Domingues – Design and application of wavelet-based refinement criteria 7
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Implementation in AMROC

UML design of AMROC

I Classical framework approach with
generic main program in C++

I Customization / modification in
Problem.h include file by derivation
from base classes and redefining
virtual interface functions

I Predefined, scheme-specific classes
provided for standard simulations

+set_patch()

NumericalScheme

+set_patch_boundary()

BoundaryConditions

+set_patch()

InitialConditions

+next_step()

+advance_level()

+update_level()

+regrid()

HypSAMRSolver

1

1

1

1

+restrict_patch()

+prolong_patch()

LevelTransfer

+find_boxes()

Clustering

+flux_correction()

+add_fine_fluxes()

+add_coarse_fluxes()

Fixup

+recreate_patches()

GridFunction

dim:int, data_type

1

+VectorOfState1

+set_new_boxes()

+redistribute_hierachy()

GridHierarchy

-follows distribution0..*

1

Patch

dim:int, data_type

1 0..*

Box

1 0..*

0..1

1

TimeStepControler

1

1

+evaluate()

Criterion

+flag_patch()

Flagging

0..*

1

1
+Flags

1

0..1

1

1

0..1

1

-dF

1..*

1

1

0..1

1

0..1

1
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Multiresolution principles

Multiresolution (MR) principles

I Multiresolution analysis is a tool to construct wavelet functions and
consequently wavelet transforms

I Information can be organized in different scale levels
I Scale can be associated to periods bands

I Information in a certain level can be obtained by the combination of the
coarser levels with the wavelet coefficient contributions and vice-versa

Q `+1 projection



prediction
Q `+1

MR = {Q `} ∪ {d`},

I PDE approach: Harten’s cell average MR is used, which is compatible
with the underlying FV discretization [Rousell et al., 2003]

I Wavelet coefficients are used to characterize the local regularity of the
solution

I low amplitudes of the coefficients are associated to regions where the
solution is smooth

I high amplitudes appear only in regions where the solution is less
regular.

R. Deiterding, M. O. Domingues – Design and application of wavelet-based refinement criteria 9
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Multiresolution principles

MR operations for FV methods

1 Projection (restriction):

P``+1 : Q`+1 → Q`

Q`+1
2i−2

Q`+1
2i−1 Q`+1

2i
Q`+1

2i+1
Q`+1

2i+2
Q`+1

2i+3

Q`
i−1

Q`
i Q`

i+1

P``+1 : Q`
i =

1

2

(
Q`+1

2i + Q`+1
2i+1

)

2 Prediction (prolongation):

P`+1
` : Q` → Q̃`+1

Q`+1
2i−2

Q`+1
2i−1 Q`+1

2i
Q`+1

2i+1
Q`+1

2i+2
Q`+1

2i+3

Q`
i−1 Q`

i
Q`

i+1

P`+1
`,0 : Q̃`+1

2i = Q`
i −

1

8
(Q`

i+1 −Q`
i−1),

P`+1
`,1 : Q̃`+1

2i+1 = Q`
i +

1

8
(Q`

i+1 −Q`
i−1)

2nd order polynomial interpolation as proposed by [Harten, 1995].
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New MR refinement criteria

Use of wavelet transform for adaptation

Wavelet coefficients:

d` = Q`+1 − P`+1
` Q` prediction error

Use of predicton error as refinement criterion:

|Q` − P``−1 P
`−1
` Q`| > ε

Choice of ε:

I level-independent threshold parameter ε ≡ ε`
I Harten’s thresholding strategy:

ε` =
ε

|Ω|
22(`+1−L), 0 ≤ ` < L

I vector-valued threshold in Eucledian norm of velocity field
component of Q

R. Deiterding, M. O. Domingues – Design and application of wavelet-based refinement criteria 11
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` Q` prediction error

Use of predicton error as refinement criterion:

|Q` − P``−1 P
`−1
` Q`| > ε

Choice of ε:

I level-independent threshold parameter ε ≡ ε`
I Harten’s thresholding strategy:
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ε

|Ω|
22(`+1−L), 0 ≤ ` < L

I vector-valued threshold in Eucledian norm of velocity field
component of Q
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Verification

Moving Gaussian bump

I Initial condition:

ρ(x , y) = 1 + exp

(
−x2 + y 2

1
16

)
, ux (x , y) = uy (x , y) ≡ 1, p(x , y) ≡ 1

I Domain size: [−1, 1]× [−1, 1]

I Periodic boundary conditions

I The exact solution is a bump moving along the diagonal x = y , without
changing its shape.

I Base grid of 80× 80 + 3 levels (all refined by a factor 2)

I Finite volume scheme is the Van Leer flux-vector splitting, second order
accurate MUSCL slope-limiting method combined with dimensional
splitting.

I Clustering efficiency η = 0.95.

I Final time: te = 2
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Verification

Moving Gausian bump - refinement meshes

Gradient based MR based, scalar MR based, vector
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Verification

Cells on finest level versus error

Lρ1 Lρ1,AMR

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 0.0004  0.0005  0.0006  0.0007  0.0008  0.0009  0.001  0.0011  0.0012  0.0013

C
e
lls

 o
n
 f
in

e
s
t 
le

v
e
l

L1

MR, scalar, hierarchical threshold
MR, vector, hierarchical threshold

MR, scalar
MR, vector, hierarchical threshold

Richardson estimation
Scaled gradient

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

0.0000010 0.0000100 0.0001000 0.0010000

C
e
lls

 o
n
 f
in

e
s
t 
le

v
e
l

L1,AMR

MR, scalar, hierarchical threshold
MR, vector, hierarchical threshold

MR, scalar
MR, vector, hierarchical threshold

Richardson estimation
Scaled gradient

I Level-wise adaptation error: L1,AMR (Q,G`) =
∑

i,j |Qi,j −Qr
i,j |∆x`∆y`.

Qr
i,j is reference solution from uniform at highest resolution

I Since the errors satisfy L1(Q)− L1,uni (Q) ≤ L1,AMR (Q) and L1,uni is a
constant, monotone behavior in L1,AMR will be preserved in L1.

I all MR criteria are more efficient than the SG and the Richardson
estimation criteria
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Lax–Liu test cases

Lax–Liu configurations

I 2nd-order accurate shock-capturing
MUSCL-Hancock scheme with Minmod
limiter and AUSMDV flux-vector splitting.

I Base mesh of 8× 8 cells, with 8 additional
levels refined by factor 2

I Full mesh of 2048× 2048 cells, final time of
te = 0.8.

I Left: cluster threshold η also varied. Total
number of cells accumulated over all time
steps.

Lρ1,AMR

R. Deiterding, M. O. Domingues – Design and application of wavelet-based refinement criteria 15
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Lax–Liu test cases

Configuration #6 at te = 0.8 – Refinement

SAMR with SG criterion, ερ = 0.05

SAMR with MR criterion, ε = 0.0025

10242 20482 40962

R. Deiterding, M. O. Domingues – Design and application of wavelet-based refinement criteria 16



Principles of SAMR Multiresolution techniques Euler equation MHD Conclusions

Lax–Liu test cases

Configuration #3 at te = 0.3
SG MR MRV+

Method threshold # of cells (107) Lρ1,AMR (10−3)

SG 0.250 5.03 3.0

MR 0.005 6.42 1.9
MR∗ 0.005 6.83 1.6
MR+ 0.010 7.59 2.3
MR∗,+ 0.010 10.35 1.7

MRV 0.010 6.45 1.7
MRV∗ 0.010 6.76 1.5
MRV+ 0.025 7.33 2.8
MRV∗,+ 0.025 7.55 2.3

V: Vector-valued threshold, *: hierchical
thresholding, +: one buffer cell

R. Deiterding, M. O. Domingues – Design and application of wavelet-based refinement criteria 17
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Lax–Liu test cases

Summary of Lax–Liu configuration tests

I We studied 19 configurations at 12 threshold values. For η = 0.8, the
average cell savings of the MR approach versus SG are:
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I The majority of configurations involve all three wave types and for those
the new MR criteria are most efficient.

I For the few configurations, that are dominated at large by isolated global
discontinuites, especially #3, SG can be slightly more effective than MR.

I The simple SG criterion is basically unaffected by numerical artefacts from
the FV method, the MR criteria tend to over-refine those
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Ideal magneto-hydrodynamics simulation

Governing equations

∂ρ

∂t
+∇ · (ρu) = 0

∂ρu

∂t
+∇ ·

[
ρutu +

(
p +

B · B
2

)
I− BtB

]
= 0

∂ρE

∂t
+∇ ·

[(
ρE + p +

B · B
2

)
u− (u · B) B

]
= 0

∂B

∂t
+∇ ·

(
utB− Btu

)
= 0

with equation of state

p = (γ − 1)

(
ρE − ρu2

2
− B2

2

)
The ideal MDH model is still hyperbolic, yet by re-writing the induction
equation, one finds that the magnetic field has to satisfy at all times t
the elliptic constraint

∇ · B = 0.

R. Deiterding, M. O. Domingues – Design and application of wavelet-based refinement criteria 19
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Ideal magneto-hydrodynamics simulation

Generalized Lagrangian multipliers for divergence control
Hyperbolic-parabolic correction of 2d ideal MHD model [Dedner et al., 2002]:

∂ρ

∂t
+
∂ρux

∂x
+
∂ρuy

∂y
= 0

∂ (ρux )

∂t
+

∂

∂x

[
ρu2

x + p

(
p +

B · B
2

)
− B2

x

]
+

∂

∂y
(ρux uy − Bx By ) = 0

∂ (ρuy )

∂t
+

∂

∂x
(ρux uy − Bx By ) +

∂

∂y

[
ρu2

y + p

(
p +

B · B
2

)
− B2

y

]
= 0

∂ (ρuz )

∂t
+

∂

∂x
(ρuz ux − Bz Bx ) +

∂

∂y
(ρuz uy − Bz By ) = 0

∂ρE

∂t
+
∂

∂x

[(
ρE + p +

B · B
2

)
ux − (u · B) Bx

]
+
∂

∂y

[(
ρE + p +

B · B
2

)
uy − (u · B) By

]
= 0

∂Bx

∂t
+
∂ψ

∂x
+

∂

∂y
(uy Bx − By ux ) = 0

∂By

∂t
+

∂

∂x
(ux By − Bx uy ) +

∂ψ

∂y
= 0

∂Bz

∂t
+

∂

∂x
(ux Bz − Bz ux ) +

∂

∂y
(uy Bz − By uz ) = 0

∂ψ

∂t
+ c2

h

(
∂Bx

∂x
+
∂By

∂y

)
= −

c2
h

c2
p

ψ
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Ideal magneto-hydrodynamics simulation

Orszag-Tang vortex
I Adaptive solution on 50× 50 grid with 4 additional levels refined by rl = 2
I Initial condition

ρ(x, y , 0) = γ
2
, ux (x, y , 0) = − sin(y), uy (x, y , 0) = sin(x), uz (x, y , 0) = 0

p(x, y , 0) = γ, Bx (x, y , 0) = − sin(y), By (x, y , 0) = 2 sin(x), Bz (x, y , 0) = 0

Scaled gradient of ρ
Multi-resolution criterion with

hierarchical thresholding
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Ideal magneto-hydrodynamics simulation

Orszag-Tang vortex - cells on finest level vs. error
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I This is work in progress, and for now, the error is evaluated in ρ only.

I Compared are SG and MR with hierarchical threshold also applied to ρ
only.
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Ideal magneto-hydrodynamics simulation

Orszag-Tang vortex in 3D
I Adaptive solution on 32× 32× 32 grid with 3 additional levels refined by rl = 2
I Initial condition

ρ(x, y , z) = γ
2
, p(x, y , 0) = γ, e = 0.2, γ = 5/3, uz (x, y , z) = e sin(2πz)

ux (x, y , z) = −(1 + e sin(2πz)) sin(2πy), uy (x, y , z) = (1 + e sin(2πz)) sin(2πx)

Bx (x, y , z) = − sin(2πy), By (x, y , z) = sin(4πx), Bz (x, y , z) = 0

Scaled gradients
Multi-resolution criteria with

hierarchical thresholding
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Ideal magneto-hydrodynamics simulation

Orszag-Tang vortex in 3D
t = 0.0

ρ Bx Divergence
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I Error is evaluated in ρ only

I SG and MR with hierarchical threshold
applied to ρ, ρu, ρv
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Ideal magneto-hydrodynamics simulation
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Ideal magneto-hydrodynamics simulation

Orszag-Tang vortex in 3D
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Summary and outlook

Conclusions

I For the first time, wavelet-based multi-resolution has been implemented as
refinement criterion in a general and parallel structured AMR framework.

I An approach has been devised to quantify the efficiency of mesh
adaptation criteria using the adaptation error for arbitrary problems.

I Initial tests for shock-capturing FV method for Euler equations and ideal
MHD equations are very promising:

I In complex configurations, involving discontinuities as well as
rarefactions, the MR criterion is shown to be significantly more
effective than currently used criteria.

I In rare situations, consisting primarily of global discontinuities, the
SG criterion can be most efficient; however, the MR criterion can be
tuned to give almost comparable performance.

I Next steps will be to

I Replace the SAMR interpolation with the wavelet prediction for
consistency (where possible)

I Test more complex MHD cases in combination with the MR criteria
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Parallelization

Rigorous domain decomposition

I Data of all levels resides on same node

I Grid hierarchy defines unique ”floor-plan”

I Workload estimation

W(Ω) =

lmax∑
l=0

[
Nl (Gl ∩ Ω)

l∏
κ=0

rκ

]

I Parallel operations

I Synchronization of ghost cells
I Redistribution of data blocks within

regridding operation
I Flux correction of coarse grid cells

I Dynamic partitioning with space-filling
curve

RD (2005). Adaptive Mesh Refinement - Theory and Applications, pages 361–372,
Springer.
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