Towards simulation of detonation-induced shell dynamics with the Virtual Test Facility

Ralf Deiterding, Fehmi Cirak, Dan Meiron Caltech

Comref 2005, Heidelberg *Jan. 27, 2005*

Outline of presentation

- Detonation simulation
 - Governing equations
 - A reliable Roe-type upwind scheme
 - Validation via cellular structure simulation in 2D and 3D
 - Work mostly supported by German priority research program "Analysis und Numerik von Erhaltungsgleichungen"
 - R. Deiterding, Parallel adaptive simulation of multi-dimensional detonation structure, PhD thesis, BTU Cottbus, 2003. → http://www.cacr.caltech.edu/~ralf
- Structured Adaptive Mesh Refinement (SAMR)
- Moving embedded complex boundaries
 - Ghost fluid method
 - Validation
- Fluid-structure coupling
 - Efficient level-set construction
 - Incorporation of coupling scheme into SAMR
 - Outline of implementation
- Detonation-induced dynamic shell response
 - Preliminary elastic investigation

Structured AMR- AMROC

- Framework for dynamically adaptive structured finite volume schemes
 - http://amroc.sourceforge.net
- Provides Berger-Collela AMR
 - Hierarchical multi-level approach
 - Time step refinement
 - Conservative correction at coarse-fine interface available
- Provides ghost fluid method
 - Multiple level set functions possible
 - Fully integrated into AMR algorithm
 - Solid-fluid coupling implemented as specialization of general method
- Hierarchical data structures
 - Refined blocks overlay coarser ones
 - Parallelization capsulated
 - Rigorous domain decomposition
- Numerical scheme only for single block
 necessary

Cache re-use and vectorization possible

Ghost fluid method

- Incorporate complex moving boundary/interfaces into a Cartesian solver (extension of work by R.Fedkiw and T.Aslam)
- Implicit boundary representation via distance function φ , normal $n = \nabla \varphi / |\nabla \varphi|$
- Treat an interface as a moving rigid wall

- Interpolation operations e.g. with solid surface mesh
 - Mirrored fluid density and velocity values $\mathbf{u}^{\mathsf{F}}_{\mathsf{M}}$ into ghost cells
 - Solid velocity values \mathbf{u}^{S} on facets
 - Fluid pressure values in surface points (nodes or face centroids)

Vector velocity construction for rigid slip wall: $\mathbf{u}_{Gh}^{F} = 2((\mathbf{u}_{M}^{S} - \mathbf{u}_{M}^{F}) \cdot \mathbf{n}) \mathbf{n} + \mathbf{u}_{M}^{F}$

Verification test for GFM

- Lift-up of solid body in 2D when being hit by Mach 3 shock wave
- Falcovitz et al., A two-dimensional conservation laws scheme for compressible flows with moving boundaries, JCP, 138 (1997) 83.
- H. Forrer, M. Berger, Flow simulations on Cartesian grids involving complex moving geometries flows, Int. Ser. Num. Math. 129, Birkhaeuser, Basel 1 (1998) 315.
- Arienti et al., A level set approach to Eulerian-Lagrangian coupling, JCP, 185 (2003) 213.

Schlieren plot of density

3 additional refinement levels

Validation case for GFM

- Drag and lift on two static spheres in due to Mach 10 shock
- Full 3D calculations, without AMR up to 36M cells, typical run 2000h CPU SP4
- Stuart Laurence, **Proximal Bodies in Hypersonic Flow,** PhD thesis, Galcit, Caltech, 2006.

Drag coefficient C_d on first sphere: C_d = F_D / (0.5 ρ u² π r²)=0.8785

Force coefficients on second sphere

Implicit representations of complex surfaces

- FEM Solid Solver
 - Explicit representation of the solid boundary, b-rep
 - Triangular faceted surface.

- Cartesian FV Solver
 - Implicit level set representation.
 - need closest point on the surface at each grid point..

CPT in linear time

- Problem reduction by evaluation only within specified max. distance
- The characteristic / scan conversion algorithm.
 - For each face/edge/vertex.
 - Scan convert the polyhedron.
 - Find distance, closest point to that primitive for the scan converted points.
- Computational complexity.
 - O(m) to build the b-rep and the polyhedra.
 - O(n) to scan convert the polyhedra and compute the distance, etc.

Face Polyhedra

Edge Polyhedra

Vertex Polyhedra

Coupled simulation – time splitting approach

Time step control in coupled simulation

- Eulerian AMR + non-adaptive Lagrangian FEM scheme
 - Exploit AMR time step refinement for effective coupling
 - Lagrangian simulation is called only at level $I_c < I_{max}$
 - AMR refines solid boundary at least at level I_c
 - One additional level reserved to resolve ambiguities in GFM (e.g. thin structures)
 - Inserting sub-steps accommodates for time step reduction from the solid solver within an AMR cycle
 - Updated boundary info from solid solver must be received before regridding operation (grey dots left)

AMROC with GFM in VTF

Detonation driven fracture

- Experiments by T. Chao, J.E. Shepherd
- Motivation
 - Interaction of detonation, ductile deformation, fracture
- Expected validation data
 - Stress history of cylinder
 - Crack propagation history
 - Species concentration and detonation fine structure
- Modeling needs
 - Modeling of gas phase detonation
 - Multiscale modeling of ductile deformation and rupture
- Test specimen: AI 6061
 - Young's modulus 69GPa, density 2780 kg/m³
 - Poisson ratio 0.33
 - Tube length 0.610m, outer diameter 41.28mm
 - Wall thickness 0.80mm
- Detonation: Stoichiometric Ethylene and Oxygen
 - Internal pressure 80 kPa
 - CJ pressure 2.6MPa

CJ velocity 2365m/s

Detonation propagation

Initial investigation in elastic regime

Detonation modeling

• Modeling of ethylene-oxygen detonation with one-step reaction model

- Arrhenius kinetics: $k^{t}(T) = k \exp(-E_{A}/RT)$
- Equation of state for Euler equations: $p = (\gamma 1)(\rho e \rho (1-Z) q_0)$
- Adjust parameters to match CJ and vN state of $C_2 H_4+3 O_2 CJ$ detonation at $p_0=0.8$ MPa and $T_0=295$ K as close as possible
- Chosen parameters: q₀=5,518,350 J/kg, E_A=25,000 J/mol, k=20,000,000 1/s

	GRI 3.0	Model
U _{det}	2363.2 m/s	2636.7 m/s
\boldsymbol{p}_{o}	0.8 MPa	0.8 MPa
$ ho_0$	1.01 kg/m ³	1.01 kg/m ³
Y	1.338	1.240
p_{vN}	51.25 MPa	50.39 MPa
$\rho_{\rm vN}$	9.46 kg/m ³	8.14 kg/m ³
p _{CJ}	26.81 MPa	25.59 MPa
$ ho_{CJ}$	1.91 kg/m ³	1.80 kg/m ³
Υ _{CJ}	1.240	1.240
$\Delta_{1/2}$	~0.03 mm	~0.03 mm

- 1D Simulation
 - 2 m domain to approximate Taylor wave correctly
 - Direct thermal ignition at x=0 m
 - AMROC calculation with 4000 cells,
 3 additional levels with factor 4
 - ~ 4 cells within $\Delta_{1/2}$ (minimally possible resolution)
 - Compute time ~ 1 h

Detonation modeling- Validation

Transducer 1 – 0.8 m Transducer 2 – 1.2 m Experiment Simulation Experiment Simulation 4 4 3 3 Pressure MPa 2 2 1 0 0 -1 -0.05 0.05 0.1 0.15 0.2 -0.05 0 0.25 0.3 0.35 0.4 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 Time after detonation passage [ms] Time after detonation passage [ms]

- Direct ignition in simulation leads to an earlier development of CJ detonation than in experiment, but both pressure traces converge
- In tube specimen with x>1.52 m CJ state should have been fully reached
- Computational results are appropriate model for pressure loading

Shell reponse under prescribed pressure

- Use of 1-D detonation pressure leads to excellent agreement in phase length experiment and shell simulation
- Taylor wave drives oscillation, not von Neumann pressure, already very good agreement, if <u>average</u> pressure is prescribed via appropriate shock
- Further work to assess steadiness of detonation in experiment

Next step is to redo strain gauge measurements

Tests towards fully coupled simulations

Coupled simulation in elastic regime

- <u>Average</u> pressure of 1D simulation prescribed by a pure shock wave solution of <u>non-reactive</u> Euler equations
- Shock speed chosen to equal detonation velocity

Coupled simulation with large deformation in plastic regime

Arge ime 18

Treatment of shells/thin structures

- Thin boundary structures or lower-dimensional shells require artificial "thickening" to apply ghost fluid method
 - Unsigned distance level set function φ
 - Treat cells with $0 < \varphi < d$ as ghost fluid cells (indicated by green dots)
 - Leaving φ unmodified ensures correctness of $\nabla \varphi$
 - Refinement criterion based on φ ensures reliable mesh adaptation
 - Use face normal in shell element to evaluate in $\Delta p = p_u p_l$
- about ~10⁷ cells required to capture correct wall thickness in fracturing tube experiment with this technique (2-3 ghost cells within wall, uniform spatial discretization)

Coupled simulations for thin shells

- <u>Average</u> pressure of 1D simulation prescribed by a pure shock wave solution of <u>non-reactive</u> Euler equations with shock speed chosen to equal detonation velocity

- Test calculation with thermally perfect Euler equations and detailed reaction (H_2-O_2)
- Detonation with suitable peak pressure will be initiated due to shock wave reflection

Performance of coupled thin shell code

- Coupled simulation with standard Euler equations (Roe+MUSCL, dimensional splitting)
- AMR base mesh 40x40x80, 2 additional levels with refinement factor 2, ~3,000,000 cells.
- Modeled tube thickness
 0.0017 mm, (2x thicker than in experiment).
- Solid Mesh: ~ 5,000 elements.
- Calculation run on 26 fluid CPUs, 6 solid CPUs P4: ~4.5h real time

Task	%
Fluid dynamics	31.3
Boundary setting	22.3
Interpolation	5.9
Recomposition	6.8
GFM Extra-/Interpolation	10.9
Locating GFM cells	5.5
GFM Various	3.0
Receive shell data	4.3
Closest point transform	2.6
Node velocity assignment	2.2
Construct nodal pressure	1.5
Misc	3.7

Conclusions and outlook

- Detonation simulation
 - Fully resolved detonation structure simulations for basic phenomena in 3D possible for smaller detailed reaction systems
 - Combination of mixed explicit-implicit time-discretization with parallel SAMR and reliable higher order scheme
- Cartesian scheme for complex embedded boundaries
 - Accurate results can be obtained by supplementing GFM with SAMR
 - With well developed auxiliary algorithms an implicit geometry representation can be highly efficient
 - Future goal: Extend implementation from diffused boundary method GFM to accurate boundary scheme based on

$$V_{j}^{n+1}\mathbf{Q}_{j}^{n+1} = V_{j}^{n}\mathbf{Q}_{j}^{n} - \Delta t \left(A_{j+1/2}^{n+1/2}\mathbf{F}(\mathbf{Q},j) - A_{j-1/2}^{n-1/2}\mathbf{F}(\mathbf{Q},j-1)\right)$$

- Detonation-induced fracturing tube
 - Fully coupled AMR simulations with fracture using GFM with thin shell technique
 - Detonation model to propagate three-dimensional Ethylen-Oxygen detonation with CJ velocity
 - Redo experiments with mixture that allows direct simulation, e.g. Hydrogen-Oxygen

