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Adaptive lattice Boltzmann method
e0

Construction principles

Approximation of Boltzmann equation

Is based on solving the Boltzmann equation with a simplified collision operator
Of +u-Vf=w(f?—f)+F
Kn = Ir/L < 1, where Ir is replaced with Ax
Weak compressibilty and small Mach number assumed
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e0
Construction principles

Approximation of Boltzmann equation

Is based on solving the Boltzmann equation with a simplified collision operator
Ohf+u-Vf=w(f—Ff)+F
Kn = Ir/L < 1, where Ir is replaced with Ax
Weak compressibilty and small Mach number assumed

Equation is approximated in simplified phase space and with a splitting
approach.

1.) Transport step solves difo + €4 - Viu =0
Operator: T' fu(x + e At, t + At) = fo(x, t)

Zf(xt xtu,(xt)—Zea,axt)

a=0
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Is based on solving the Boltzmann equation with a simplified collision operator
Ohf+u-Vf=w(f—Ff)+F
Kn = Ir/L < 1, where Ir is replaced with Ax
Weak compressibilty and small Mach number assumed

Equation is approximated in simplified phase space and with a splitting

approach.
1.) Transport step solves difo + €4 - Viu =0 . ; /‘”
Operator: T' fo(x + eaAt, t + At) = fo(x, t) S /
Zf(xt xtu,(xt)—Zea,axt) V‘,///’/ \H]
a=0 ¢ / " \40
Discrete veIOC|t|es. +
0, a =0,
e, = (£1,0,0)c, (0,+£1,0)c, (0,0, £1)c, a=1,...,6,
(£1,+£1,0)c, (£1,0,+1)c, (0, £1,+1)c, a=7,...,18
c= %)t( Physical speed of sound: ¢; = %
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oe

Construction principles

Approximation of thermal equilibrium

2.) Collision step solves 9;f, = w(f$? — f) + Fa
Operator C:

fu(- t + At) = fo (-, t + At) + wi At (if"(-, t+ At) — fu(, t+ At)) + AtF,

with Fo = E}p).‘aeaF/(:2 and equilibrium function

3equ
C2

faeq(pv u) = pta |1+

9(equ)?  3u?
L 9(eau)”  3u }

2c* 2¢2
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Operator C:

fu(- t + At) = fo (-, t + At) + wi At (if"(-, t+ At) — fu(, t+ At)) + AtF,
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oo 3 e (el 3]
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with ta = 5{3,5. 2.0 0 0 b b d b o b a1 )

Pressure op =" 22 = pc?.

wi At e
Dev. stress ¥L;j = (1 - ) Zeaieaj(faq —fa)

3equ
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faeq(pv u) = pta [1 +
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Construction principles

Approximation of thermal equilibrium

2.) Collision step solves 9;f, = w(f$? — f) + Fa
Operator C:

fu(- t + At) = fo (-, t + At) + wi At (if"(-, t+ At) — fu(, t+ At)) + AtF,
with Fo = E}p).‘aeaF/(:2 and equilibrium function

2 2 2 2
fa'(p,u) = pta [1 + 3ec(§u J eau) Su eau (g(e“u) 3 )}

2c4 2c2 " 3¢2 2c4 2c2

; _1f3 111111111111 111111

with to = 3 3v27272v2’27274’4747474’4747474’474747}
— eq 2 __ 2

Pressure op = > f37cs = pc;.

wi At e
Dev. stress ¥L;j = (1 - ) Zeaieaj(faq —fa)

A Chapman-Enskog expansion (f, = £, (0) + ¢fo (1) + €3£, (2) + ...) shows that

Op+ V- (pu) =0, du+u-Vu=—-Vp+vVu+F

2
are recoverd to O(¢>*) [Hou et al., 1996] and also w;, =7, ' = H—Zistcgﬁ
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Adaptive lattice Boltzmann method
@00

Complex geometry handling and adaptation

Level-set method for boundary embedding

Implicit boundary representation via distance
- function ¢, normal n = Vo/|V|.

Construction of macro-values in embedded
boundary cells by interpolation / extrapolation.

Complex boundary moving with local velocity w,
ghost cell velocity: v’ =2w —u
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Adaptive lattice Boltzmann method
@00
Complex geometry handling and adaptation

Level-set method for boundary embedding

Implicit boundary representation via distance
function ¢, normal n = Vo/|V|.

Construction of macro-values in embedded
boundary cells by interpolation / extrapolation.

Complex boundary moving with local velocity w,
ghost cell velocity: v’ =2w —u

Then use f57(p’,u’) or use interpolated
bounce-back [Bouzidi et al., 2001] to construct
distributions in embedded ghost cells.

Distance computation for triangulated grids with
CPT algorithm [Mauch, 2000].
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@00
Complex geometry handling and adaptation

Level-set method for boundary embedding

Implicit boundary representation via distance
function ¢, normal n = Vo/|V|.

Construction of macro-values in embedded
boundary cells by interpolation / extrapolation.

Complex boundary moving with local velocity w,
ghost cell velocity: v’ =2w —u

Then use f57(p’,u’) or use interpolated
bounce-back [Bouzidi et al., 2001] to construct
distributions in embedded ghost cells.

Distance computation for triangulated grids with
CPT algorithm [Mauch, 2000].
Block-structured adaptive mesh refinement (SAMR)

Refinement in all spatial directions and time by same factor

Refined blocks overlay coarser ones

Most efficient LBM implementation with patch-wise for-loops

LBM implemented on finite volume grids

AMROC V3.0 with significantly enhanced parallelization
[Deiterding and Wood, 2015, Deiterding, 2011, Deiterding et al., 2007,
Deiterding et al., 2006]
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Complex geometry handling and adaptation

Adaptive LBM

Complete update on coarse grid: £." .= CT(£f5)
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Complex geometry handling and adaptation
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Complete update on coarse grid: £." .= CT(£f5)

n

., onto faf_jg to fill fine halos. Set physical boundary

Interpolate £C:
conditions.

7 XX
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Complex geometry handling and adaptation

Adaptive LBM

Complete update on coarse grid: £." .= CT(£f5)

Interpolate £<2" onto £/*7 to fill fine halos. Set physical boundary

conditions.
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Complex geometry handling and adaptation

Adaptive LBM

Complete update on coarse grid: £." .= CT(£f5)

Interpolate £<2" onto £/*7 to fill fine halos. Set physical boundary
conditions.

FEm .= T(£1") on whole fine mesh. £1""/? .= ¢(£{'") in interior.

52K | X[ X[X]N
XX XX [X]N
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Adaptive LBM

Complete update on coarse grid: £." .= CT(£f5)

Interpolate faf}g onto faf_jg to fill fine halos. Set physical boundary
conditions.

FEm .= T(£1") on whole fine mesh. £1""/? .= ¢(£{'") in interior.

FLnt1/2 . — 7 (£5771/2) on whole fine mesh. £/71 .= C(EF"T/2) in

interior.
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Complete update on coarse grid: £." .= CT(£f5)
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Adaptive LBM

Complete update on coarse grid: £." .= CT(£f5)

Interpolate faf}g onto faf_jg to fill fine halos. Set physical boundary
conditions.

FEm .= T(£1") on whole fine mesh. £1""/? .= ¢(£{'") in interior.
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Adaptive LBM

Complete update on coarse grid: £." .= CT(£f5)

Interpolate fac onto ff i to fill fine halos. Set physical boundary
conditions.

flm .= T(f’r ") on whole fine mesh. Fhmt/z. C(?of") in interior.

Fhn+t/2. ’T(ﬁf’"ﬂﬂ) on whole fine mesh. f{"*1 .= C(?J’"Hﬁ) in
interior.

2Fn+1/2 (s 2,
Average f., o /2 (inner halo layer), fou out

(outer halo layer) to obtain £,

out-

Revert transport into halos:

f(xco'zn.‘ = T_ (fCoTJt)
7

ZC,n
Parallel synchronization of £5", £5:" ot

Cell-wise update where correction is needed:
faC)n+l : CT(fC " facout)
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Adaptive LBM

Complete update on coarse grid: £&"! .= CT(£5™)

Interpolate fac " onto ff i to fill fine halos. Set physical boundary
conditions.

6= T(££") on whole fine mesh. fhmt/2. C(£0'") in interior.

FLnt1/2 . — 7 (£5771/2) on whole fine mesh. £/71 .= C(E1"T/2) in
interior.

Average ?;’Z:rtlﬂ (inner halo layer), /-7

a,out
(outer halo layer) to obtain £527,.

Revert transport into halos:
Cyn C,n
f ,out = T (f out)

Parallel synchronization of

an an

«,out

# |3 |

Cell-wise update where correction is needed:
FEm = CT (", )

Algorithm equivalent to [Chen et al., 2006].
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[e]e] J
Complex geometry handling and adaptation

AMROC strong scalability tests

3D wave propagation method with Roe scheme:
spherical blast wave

Tests run IBM BG/P (mode VN)

Time per higest level step
T T T T - - -

2
10 —&— SAMR

—— Uniform

sec
T
L CTTTTIT

| | | | | | |
16 32 64 128 256 512 1024

CPUs

64 x 32 X 32 base grid, 2 additional levels with
factors 2, 4; uniform 512 x 256 X 256 = 33.6 - 10°
cells

Level Grids Cells
0 1709 65,536
1 1735 271,048
2 2210 | 7,190,208
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Adaptive lattice Boltzmann method
[e]e] J
Complex geometry handling and adaptation

AMROC strong scalability tests

3D SRT-lattice Boltzmann scheme: flow over
rough surface of 19 X 13 X 2 spheres

Tests run Cray XC30

3D wave propagation method with Roe scheme:
spherical blast wave

Tests run IBM BG/P (mode VN)

Time per higest level step ‘Tlme per higest level step
: R ——

T T T T T T T T T
o [T T T 1 r

102 | H —e— SAMR
B —e— SAMR ] 1l L]
[ Unif. i 10° ¢ —+— Uniform [
I —— nirorm 1 E |
[ 1 2 0L B
B0 E
10! | E r ]
: ] 0=t E
[ 1 t | L]

Il Il Il Il Il Il Il

1 1 1 1 1 1 1 1
Vel B A R I IR )
PR PG @ P VW S
16 32 64 128 256 512 1024 VE A S

CPUs

64 x 32 X 32 base grid, 2 additional levels with
factors 2, 4; uniform 512 x 256 X 256 = 33.6 - 10°

CPUs

360 x 240 x 108 base grid, 2 additional levels with
factors 2, 4; uniform 1440 x 1920 x 432 = 1.19-10°

cells _ cells
Le(‘)’e' f;'(;’; 6(5:65”35 3 Tevel | Grids Cells
1 | 1735 | 271,048 0 788 1 9,331,200
R It R 1 | 21367 | 24,844,504
190, 2 1728 | 10,838,016
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Adaptive lattice Boltzmann method
@000
LES model and verification

Turbulence modeling

Pursue a large-eddy simulation approach with f. and 79, ie.
1.)f(x+eQAt t+At)7f( t)
2) (-t + At) = ful-, t + AL) + LAt (fe"( S+ AL — fo (-t + At))
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Turbulence modeling

Pursue a large-eddy simulation approach with f. and 79, ie.

1.) fa (x + ea At, t+At) = fa(x, t)

2) (-t + At) = ful-, t + AL) + LAt (fe"( S+ AL — fo (-t + At))
1

o 1 _ .
Effective viscosity: v™ =v 4+ v = 3 <E — E) cAx with 77 =1+
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LES model and verification

Turbulence modeling

Pursue a large-eddy simulation approach with f. and 79, ie.

1.) fa (x + eaAt, t+At) = fa(x, t)

2) ful- t+ At) = fa( t+At)+ SAt (fe"( ,t+ At) — Tiy(-, t+ At))

Effective viscosity: v* = v + vy = 1 <T—L — 1) cAx with 7/ =71 +71:
3\At 2

Use Smagorinsky model to evaluate v, e.g., v: = (CanAx)?S, where

5= [2>"5;S;
isj

The filtered strain rate tensor S;; = (8;T; + 9;7i;)/2 can be computed as a
second moment as

_ Y -
Sj = s eaieaj(fa? — fa)
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@000
LES model and verification

Turbulence modeling

Pursue a large-eddy simulation approach with f. and 79, ie.
1.)f(x+eQAt t+At)7f( t)
2) (-t + At) = ful-, t + AL) + LAt (fe"( t+ At) — fo(-, t + At))

. . . 1/ 1 . .
Effective viscosity: 1" = v + vy = 3 <A7Lt - E) cAx with 77 =7+

Use Smagorinsky model to evaluate v, e.g., v: = (CanAx)?S, where

5= [2>"5;S;
isj

The filtered strain rate tensor S;; = (8;T; + 9;7i;)/2 can be computed as a
second moment as
_ Y -
5, - - S ewien (B - 7)
2pcit} (1 — = > peiT} o

7+ can be obtained as [Yu, 2004, Hou et al., 1996]

n=> (\/TE +18v2(poc?) 1 CanAxS — TL)
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0e00
LES model and verification

Homogeneous isotropic turbulence

Iso-surface ||ul|/{trms) = 2
Fourier representation

Periodic boundaries, uniform mesh

Use of external forcing term, i.e.,
result independent of initial
conditions

Forcing:

KyKz

P = 24( ) Gl . )

Kxkz
F, = —A( PE )G(Hx,fﬁy,ﬁz)
_ A ExKky
F, = A( e )G(nx,&y,nz)

with phase
G(kx, Ky, Kz) = sin (MTX/{X + 2%}/@ + 2LLZI{Z + ¢) for (0 < ki <2) and ¢

being a random phase value.
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Iso-surface ||ul|/{ums) = 2

Fourier representation
Periodic boundaries, uniform mesh

Use of external forcing term, i.e.,
result independent of initial

conditions
Forcing:
Kykz
F = 2A< |2|2 )G(mx,ny,fﬁz)
Kxkz
F, = —A( PE )G(mx,f@y,mz)
KxK
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Homogeneous isotropic turbulence

Iso-surface ||ul|/{trms) = 2
» Fourier representation
> Periodic boundaries, uniform mesh

» Use of external forcing term, i.e.,
result independent of initial

conditions
Forcing:
F, = 2A('T;,|i;) G(kx, Ky, Kz)
KxKz
F, = —A( PE )G(mx,ny,nz)

F, = —A(T;;Y)G(”X’ Fy: ie)

with phase

G(kx, Ky, Kz) = sin (MTXKX + %Tyl"{/y + 27TTZHZ + ¢) for (0 < ki <2) and ¢

being a random phase value.
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Adaptive lattice Boltzmann method
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Wind turbine wake aerodynamics

®000000

Modeled geometry

Single Vestas V27

Inflow velocity us = 8m/s. Prescribed motion of rotor with nypm = 33,
r =14.5m: tip speed 46.7 m/s, Re, ~ 919,700, TSR=5.84

Simulation with three additional levels with refinement factors 2,2, 4.
Refinement based on vorticity and level set.

item ~ 24 time steps for 1° rotation

Validation results: Mexico rotor [Deiterding and Wood, 2016b],
[Deiterding and Wood, 2016a]
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Wind turbine wake aerodynamics
O@00000

Simulation of the SWIFT array

» Three Vestas V27 turbines (geometric details prototypical). 225 kW power
generation at wind speeds 14 to 25m/s (then cut-off)

Prescribed motion of rotor with 33 and 43rpm. Inflow velocity 8 and 25m/s
TSR: 5.84 and 2.43, Re, =~ 919,700 and 1,208,000
Simulation domain 448 m x 240 m x 100 m

Base mesh 448 x 240 x 100 cells with
refinement factors 2, 2,4. Resolution of
rotor and tower Ax = 6.25cm

vVvyyVvYyy

> 94,224 highest level iterations to te = 40s
computed, then statistics are gathered for
10s [Deiterding and Wood, 2016a]

NoRTH

s

wrsT ” 25045 6% s EAST
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Wind turbine wake aerodynamics
0O0@0000

Modeled geometry

Vorticity development — inflow at 0°, v = 8m/s, 33rpm

Refinement of wake up to level 2 (Ax = 25cm).
Vortex break-up before 2nd turbine is reached.
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Wind turbine wake aerodynamics
[e]e]e] lelele)

Modeled geometry

Refinement — inflow at 0°, v = 8m/s, 33rpm

—
Time=6.11312 sec
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Wind turbine wake aerodynamics
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Modeled geometry

Refinement — inflow at 0°, v = 8m/s, 33rpm

—
Time=12.9055 sec
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Wind turbine wake aerodynamics
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Modeled geometry

Refinement — inflow at 0°, v = 8m/s, 33rpm

—

Time=19.6978 sec
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Wind turbine wake aerodynamics
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Modeled geometry

Refinement — inflow at 0°, u = 8m/s, 33rpm

Time=26.4902 sec
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Wind turbine wake aerodynamics
[e]e]e] lelele)

Modeled geometry

Refinement — inflow at 0°, u = 8m/s, 33rpm

Time=33.2825 sec
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Wind turbine wake aerodynamics
[e]e]e] lelele)

Modeled geometry

Refinement — inflow at 0°, u = 8m/s, 33rpm

Time=40.0749 sec
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Wind turbine wake aerodynamics
[e]e]e] lelele)

Modeled geometry

Refinement — inflow at 0°, u = 8m/s, 33rpm

Time=46.8673 sec
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Wind turbine wake aerodynamics
0O000e00

Modeled geometry

Mean point values — inflow at 0°,

u =25m/s, 43rpm, TSR=2.43
=
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Velocity deficits larger for higher TSR.
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Wind turbine wake aerodynamics
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Modeled geometry
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Wind turbine wake aerodynamics
0000

Modeled geometry

Vorticity — inflow at 30°, v = 8m/s, 33rpm

Time=0 sec

Top view in plane in z-direction at 30 m (hub height)
Turbine hub and inflow at 30° yaw leads to off-axis wake impact.

160 cores Intel-Xeon E5 2.6 GHz, 33.03 h wall time for interval [50, 60] s (including
gathering of statistical data)
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Wind turbine wake aerodynamics

O00000e
Modeled geometry

Levels — inflow at 30°, v = 8m/s, 33rpm

Time=0 sec

At 63.8 s approximately 167M cells used vs. 44 billion (factor
264)

~ 6.01h per revolution (961 h CPU) — ~ 5.74h CPU/1M
cells/revolution

300
Level Grids Cells
0 2,463 10,752,000
1 6,464 20,674,760
2 39,473 | 131,018,832
3 827 4,909,632
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Wind turbine wake aerodynamics
@000
Actuator line model

Blade element modeling

Transformation into blade coordinate
system:

Urang = wr(1+ a)
Us = Uso(1 — a)
Uet = /W2r2(1 + a')2 4 U2 (1 — a)2

where a is the axial and a’ the tangential
induction factor

Local aerodynamic forces on a 2D blade profile:
1.0
L= EpU,e,cC@r
1 »
D= EpU,e,chOr

Axial and radial force:

Fr = Lcosd + Dsinf, Fg = Lsind —Dcos@
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Wind turbine wake aerodynamics

Actuator line model _—
Actuator line model Gaussian spreading function [Sgrensen et al., 1998]
1 d\?2
f(d) = —— .
@)=~ er(-7)

Distance d between cell midpoint and ith actuator point

Overlapping actuator points

Appropriate choice of € and dr is essential:

1 Max =099 1

Spreading Function Factor
o o o
5 5 &

o
Spreading Function Factor

Radial Distance d (m) Radial Distance d (m)

e=0.6,dr =0.92m e =0.7, dr =0.65m
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Actuator line model

Simulation of single V27 rotor

Uso = 8m/s, 33rpm, TSR: 5.84
Simulation domain 320m x 160m x 160 m

Base mesh 80 x 40 x 40 cells with refinement factors 2, 2, 4. Finest resolution of
rotor and tower Ax = 25cm (same as before for wake)

te = 50s computed. 96 h CPU on 12 cores Intel-Xeon-E5-2.10GHz
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Wind turbine wake aerodynamics

[e]e]e] )
Actuator line model

Simulation of single V27 rotor - Il

Actuator modelling:

3 actuator lines with 40 points. Inner radius
0.5m, outer radius 13.5m, € = 2m, /
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Thanks to the low dissipation property of the LBM wake convection
behavior is excellent. Hierachical meshes are vital for efficiency.
Currently testing more complex LES turbulence models: dynamic
Smagorinsky and wall-adaptive linear eddy models

Should test also different source term incorporations, cf.

[Mohamad and Kuzmin, 2010], for actuator models.

Consideration of tower and ground topology, realistic inflow
conditions in the near future.
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Outlook

» For accurate prediction of shear flows and boundary layers, a wall-function
model for high Re flows will be implemented.
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Supplementary

Motion solver

Based on the Newton-Euler method solution of dynamics equation of kinetic chains
[Tsai, 1999]

(TFP> N (m[cr]nxllcm —n:[rnd[gllzlx) C’Ft’) " <[wlx(|:nn£w—]xn[:[‘;]]?[:01x)“’> '

m = mass of the body, 1 = the 4x4 homogeneous identity matrix,

ap = acceleration of link frame with origin at p in the preceding link’s frame,
lem = moment of inertia about the center of mass, ;
w = angular velocity of the body, |
o = angular acceleration of the body,

c is the location of the body’s center of mass,

and [c]* , [w]* denote skew-symmetric cross product matrices.

IS
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(TFP> N (m[cr]nxllcm —n:[rnd[gllzlx) <E’) " <[wlx(|TnEw—]xn[1‘[‘;]]i([:CIX)W> '

m = mass of the body, 1 = the 4x4 homogeneous identity matrix,

ap = acceleration of link frame with origin at p in the preceding link’s frame,
lem = moment of inertia about the center of mass,

w = angular velocity of the body, |
o = angular acceleration of the body,

c is the location of the body’s center of mass, | L
and [c]* , [w]* denote skew-symmetric cross product matrices. |

Here, we additionally define the total force and torque acting on a body,
F= (FFSI + Fprescribed) . cxyz and

T = (TFsi + Tprescribed) - Ca~ respectively.
IJ

Where Cyxy; and C,p~ are the translational and rotational constraints,
respectively.
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°

Verification

Flow over 2D cylinder, d = 2cm

Air with
v=161-10"°m?/s,
p = 1.205kg/m?
Domain size
[-8d,24d] x [—8d, 8d]

Dynamic refinement based
on velocity. Last level to
refine structure further.

Inflow from left.
Characteristic boundary
conditions [Schlaffer, 2013]
elsewhere.

Base lattice 320 x 160, 3 additional levels with factors 2,4, 4.
Resolution: ~ 320 points in diameter d

Computation of Cp on 400 equidistant points along circle and averaged
over time. Comparison above with [Henderson, 1995].
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