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Abstract. Numerical simulations can be the key to the thorough under-
standing of the multi-dimensional nature of transient detonation waves.
But the accurate approximation of realistic detonations is extremely de-
manding, because a wide range of different scales needs to be resolved.
In this paper, we summarize our successful efforts in simulating multi-
dimensional detonations with detailed and highly stiff chemical kinetics
on recent parallel machines with distributed memory, especially on clus-
ters of standard personal computers. We explain the design of AMROC, a
freely available dimension-independent mesh adaptation framework for
time-explicit Cartesian finite volume methods on distributed memory
machines, and discuss the locality-preserving rigorous domain decompo-
sition technique it employs. The framework provides a generic imple-
mentation of the blockstructured adaptive mesh refinement algorithm
after Berger and Collela designed especially for the solution of hyper-
bolic fluid flow problems on logically rectangular grids. The ghost fluid
approach is integrated into the refinement algorithm to allow for em-
bedded non-Cartesian boundaries represented implicitly by additional
level-set variables. Two- and three-dimensional simulations of regular
cellular detonation structure in purely Cartesian geometry and a two-
dimensional detonation propagating through a smooth 60 degree pipe
bend are presented. Briefly, the employed upwind scheme and the treat-
ment of the non-equilibrium reaction terms are sketched.

1 Introduction

Reacting flows have been a topic of on-going research since more than hun-
dred years. The interaction between hydrodynamic flow and chemical kinetics
can be extremely complex and even today many phenomena are not very well
understood. One of these phenomena is the propagation of detonation waves
in gaseous media. Detonations are shock-induced combustion waves that inter-
nally consist of a discontinuous hydrodynamic shock wave followed by a smooth
region of decaying combustion. In a self-sustaining detonation, shock and reac-
tion zone propagate essentially with an identical supersonic speed between 1000
and 2000 m/s that is approximated to good accuracy by the classical Chapman-
Jouguet (CJ) theory, cf. [26]. But up to now, no theory exists that describes the
internal flow structure satisfactory. The Zel’dovich-von Neumann-Döring (ZND)
theory is widely believed to reproduce the one-dimensional detonation struc-
ture correctly, but experiments [21] uncovered that the reduction to one space
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dimension is not even justified in long combustion devices. It was found that
detonation waves usually exhibit non-neglectable instationary multi-dimensional
sub-structures in the millimeter range and do not remain exactly planar. The
multi-dimensional instability manifests itself in instationary shock waves propa-
gating perpendicular to the detonation front. A complex flow pattern is formed
around each triple point, where the detonation front is intersected by a transverse
shock. Pressure and temperature are increased enormously leading to a drastic
enhancement of the chemical reaction. Hence, the accurate representation of
triple points is essential for safety analysis, but also in technical applications,
e.g. in the pulse detonation engine. Some particular mixtures, e.g. low-pressure
hydrogen-oxygen with high argon diluent, are known to produce very regular
triple point movements. The triple point trajectories form regular “fish-scale”
patterns, so called detonation cells, with a characteristic length L and width λ
(compare left sketch of Fig. 1).

Figure 1 displays the hydrodynamic flow pattern of a detonation with regular
cellular structure as it is known since the early 1970s, cf. [21]. The right sketch
shows the periodic wave configuration around a triple point in detail. It consists
of a Mach reflection, a flow pattern well-known from non-reactive supersonic
hydrodynamics [3]. The undisturbed detonation front is called the incident shock,
while the transverse wave takes the role of the reflected shock. The triple point
is driven forward by a strong shock wave, called Mach stem. Mach stem and
reflected shock enclose the slip line, the contact discontinuity. The shock front
inside the detonation cell travels as two Mach stems from point A to the line BC,
see left graphic of Fig. 1. In the points B and C the triple point configuration
is inverted nearly instantaneously and the front in the cell becomes the incident
shock. Along the symmetry line AD the change is smooth and the shock strength
decreases continuously. In D the two triple points merge exactly in a single point.
The incident shock vanishes completely and the slip line, which was necessary
for a stable triple point configuration between Mach stem and incident shock,
is torn off and remains behind. Two new triple points with two new slip lines
develop immediately after.
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Fig. 1. Left: regular detonation structure at three different time steps on triple point
trajectories, right: enlargement of a periodical triple point configuration. E: reflected
shock, F: slip line, G: diffusive extension of slip line with flow vortex.
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2 Governing Equations

The appropriate model for detonation propagation in premixed gases with re-
alistic chemistry are the inviscid Euler equations for multiple thermally perfect
species with reactive source terms [26]. These equations form a system of inho-
mogeneous hyperbolic conservation laws that reads

∂tρi + ∇ · (ρiu) = Wi ω̇i , i = 1, . . . , K ,
∂t(ρu) + ∇ · (ρu ⊗ u) + ∇p = 0 ,
∂t(ρE) + ∇ · ((ρE + p)u) = 0 .

(1)

Herein, ρi denotes the partial density of the ith species and ρ =
∑K

i=1 ρi is
the total density. The ratios Yi = ρi/ρ are called mass fractions. We denote the
velocity vector by u and E is the specific total energy. We assume that all species
are ideal gases in thermal equilibrium and the hydrostatic pressure p is given as
the sum of the partial pressures pi = RTρi/Wi with R denoting the universal
gas constant and Wi the molecular weight, respectively. The evaluation of the
last equation necessitates the previous calculation of the temperature T . As
detailed chemical kinetics typically require species with temperature-dependent
material properties, each evaluation of T involves the approximative solution of
an implicit equation by Newton iteration [4]. The chemical production rate for
each species is derived from a reaction mechanism of J chemical reactions as

ω̇i =
J∑

j=1

(νr
ji − νf

ji)

[
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j
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(
ρl
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) νf
jl
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j

K∏
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(
ρl

Wl

) νr
jl

]

, i = 1, . . . , K , (2)

with ν
f/r
ji denoting the forward and backward stoichiometric coefficients of the

ith species in the jth reaction. The rate expressions k
f/r
j (T ) are calculated by

an Arrhenius law, cf. [26].

3 Numerical Methods

We use the time-operator splitting approach or method of fractional steps to
decouple hydrodynamic transport and chemical reaction numerically. This tech-
nique is most frequently used for time-dependent reactive flow computations.
The homogeneous Euler equations and the usually stiff system of ordinary dif-
ferential equations

∂tρi = Wi ω̇i(ρ1, . . . , ρK , T ) , i = 1, . . . , K (3)

are integrated successively with the data from the preceding step as initial
condition. The advantage of this approach is that a globally coupled implicit
problem is avoided and a time-implicit discretization, which accounts for the
stiffness of the reaction terms, needs to be applied only local in each finite vol-
ume cell. We use a semi-implicit Rosenbrock-Wanner method [10] to integrate
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(3). Temperature-dependent material properties are derived from look-up tables
that are constructed during start-up of the computational code. The expensive
reaction rate expressions (2) are evaluated by a mechanism-specific Fortran-77
function, which is produced by a source code generator on top of the Chemkin-II
library [11] in advance. The code generator implements the reaction rate formu-
las without any loops and inserts constants like ν

f/r
ji directly into the code.

As detonations involve supersonic shock waves we use a finite volume dis-
cretization that achieves a proper upwinding in all characteristic fields. The
scheme utilizes a quasi-one-dimensional approximate Riemann solver of Roe-type
[8] and is extended to multiple space dimensions via the method of fractional
steps, cf. [22]. To circumvent the intrinsic problem of unphysical total densities
and internal energies near vacuum due to the Roe linearization, cf. [6], the scheme
has the possibility to switch to the simple, but extremely robust Harten-Lax-Van
Leer (HLL) Riemann solver. Negative mass fraction values are avoided by a nu-
merical flux modification proposed by Larrouturou [12]. Finally, the occurrence
of the disastrous carbuncle phenomena, a multi-dimensional numerical cross-
flow instability that destroys every simulation of strong grid-aligned shocks or
detonation waves completely [18], is prevented by introducing a small amount
of additional numerical viscosity in a multi-dimensional way [20]. A detailed
derivation of the entire Roe-HLL scheme including all necessary modifications
can be found in [4]. This hybrid Riemann solver is extended to a second-order
accurate method with the MUSCL-Hancock variable extrapolation technique by
Van Leer [22].

Higher order shock-capturing finite volume schemes are most efficient on
rectangular Cartesian grids. In order to consider complex moving boundaries
within the scheme outlined above we use some of the finite volume cells as
ghost cells to enforce immersed boundary conditions [7]. Their values are set
immediately before the original numerical update to model moving embedded
walls. The boundary geometry is mapped onto the Cartesian mesh by employing
a scalar level set function ϕ that stores the signed distance to the boundary
surface and allows the efficient evaluation of the boundary outer normal in every
mesh point as n = ∇ϕ/|∇ϕ| [15]. A cell is considered to be a valid fluid cell
in the interior, if the distance in the cell midpoint is positive and is treated
as exterior otherwise. The numerical stencil by itself is not modified, which
causes a slight diffusion of the boundary location throughout the method and
results in an overall non-conservative scheme. We alleviate such errors and the
unavoidable staircase approximation of the boundary with this approach by
using the dynamic mesh adaptation technique described in Sec. 4 to also refine
the Cartesian mesh appropriately along the boundary.

For the inviscid Euler equations (1) the boundary condition at a rigid wall
moving with velocity w is u · n = w · n. Enforcing the latter with ghost cells, in
which the discrete values are located in the cell centers, involves the mirroring of
the primitive values ρi, u, p across the embedded boundary. The normal velocity
in the ghost cells is set to (2w ·n−u ·n)n, while the mirrored tangential velocity
remains unmodified. The construction of the velocity vector within the ghost cells
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therefore reads u′ = (2w ·n−u ·n)n+(u ·t)t = 2 ((w − u) · n)n+u with t de-
noting the boundary tangential. The utilization of mirrored cell values in a ghost
cell center x requires the calculation of spatially interpolated values in the point

Fig. 2. Construction of
values from interior cells
used in internal ghost
cells (gray)

x̃ = x + 2ϕn (4)

from neighboring interior cells. For instance in two
space dimensions, we employ a bilinear interpolation
between usually four adjacent cell values, but directly
near the boundary the number of interpolants needs to
be decreased, cf. Fig. 2. It has to be underlined that
an extrapolation in such situations is inappropriate for
hyperbolic problems with discontinuities like detona-
tion waves that necessarily require the monotonicity
preservation of the numerical solution. Figure 2 high-
lights the reduction of the interpolation stencil for some
exemplary cases close to the embedded boundary. The
interpolation location according to (4) are indicated by
the origins of the red arrows.

4 An Adaptive Mesh Refinement Framework

Numerical simulations of detonation waves require computational meshes that
are able to represent the strong local flow changes due to the reaction correctly.
In particular, the induction zone between leading shock and head of reaction
zone needs a high local resolution. The shock of a self-sustained detonation is
very sensitive to changes in the energy release from the reaction behind and
the inability to resolve all reaction details usually causes a considerable error in
approximating the correct speed of propagation. In order to supply the neces-
sary temporal and spatial resolution efficiently, we employ the blockstructured
adaptive mesh refinement (AMR) method after Berger and Colella [2], which is
tailored especially for hyperbolic conservation laws on logically rectangular finite
volume grids. We have implemented the AMR method in a generic, dimension-
independent object-oriented framework in C++. It is called AMROC (Adaptive
Mesh Refinement in Object-oriented C++) and is free of charge for scientific
use [5]. An effective parallelization strategy for distributed memory machines
has been found and the codes can be executed on all systems that provide the
MPI library.

Instead of replacing single cells by finer ones, as it is done in cell-oriented
refinement techniques, the Berger-Collela AMR method follows a patch-orien-
ted approach. Cells being flagged by various error indicators (shaded in Fig.
3) are clustered with a special algorithm [1] into non-overlapping rectangular
grids. Refinement grids are derived recursively from coarser ones and a hierar-
chy of successively embedded levels is thereby constructed, cf. Fig. 3. All mesh
widths on level l are rl-times finer than on level l − 1, i.e. ∆tl := ∆tl−1/rl and
∆xn,l := ∆xn,l−1/rl with rl ≥ 2 for l > 0 and r0 = 1, and a time-explicit finite
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volume scheme (in principle) remains stable on all levels of the hierarchy. The
recursive temporal integration order is an important difference to usual unstruc-
tured adaptive strategies and is one of the main reasons for the high efficiency
of the approach.

Fig. 3. AMR hierarchy

The numerical scheme is applied on level l
by calling a single-grid routine in a loop over
all subgrids. The subgrids are computation-
ally decoupled by employing additional ghost
cells around each computational grid. Three
types of different ghost cells have to be con-
sidered in the sequential case: Cells outside of
the root domain are used to implement physi-
cal boundary conditions. Ghost cells overlaid
by a grid on level l have a unique interior
cell analogue and are set by copying the data
value from the grid, where the interior cell
is contained (synchronization). On the root
level no further boundary conditions need to
be considered, but for l > 0 also internal boundaries can occur. They are set
by a conservative time-space interpolation from two previously calculated time
steps of level l − 1.

Beside a general data tree that stores the topology of the hierarchy, the
AMR method utilizes at most two regular arrays assigned to each subgrid. They
contain the discrete vector of state for the actual and updated time step. The
regularity of the data allows high performance on vector and super-scalar proces-
sors and cache optimizations. Small data arrays are effectively avoided by leaving
coarse level data structures untouched, when higher level grids are created. Val-
ues of cells covered by finer subgrids are overwritten by averaged fine grid values
subsequently. This operation leads to a modification of the numerical stencil on
the coarse mesh and requires a special flux correction in cells abutting a fine
grid. The correction replaces the coarse grid flux along the fine grid boundary
by a sum of fine fluxes and ensures the discrete conservation property of the
hierarchical method at least for purely Cartesian problems without embedded
boundaries. See [2] or [4] for details.

Up to now, various reliable implementations of the AMR method for single
processor computers have been developed. Even the usage of parallel computers
with shared memory is straight-forward, because a time-explicit scheme allows
the parallel calculation of the grid-wise numerical update [1]. But the question
for an efficient parallelization strategy becomes more delicate for distributed
memory architectures, because on such machines the costs for communication
can not be neglected. Due to the technical difficulties in implementing dynamical
adaptive methods in distributed memory environments only few parallelization
strategies have been considered in practice yet, cf. [19,17].

In the AMROC framework, we follow a rigorous domain decomposition ap-
proach and partition the AMR hierarchy from the root level on. The key idea is
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that all higher level domains are required to follow this “floor-plan”. A careful
analysis of the AMR algorithm uncovers that the only parallel operations under
this paradigm are ghost cell synchronization, redistribution of the AMR hierar-
chy and the application of the previously mentioned flux correction terms. Inter-
polation and averaging, but in particular the calculation of the flux corrections
remain strictly local [4]. Currently, we employ a generalization of Hilbert’s space-
filling curve [16] to derive load-balanced root level distributions at runtime. The
entire AMR hierarchy is considered by projecting the accumulated work from
higher levels onto the root level cells. Although rigorous domain decomposition
does not lead to a perfect balance of workload on single levels, good scale-up is
usually achieved for moderate CPU counts. Figure 4 shows a representative scal-
ability test for a three-dimensional spherical shock wave problem for the compu-
tationally inexpensive Euler equations for a single polytropic gas without chem-
ical reaction. Roe’s approximate Riemann solver within the multi-dimensional
Wave Propagation Method [13] is used as efficient single-grid scheme. The test
was run on the ASC Linux cluster (ALC) at Lawrence Livermore National Lab-
oratories that connects Pentium-4-2.4 GHz dual processor nodes with Quadrics
Interconnect. The base grid has 323 cells and two additional levels with refine-
ment factors 2 and 4. The adaptive calculation uses approx. 7.0 M cells in each
time step instead of 16.8 M cells in the uniform case. The calculation on 256
CPUs employes between 1,500 and 1,700 subgrids on each level. Displayed are
the average costs for each root level time step, which involve two time steps on the

 10

 100

 1000

 256 128 64 32 16 8 4

se
co

nd
s 

/ t
im

e 
st

ep

CPUs

Fig. 4. Representative AMROC scale-up
test for fixed problem size

middle level and eight on the high-
est. All components of the dynamically
adaptive algorithm, especially regrid-
ding and parallel redistribution are ac-
tivated to obtain realistic results. Al-
though we utilize a single-grid update
routine in Fortran 77 in a C++ frame-
work with full compiler optimization,
the fraction of the time spent in this
Fortran routine are 90.5 % on four and
still 74.9 % on 16 CPUs. Hence, Fig. 4
shows a satisfying scale-up for at least
up to 64 CPUs.

5 Numerical Results

An ideal candidate for fundamental detonation structure simulations is the self-
sustaining H2 : O2 : Ar CJ detonation with molar ratios 2 : 1 : 7 at T0 = 298 K
and p0 = 6.67 kPa that is known to produce extremely regular detonation cell
patterns [21]. The analytical solution according to the one-dimensional ZND
theory is extended to multiple space dimensions and transverse disturbances are
initiated by placing a small rectangular unreacted pocket behind the detonation
front, cf. [14] or [4]. Throughout this paper, only the hydrogen-oxygen reac-
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Fig. 5. Color plots of the temperature and schlieren plots of the density on refinement
regions in the first (left) and second half (right) of a detonation cell

tion mechanism extracted from the larger hydrocarbon mechanism assembled
by Westbrook is used [24]. The mechanism consists of 34 elementary reactions
and considers the 9 species H, O, OH, H2, O2, H2O, HO2, H2O2 and Ar. Ac-
cording to the ZND theory, the induction length, the distance between leading
shock and head of reaction zone in one space dimension, is lig = 1.404 mm for
this mechanism in above configuration. The detonation velocity is 1626.9 m/s.

The application of the numerical methods of Sec. 3 within the parallel AMROC
framework allowed a two-dimensional cellular structure simulation that is four-
times higher resolved (44.8 Pts/lig) than earlier calculations [14]. Only recently
Hu et al. presented a similarly resolved calculation for the same CJ detonation
on a uniform mesh [9]. Unfortunately, no technical details are reported for this
simulation. In our case, the calculation was run on a small Beowulf-cluster of 7
Pentium 3-850 MHz-CPUs connected with a 1 Gb-Myrinet network and required
2150 h CPU-time. The calculation is in a frame of reference attached to the deto-
nation. Because of the regularity of the oscillation only one cell is simulated. The
adaptive run uses a root level grid of 200×40 cells and two refinement levels with
r1,2 = 4. A physically motivated combination of scaled gradients and heuristically
estimated relative errors is applied as adaptation criteria. See [4] for details. Two
typical snapshots with the corresponding refinement are displayed in Fig. 5.

The high resolution of our simulation admits a remarkable refinement of the
triple point pattern introduced in Sec. 1. Figure 6 displays the flow situation
around the primary triple point A that is mostly preserved before the next
collision. An analysis of the flow field uncovers the existence of two minor triple
points B and C along the transverse wave downstream of A. While B can be
clearly identified by a characteristic inflection, the triple point C is much weaker
and very diffused. B is caused by the interaction of the strong shock wave BD
with the transverse wave. The slip line emanating from B to K is clearly present.
C seems to be caused by the reaction front and generates the very weak shock
wave CI. A detailed discussion of the transient flow field is given in [4].

On 24 Athlon-1.4 GHz double-processor nodes (2 Gb-Myrinet interconnect) of
the HEidelberg LInux Cluster System (Helics) our approach allowed a
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Fig. 6. Flow structure around a triple point before the next collision. Left: isolines of
YOH (black) on schlieren plot of velocity component u2 (gray).

sufficiently resolved computation of the three-dimensional cellular structure of
a hydrogen-oxygen detonation. The maximal effective resolution of this calcula-
tion is 16.8 Pts/lig and the run required 3800 h CPU-time. Our adaptive results
are in perfect agreement with the calculations by Tsuboi et al. for the same con-
figuration obtained on a uniform mesh on a super-scalar vector machine [23]. A
snapshot of the regular two-dimensional solution of the preceding section is used
to initialize a three-dimensional oscillation in the x2-direction and disturbed with
an unreacted pocket in the orthogonal direction. We use a computational do-
main that exploits the symmetry of the initial data, but allows the development
of a full detonation cell in the x3-direction. The AMROC computation uses a
two-level refinement with r1 = 2 and r2 = 3 on a base grid of 140× 12 × 24 cells
and utilizes between 1.3 M and 1.5 M cells, instead of 8.7 M cells like a uniformly
refined grid.

After a settling time of approx. 20 periods a regular cellular oscillation with
identical strength in x2- and x3-direction can be observed. In both transverse di-
rections the strong two-dimensional oscillations is present and forces the creation
of rectangular detonation cells with the same width as in two dimensions, but the
transverse waves now form triple point lines in three space dimensions. During
a complete detonation cell the four lines remain mostly parallel to the boundary
and hardly disturb each other. The characteristic triple point pattern can there-
fore be observed in Fig. 7 in all planes perpendicular to a triple point line. Unlike
Williams et al. [25] who presented a similar calculation for an overdriven deto-
nation with simplified one-step reaction model, we notice no phase-shift between
both transverse directions. In all our computations for the hydrogen-oxygen CJ
detonation only this regular three-dimensional mode, called “rectangular-mode-
in-phase”, or a purely two-dimensional mode with triple point lines just in x2-
or x3-direction did occur.

In order to demonstrate the enormous potential of the entire approach even
for non-Cartesian problems we finally show an example that combines highly ef-
ficient dynamic mesh adaptation with the embedded boundary method sketched
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Fig. 7. Schlieren plots of ρ (left) and YOH (right) in the first half of a detonation cell
(computational domain mirrored for visualization at lower boundary). The plot of YOH

is overlaid by a translucent blue isosurface of ρ at the leading shock wave that visualizes
the variation of the induction length lig in three space dimensions.

Fig. 8. Color plots of the temperature (upper row) and corresponding enlarged
schlieren plots of the density on refinement regions (lower row) for a regular oscillating
hydrogen-oxygen detonation propagating upwards a pipe bend.

in Sec. 3. A two-dimensional regular oscillating detonation is placed into a pipe
of width 5λ. The pipe bends at an angle of 60 degree and with inner radius
9.375λ. When the detonation propagates through the bend it gets compressed
and consequently overdriven near the outer wall, but a continuous shock wave
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diffraction occurs near the inner wall. This diffraction causes a pressure decrease
below the limit of detonability that leads to a continuous decoupling of shock
and reaction front. This effect is clearly visible in the earliest graphics of Fig.
8. The detonation exits the bend before the decay to a flame occurs across the
entire tube width. A re-ignition wave arises from the successfully transmitted re-
gion and reinitiates the detonation in the decoupled area, cf. middle graphics of
Fig. 8. It propagates in the direction normal to the pipe middle axis and causes
a strong shock wave reflection as it hits the inner wall, compare last graphics
of Fig. 8. This simulation uses a base grid of 300 × 248 cells, four levels of re-
finement with r1,2,3 = 2, r4 = 4, and has an effective resolution of 16.9 Pts/lig.
Approximately 1.0 M to 1.5 M cells are necessary on all levels instead ≈ 76 M in
the uniform case. See lower row of Fig. 8 for some snapshots of the dynamic mesh
evolution. The simulation used approximately 3000 CPU hours on 64 CPUs of
the ASC Linux cluster.

6 Conclusions

We have described an efficient solution strategy for the numerical simulation of
gaseous detonations with detailed chemical reaction. All temporal and spatial
scales relevant for the complex process of detonation propagation were success-
fully resolved. Beside the application of the time-operator splitting technique and
the construction of a robust high-resolution shock capturing scheme, the key to
the high efficiency of the presented simulations is the generic implementation of
the blockstructured AMR method after Berger and Collela [2] in our AMROC
framework [5]. AMROC provides the required high local resolution dynamically
and follows a parallelization strategy tailored especially for the emerging gen-
eration of distributed memory architectures. An embedded boundary method
utilizing internal ghost cells extends the framework effectively to non-Cartesian
problems. All presented results have been achieved on Linux-Beowulf-clusters of
moderate size in a few days real time which confirms the practical relevancy of
the approach.
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