Object-oriented Design of an AMR-algorithm
for Distributed Memory Computers

Ralf Deiterding
Institute of Mathematics, Technical University Cottbus, Germany
e-mail deiterding@math.tu-cottbus.de

Abstract

The design of an object-oriented framework for the blockstructured Berger-Oliger
AMR-method is presented. It simplifies the definition of concrete applications and
allows a natural formulation of the parallel AMR-algorithm. A distribution strategy
especially tailored for AMR is described. Gas dynamical computations of instabili-
ties of the Kelvin-Helmholtz type in two and three space dimensions are employed
to demonstrate the efficiency of the approach.

1. Introduction

The adaptive mesh refinement method (AMR) by M. Berger and J. Oliger [4] is
widely used for the adaptive computation of hyperbolic conservation laws on block-
structured grids. It is designed especially as a general adaptive framework for time-
explicit finite-volume methods on high-performance computers. Due to its limitation
to blockstructured grids the AMR-method is restricted to relatively simple compu-
tational domains, but it allows extraordinarily highly resolved computations [1].

Instead of replacing single cells by finer ones the AMR-method follows a patch-
wise refinement strategy. Cells being flagged by various error estimators are clus-
tered into rectangular boxes of appropriate size. They describe refinement regions
geometrically and subgrids with refined mesh spacing in space and time are gener-
ated according to them. Refined grids are derived recursively from coarser ones and
an entire hierarchy of successively embedded grid patches is therefore constructed.
All grid patches are logically rectangular and only a specific integration method
for single rectangular grids is required. The adaptive algorithm calls this applica-
tion dependent routine automatically. Further on it uses conservative interpolation
functions to transfer cell values between refined subgrids and their coarser parents
appropriately.

It is important to note, that refined grids overlay the coarser subgrids from which
they have been created. The numerical solution on a particular level is first of all
advanced independently. Values of cells covered by refined subgrids are overwrit-
ten by averaged fine grid values subsequently. The resulting extra work is usually
negligible compared to the computational costs for integrating the superimposed
refinement grids.

Replacing coarse cell values by averaged fine grid values modifies the numerical
stencil on the coarse grid. In general the import property of conservation is lost. A
flux correction replacing the coarse grid flux at the affected side of a neighboring

1

cell by accumulated fine grid fluxes is necessary to ensure conservation. This so
called conservative fixup is usually implemented as a correction pass. In two and
three space dimensions hanging nodes additionally have to be considered. See [2]
for details.

Up to now, various reliable implementations of the AMR-method for single pro-
cessor computers have been carried out [3, 5, 6]. Even implementations for par-
allel computers with shared memory architecture have reached a stable state [1].
Parallelism is an inherent feature of the AMR-algorithm and in a shared memory
environment simply the numerical solution on the whole sequence of grids has to be
advanced in parallel to achieve a sufficient load-balancing.

The question for an efficient parallelization strategy becomes more delicate for
distributed memory machines, because the costs of communication can not be ne-
glected anymore. Due to the technical difficulties in implementing dynamical adap-
tive methods in a distributed memory environment only few parallelization strategies
have been tried out in practice yet, c.f. [7, 8, 10].

We follow a parallelization strategy proposed by M. Parashar and J. Browne
[9, 10]. All data assigned to grid patches are stored in hierarchical grid functions
which are automatically distributed with respect to a global grid hierarchy. Dynamic
distribution is carried out under the restriction that higher level data must reside
on the same computing node as the coarsest level data.

In this paper, we demonstrate, that a full, parallel AMR-algorithm for hyperbolic
conservations laws can be implemented efficiently on top of these data structures.
We describe an object-oriented design, that allows the formulation of all components
of the parallel AMR-method almost like in the serial case. By employing ghost
cells regions, which are synchronized automatically whenever the algorithm applies
boundary conditions, an overlap between subgrids is constructed that allows most
AMR-operations to be carried out strictly local.

Exemplary computations of our parallel AMR implementation in two and three
dimensions will be discussed in detail. Although the framework already has been
applied successfully to more complex multicomponent gas flows, intentionally simple
examples are chosen to yield more understandable results.

2. An object-oriented design

In AMR-methods three main abstraction levels can be identified. At the top level,
the specific application is formulated. Our AMR implementation relies on standard-
ized interface-objects to application specific components like initial and boundary
conditions or numerical integration routines. Defining a new application does not
require any knowledge of AMR. The mere AMR-solver and its components for grid
generation, error estimation, interpolation and flux correction make up the second
level. This level naturally utilizes methods of the base level, which supplies the
hierarchical data structures. The base level is divided into the preparation of ele-
mentary functionality for single grid patches and the implementation of various lists
that store these patches hierarchically.

All implementation approaches that try to combine the clarity of an object-
oriented design with the execution speed necessary for highly resolved simulations
come to similar designs for the application level and the definition of a single grid
patch inside the base level [1, 5, 6, 7, 10]. These elementary objects are neglected
in the object diagram of the complete design in fig. 4. We describe them briefly
instead.

A box-object defines a rectangular box in a global integer index space. Methods
for geometric operations on boxes like concatenation or intersection are available.
A patch-object adds consecutive data storage to a box-object. When the AMR-
algorithm passes through the hierarchy, single patches are parameters for the in-
tegrator that calls the numerical solution routines. It is common practice to use
Fortran-functions for computationally intensive single patch operations, like numer-
ical integration, restriction or prolongation and C++ for the implementation of the
objects themselves. Hence, the data inside a patch-object is in Fortran-format.

The geometrical description of all refinement areas is stored in hierarchical lists
of box-objects inside a single grid hierarchy. Several “distributed” grid functions of
various storage types create patch-objects according to these lists. The grid hier-
archy consists of global lists storing the complete refinement information and lists
for each processor’s local contribution. During computation, the grid hierarchy is
dynamically repartitioned under the restriction that higher level data must be as-
signed to the same processor as the coarsest level data. As patch-objects are gener-
ated directly from these local box-lists, all grid functions become equally distributed
following the actual “floor plan”. Redistribution over processors is carried out au-
tomatically as a natural part of the AMR-algorithm whenever the grid hierarchy
changes (see fig. 1).

Note that the described data representation model assigns multiple patch-objects
stored in different grid functions to a single subgrid. The AMR-algorithm utilizes
rectangular data blocks of various storage type to handle a single refinement grid,
but in our design these blocks are accessed via patch-objects kept in different grid
functions. This special design follows from the perception that the tedious technical
overhead in implementing the AMR-method in a distributed memory environment
can be simplified significantly, if commonality in organizing rectangular data blocks
independent of their storage type is exploited. We concentrate this common func-
tionality in a single C++ base-class and by employing template data types and
compile-time parameters carefully all grid-function-objects are derived from this
base class without a loss of computational performance.

Usually AMR-implementations employ ghost cells for the setting of boundary
conditions, because their application allows a similar treatment of internal and phys-
ical boundaries. In our approach distributed grid functions enlarge their patches au-
tomatically by ghost cell regions of suitable size. Ghost cell regions of neighboring
patches are synchronized transparently even over processor borders, whenever the
AMR-method applies boundary conditions. Thus, a proper parallel synchronization
of neighbors is guaranteed by the algorithm itself.

The use of overlapping ghost cell regions combined with the distribution strat-

Main program

lev =0
Integrate(/ev)

Methods of AMR-Solver

Recursive Procedure Integrate(l)
For all patches i of level I Do

Repeat m; tlm.e's . CalculatePatch(GFQuantities(l,t,4i, At;)
GFQuantities.SetBoundaries(l,t) and store fluxes F,; temporarily

If (time to regrid ?) Then |, If (level [+ 1 exists ?) Then

Regrid(1) , (IFiqupl.I>niéia‘)li)ze_lgr(])arseFluxes(l + 1, Fiei)
eve [en
ICfa(IIZl:/I:It?TECZ)iSS(tls’ %)tl)Then Fixup.AddFineFluxes(l,i, Fi ;)
GFQuantities.SetBoundaries(l,t + At;)
Integrate(l 4+ 1)
Fixup.ConservativeCorrection(l,l + 1)
Restrict(l,1 4+ 1)
ti=1t+ At

Procedure Regrid(l;zeq)

For | = lfipest DOWNTO Ifjyeq DO Forclreage;_;)tiﬁ)e(ggl)Do
ErrorEstimation.FlagCells(l) Copy data of old patches and delete them
Clusterer.FindBoxes(l) For I = Ifiyeqg+ 1 To lfingst DO
EnsureNesting(l) CreatePatches(l)

Lo 1, +1 InitializePatches(l) using prolong()

finest finest Copy data of old patches and delete them

GridHierarchy.Recompose()

For GF in list of GridFunctions Do |
GF.Redistribute()

Figure 1: An AMR-algorithm for distributed memory computers based upon the
design shown in fig. 4. The procedures in italics might require interprocessor com-
munication.

egy outlined above ensures that almost all computational operations of the parallel
AMR-algorithm do not require interprocessor communication. Technical details of
communication can be hidden completely against the AMR-algorithm and each grid
function just has to supply methods that initiate ghost cell synchronization and
patch redistribution.

AMR requires hierarchical grid functions of various spatial dimensions, with
complex storage data types and with differently sized overlap regions. Deriving all
grid functions from one base class guarantees a common interface and we managed to
code most parts of our parallel AMR-algorithm independently of spatial dimensions
and size of the vector of state.

3. A parallel AMR-algorithm

Using the described programming abstractions, a parallel AMR-algorithm for hy-
perbolic conservation laws can be formulated. Following [1] the mere algorithm is
split into a function that updates the levels recursively by employing the numerical
solution routines and a function that controls the regridding procedure (see fig. 1).
We implement these functions as methods of a central A MR-solver-object. Mostly,
they operate on GFQuantities, a distributed grid function attached to AMR-solver

storing patch-objects for the vector of state. As mentioned above, GFQuantities
synchronizes its patches transparently over processors, when boundary conditions
are applied. Additionally, it automatically fills ghost cells at internal boundaries
with appropriately prolongated (locally available) coarse grid values.

After setting boundary conditions, the numerical solution is computed locally. At
coarse-fine interfaces the fluxes are used to calculate correction terms that ensure
conservation. The correction terms are saved in grid functions GFFizup of lower
spatial dimension that are assigned to the boundaries of fine grids. E.g. in two
dimension four of these grid functions are necessary. They are initialized with the
corresponding coarse grid flux, fine grid fluxes at the particular boundary are added
during recursive computation. Flux correction in detail depends heavily onto the
specific numerical method employed, c.f. [3]. Hence, an exchangeable Fizup-object
with a well defined interface guarantees the required flexibility.

The automatic redistribution of all grid functions combined with the use of ghost
cells ensures that correction terms can be computed strictly local. Only their appli-
cation in form of a correction of coarse grid cell values must be done with respect
to neighboring patches on other processors. Finally, coarse cell values are replaced
by restricted values where finer grid patches overlap. Due to the chosen distribution
strategy this operation is strictly local.

When a level and all finer levels need regridding, cells are flagged for refinement
locally. The refinement criterion, e.g. a combination of error estimation and approx-
imated gradients has to be interchangeable and is consequently defined in a further
object outside of AMR-solver. The resulting flags are kept in a integer-valued grid
function GFFlags. Its overlap region between patches corresponds to the size of the
buffer region around flagged cells. Synchronizing this grid function allows a parallel
execution of the algorithm that clusters flagged cells into suitable rectangles. Each
processor thus generates properly nested box-lists of new refinement regions in his
actual contribution of the computational domain.

These lists are used to update the global grid hierarchy. Before the grid hierarchy
can be partitioned appropriately, the estimated workload on all levels is added up
and assigned to cells of the coarsest level. The algorithm used for partitioning the
computational domain has to meet several requirements. It must balance the esti-
mated workload, while maintaining patches of sufficient size. The algorithm should
be fast, because it is executed after each regrid operation. Additionally, communi-
cation for redistributing grid functions and synchronizing them during calculation
should be minimal. M. Parashar and J. Browne proposed partitioning algorithms
that are based on generalized space-filling curves [9]. We employ such a partitioner
in our computational examples.

After recomposing the grid hierarchy’s local box-lists all grid functions have to
be redistributed. It depends on the type of the particular grid function how the
newly created patches have to be initialized. Fig. 1 shows the general case which
applies to the grid function for the vector of state. In case of the grid functions for
correction terms no prolongation is necessary; the new patches of GFFlags need not
even be initialized.

Figure 2: Growing perturbations after 1011 time steps of the 2D-computation and
dynamical adaption of the parallel AMR-algorithm. Left: Isolines of density on
refinement grids of 1st (light grey) and 2nd (dark grey) level. Right: Distribution
of the computational domain to 6 computing nodes. Estimated workload differs
between 96.4% and 106.1%.

4. Computational results

The efficiency of the approach is demonstrated by sample computations of instabil-
ities of the Kelvin-Helmholtz type in an ideal gas. This well understood instability
develops, if an initial planar contact discontinuity over flown by a tangential shear
flow is slightly disturbed. In this case, the initial flat interface shows evolving pertur-
bations during simulation time and starts to form the well know roll-up. We compute
a two- and a three-dimensional example by solving the compressible Euler equations
for a single ideal gas. To allow comparisons the popular CLAWPACK-routines are
employed as numerical integration routines at application level. Special versions of
the routines returning the fluctuations are necessary to enable the calculation of
correction terms [3].

In both computations the interface separates a low density region from a higher
density area below. At the upper and lower boundaries solid-wall boundary con-
ditions are used, while all other boundaries are assumed to be periodic. In the
two-dimensional case the interface initially is defined by one period of sine wave.
The shear flows in both phases are equally directed, while the lower flow is forty
times slower than the flow above. To illustrate this example fig. 2 shows the inter-
face after 1011 time steps calculated with a CFL-No. around 0.95. The benchmark
uses the first 216 time steps of this computation. The base grid has 120 x 120 cells,
while two refinement levels each with refinement factor 4 are allowed. Instead of
3.7TM cells for a uniform grid, the adaptive computation uses 167k up to 280k cells.

The initial interface for the three-dimensional computation is defined periodically
as a product of two sine waves. Diagonally directed opposed shear flows are applied.
The magnitude of the velocity of the lighter phase is five times large than the
velocity of the flow below. Fig. 3 shows how the initially nearly flat interface has

Figure 3: Roll-up of the interface after 686 times steps of the 3D-calculation. Left:
An isosurface of the density distribution shows the interface. Right: Refinement
grids of 2nd level on a diagonal cut parallel to the streamlines of the flow.

formed an enormous roll-up after 686 time steps using an approximate CFL-No. of
0.90. For this benchmark the first 102 time steps are calculated. A base grid with
40 x 40 x 40 cells and two refinement levels with refinement factor 2 are employed.
The adaptive computation restricts itself to 806k up to 877k cells instead of 4.1M
cells for a corresponding uniform grid.

Tab. 1 shows the fractions of computational time spent in different code units,
while an increasing number of computing nodes is used. Patch initialization and the
setting of boundary cells at coarse-fine interfaces are accumulated to “Interpolation”.
“Boundary setting” accounts of physical boundary conditions and synchronization
of patches of the same level. “Recomposition” denotes the load-balanced reconstruc-
tion of the grid hierarchy, while the mere parallel exchange of grid patches due to
load-imbalance is called “Redistribution”.

The omitted absolute time value of both computations show, that integration
and interpolation scale up well. Obviously, numerical integration in three dimensions
is more costly than in two and especially the costs for parallel synchronization are
significantly higher. The portion for integration rises additionally in the three-
dimensional computation, because it uses much fewer refinement grids than the two-
dimensional one. Thus, the overhead for recomposition and redistribution becomes
negligible against the expense for advancing the numerical solution. In contrast to
the two-dimensional case the parallel efficiency of this example depends mainly on
synchronization. The two-dimensional benchmark splits up much more refinement
patches to achieve a sufficient load balancing. Hence, its portions for recomposition
and setting of boundary values increase more drastically.

Task / % 2D-computation 3D-computation
P=1 ‘ P=2 ‘ P=4 ‘ P=8 ‘ P=16 | P=1 ‘ P=2 ‘ P=4 ‘ P=6
Patch integration 775729 63.7| 54.1| 42.4| 93.3| 88.0| 84.4| 77.5
Recomposition 5.8 5.1 6.7 81| 10.3|| 0.6 0.4 0.5| 0.4
Redistribution 3.5 53| 99| 134 0.3 04| 04
Boundary setting 0.7 16| 3.2| 5.2 81| 0.4 05| 0.7 0.9
Synchronization 24| 7.5(10.7| 14.6 5.7| 86| 15.9
Interpolation 57| 5.5] 4.9| 4.2 35| 24| 24| 24| 2.0
Conservative Fixup| 2.9| 2.8| 2.8| 2.5 26| 13| 1.2| 13| 1.0
Synchronization 0.1 0.7 1.0 1.0 0.1 03] 0.5
Clustering 39| 28| 21| 14 1.3|| 05| 05| 04| 04
Not measured 3.5 33] 3.1] 29 2.8 15| 09| 1.0 1.0
[Parallel Eff. [[95.5]86.9]73.6] 58.3] [95.0] 85.9] 82.5]

Table 1: Decomposition of computational time. Interprocessor communication using
the MPI-library is set off in italics. The 2D-computation was carried out on SP2.
The 3D-computation was run on a Pentium-based PC-Cluster connected with a
high-speed network. Parallel efficiency =Ty / (P - Tp).

5. Conclusions

An object-oriented design for the Berger-Oliger AMR-method on distributed mem-
ory machines has been developed. It divides into abstraction levels for the concrete
application, adaptive method and parallelized data structures. At the top, numerical
solvers are separated from the general AMR-framework. A specific problem mainly
requires routines for advancing the numerical solution and setting of initial and
boundary conditions which are implemented for a single blockstructured grid. The
adaptive framework automatically generates a sequence of blockstructured subgrids
which are passed to these functions successively.

The formulation of the mere AMR-algorithm itself is enormously simplified by
encapsulating technical parallelization details completely inside the lowest level of
hierarchical data structures. The design of these data structures has been described
briefly, especially the chosen dynamic distribution strategy has been sketched. The
described strategy places the data of all levels on the same processor as the data
of the base level. Suitable regions of overlapping ghost cells guarantee a proper
synchronization between subgrids. It has been demonstrated, that this strategy
allows a formulation of the AMR-method similar to the serial case, because most
AMR-operations remain strictly local and synchronization and redistribution can
be carried out as natural parts of the algorithm. Especially the technically difficult
conservative correction, which is mandatory for hyperbolic conservation laws, can
be realized efficiently even in a distributed memory environment.

Sample computations with an implementation based upon the described design
have been presented in detail. They confirm the efficiency of the whole approach

and show that even for fast Fortran-solvers the AMR-method can reach sufficient
performance on distributed memory machines.

References

1]

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

J. Bell, M. Berger, J. Saltzman, and M. Welcome. Three-dimensional adap-
tive mesh refinement for hyperbolic conservation laws. SIAM J. Sci. Comput.,
15(1):127-138, 1994.

M. Berger and P. Colella. Local adaptive mesh refinement for shock hydrody-
namics. J. Comput. Phys., 82:64-84, 1988.

M. Berger and R. LeVeque. Adaptive mesh refinement using wave-propagation
algorithms for hyperbolic systems. SIAM J. Numer. Anal., 35(6):2298-2316,
1998.

M. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial
differential equations. J. Comput. Phys., 53:484-512, 1984.

W. Crutchfield and M. L. Welcome. Object-oriented implementation of adaptive
mesh refinement algorithms. J. Scientific Programming, 2:145-156, 1993.

H. Friedel, R. Grauer, and C. Marliani. Adaptive mesh refinement for singu-
lar current sheets in incompressible magnetohydrodynamics flows. J. Comput.
Phys., 134(1):190-198, 1997.

S. R. Kohn and S. B. S. B. Baden. A parallel software infrastructure for struc-
tured adaptive mesh methods. In Proc. of the Conf. on Supercomputing ’95,
December 1995.

M. Lemke, K. Witsch, and D. Quinlan. An object-oriented approach for parallel
self adaptive mesh refinement on block structured grids. In W. Hackbuch and
G. Wittum, editors, Adaptive Methods-Algorithms, Theory and Applications,
pages 199-220, Braunschweig/Wiesbaden, 1994, January 22-24 1993. Proceed-
ings of the Ninth GAMM-Seminar, Vieweg & Sohn Verlagsgesellschaft mbH.

M. Parashar and J. C. Browne. On partitioning dynamic adaptive grid hierar-
chies. In Proceedings of the 29th Annual Hawait International Conference on
System Sciences, January 1996.

M. Parashar and J. C. Browne. System engineering for high performance com-
puting software: The HDDA /DAGH infrastructure for implementation of par-
allel structured adaptive mesh refinement. In Structured Adaptive Mesh Re-
finement Grid Methods, August 1997. IMA Volumes in Mathematics and its
Applications, Springer-Verlag.

Integrator Initial- Boundary-
Condition Conditions
InitPatch f
CalculatePatch

SetPatchRegion

Interpolation
AMR-Solver
SetBoundaries
Regrid() GFQuantities
FindBoxes Grid generation
\filagCells @

ErrorEstimation
SetBoundaries

Adaptive mesh
refinement

InitializeCoarseFluxes

ConservativeC orrectioV
AddFineFluxes

Fixup (Flux
correction)

Redistribute T

Recompose

Redistribut:\

Hierarchical data
structures

GridHierarchy Redistribute

Figure 4: Object-oriented design for the AMR-method. The adaptive algorithm is
implemented in AMR-Solver. See fig. 1.

10

