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1 Introduction

Instationary flow phenomena of gases are described by the Euler equations. While various
high-resolution methods have been developed to solve the homogenous Euler equations nu-
merically, the appropriate incorporation of source terms is still a topic of current research.

In this report, we calculate the flow of a single ideal gas under influence of the standard gra-
vitational field. In this particular case, a source term modifying the equations of momentum
and energy has to be considered.

A smooth two-dimensional advection example is choosen for which the exact solution is
known. Error norms can easily be calculated allowing the validation and rating of different
numerical methods. Accurate numerical results can be recomputed with minimal effort by
standard fractional step methods and can serve as a standard when testing new numerical
methods.

2 Governing equations

The two-dimensional Euler equations with standard gravity in y-direction take the following
form:

Pt + (pu)e + (pv)y =0

(pu)e + (pu®+p)e + (puv)y = 0 1)
(pv)e + (pwv)s + (*+p)y = —ng

(PE)e + [u(pE+p)], + [(pE+Dp)], = —pvg

with the equation of state

Here p = p(z,y,t) is the density, p = p(z,y,t) is the hydrodynamic pressure and E =
E(z,y,t) is the total energy per unit mass. u = u(z,y,t) is the velocity in z-direction, while
v = v(z,y,t) is the velocity in y-direction. g is the gravitational constant acting in y-direction.
v is the constant adiabatic coefficient for the gas.

The system of equations (1) reduces to a single transport equation for the density p for

’U,(.’L‘, Y, t) = Uo
’U(:L',y,t) = v —gt (2)
p(fU, Y, t) = Do



with ug,v9 € R; pg € Rt. In this case, an arbitrary initial density distribution py € C*(R?)
is simply transported:

1
p(z,y,t) = po(z — uet,y — vot + §gt2) (3)

3 Advection of a smooth density distribution

To measure the rate of convergence of a numerical method on smooth solutions we consider
an advection example with py € C*(R?).
3.1 Domain and boundary conditions

We use the rectangular domain
Q= {(z,y) € R z,y € [0,2]}

with periodic boundary conditions on both sides.

3.2 Imitial conditions and exact solution

We employ initial conditions on Q for pressure and velocities according to (2). For py we use
a smooth density distribution radial symmetric around C' = (g, yg). The choice of periodic
boundary conditions ensures that no disturbances in pressure and velocity can emerge from
the boundaries and the initial density distribution is simply advected, while the equations of
motion for the center C are

1
(e(t) = 20+ oty elt) = w0 + wat = g0t ) @

For the actual calculations we use the density distribution

r(@,y,t) = V(@ — ze(t)? + (y — 5e(t))? (5)

pa+pp[sin(fr+3)+1] if0<r<R
pr(r) = .
Pa ifR<r

with p(z,y,t) = pr(r(2,9,1)), pa = 1.0, pp = 0.05.

The remaining parameters are:

oy = 0.75, Yo = 0.75, R = 0.5, Uy = 1, vy = 1.25, Po = 1, g = 1,"}/ =1.39

3.3 Calculations

We utilize the wave propagation method of R. J. LeVeque [2] and incorporate the source
term via a fractional step method. These methods alternate between solving the homogenous
conservation law and an ordinary differential equation for the source term.

For the actual calculations the popular fractional step method of Strang [4] is used. The or-
dinary differential equation of the source term is solved with a two-step Runge-Kutta method.
A detailed explanation of the algorithm can be found in [1].



As our example is smooth and the source term is nonstiff Strang splitting should be an
appropriate choice for a numerical method [3]. The seperate steps of the fractional step
method are of second order (the MC-limiter is used for the transport step) and the whole
numerical method can be expected to give second order accurate results on suffiently fine
grids.

Four calculations on equally spaced cartesian grids with mesh widths A = 0.05, 0.025,
0.0125 and 0.00625 are carried out to measure the accuracy of the numerical method. The
fixed time step of each calculation is £ = h/4 yielding a CFL-No. around 0.58. The com-
putations end at ¢ = 0.5, when the center C crosses the diagonal at (1.25,1.25) again (see
fig.1).

We use the Li-Norm of the error between exact solution f and computed solution F

1B =/IF—f|dQ
Q

to compute the global error of density p and velocity vector @’.

While the computed pressure and velocity components vary against the exact solution in
a magnitude of the machine precision, the global error for the density distribution clearly
shows the expected rate of convergence (see tab. 1).

Figure 1: Contour plot of density at t = 0 (left) and ¢ = 0.5 (right) on a 80 x 80 grid.

Grid cells | h | Epl1 EOC |1 E |1

40 x 40 0.05 6.06087e-04 5.59049e-15
80 x 80 0.025 1.66710e-04 | 1.86 | 1.93635e-14
160 x 160 | 0.0125 0.44816e-04 | 1.90 | 3.52313e-14
320 x 320 | 0.00625 | 0.114182e-04 | 1.97 | 3.03246e-14

Table 1: L;-Norms of global errors



3.4 Required output

Beside a detailed description of the algorithm (especially treatment of the source term, hand-
ling of boundary conditions, etc.), the following output is required to rate a new numerical
method:

1. One-dimensional plot of p, u, v and p along the diagonal from lower left to upper right
corner at times t = 0,7 = 0.5 on a 80 x 80 grid.

2. Two-dimensional contour plot of p at times ¢ = 0,¢ = 0.5 on a 80 x 80 grid. Contour
plots of u, v of p should only be generated, if significant differences against the exact
solution occur.

3. Calculation of Li-norms and order of convergence like in tab. 1.
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