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ABSTRACT

Two- and three-dimensional simulation results are presented that investigate at
great detail the temporal evolution of Mach reflection sub-structure patterns intrin-
sic to gaseous detonation waves. High local resolution is achieved by utilizing a
distributed memory parallel shock-capturing finite volume code that employs block-
structured dynamic mesh adaptation. The computational approach, the implemented
parallelization strategy, and the software design are discussed.

INTRODUCTION

The propagation of detonation waves in gaseous media is a complex multiscale
phenomenon. While gaseous detonations propagate at supersonic velocities between
1500 and 2500m/s, they inhibit non-negligible instationary sub-structures in the mil-
limeter range. Transverse pressure waves propagate perpendicular to the detonation
front forming triple points with enhanced chemical reaction. The hydrodynamic flow
pattern in a triple point is a Mach reflection phenomenon under transient conditions.
Depending on the local flow conditions, both double-Mach (aka “strong”) and transi-
tional Mach reflection (“weak”) structures have been observed in experiments [1].

In the present paper, we discuss results from large-scale parallel simulations of
Chapman-Jouguet (CJ) detonations in low-pressure hydrogen-oxygen with high ar-
gon dilution. In free space, the triple point movement in such mixtures is very regular
leading to a repetitive trajectory pattern of regular “detonation cells”. While the de-
tailed hydrodynamic structure of such detonations has been fairly well analyzed by
means of numerical simulation for two-dimensional rectangular channels and classi-
fied to be of double-Mach reflection type [2, 3], open questions remain for three space
dimensions and non-rectangular geometries.

The paper is divided into a presentation of the computational methodology and a
detailed discussion of computational results. We first summarize the employed finite
volume discretization and discuss the used block-structured adaptive mesh refine-
ment (SAMR) method from a software-oriented point of view. We then describe the
domain decomposition based parallelization approach chosen in AMROC (Adaptive
Mesh Refinement in Object-oriented C++) [4, 5], our freely available SAMR frame-

Ralf Deiterding, Oak Ridge National Laboratory, P.O. Box 2008 MS6367, Oak Ridge, TN 37831,
U.S.A.



work, and give an overview of AMROC’s object-oriented design. The second part
of the paper presents high-resolution results of two- and three-dimensional simula-
tions of regular cellular detonation structures in purely Cartesian geometry and two-
dimensional computations of detonations propagating through smooth pipe bends. A
detailed triple point analysis of weak and strong structures found in these simulations
completes the analysis.

COMPUTATIONAL METHOD

The appropriate model for detonation propagation in premixed gases with realistic
chemistry are the inviscid Euler equations for multiple thermally perfect species with
reactive source terms [1, 6] that read

∂tρi + ∇ · (ρi~u) = Wi ω̇i ,
∂t(ρ~u) + ∇ · (ρ~u⊗~u)+∇p = 0 ,
∂t(ρE) + ∇ · ((ρE + p)~u) = 0 ,

(1)

with i = 1, . . . ,K. Herein, ρi denotes the partial density of the ith species and ρ =
∑

K
i=1 ρi is the total density. The ratios Yi = ρi/ρ are called mass fractions. We denote

the velocity vector by~u and E is the specific total energy. We assume that all K species
are ideal gases in thermal equilibrium and that the hydrostatic pressure is given as the
sum of the partial pressures pi = RT ρi/Wi with R denoting the universal gas con-
stant and Wi the molecular weight, respectively. The evaluation of the last equation
requires the previous calculation of the temperature T . As detailed chemical kinetics
necessitate species with temperature-dependent material properties, each evaluation
of T involves the approximate solution of an implicit equation by Newton iteration
[7]. In here, the chemical production rates are modeled with a hydrogen-oxygen re-
action mechanism extracted from the larger hydrocarbon mechanism by Westbrook
[8] and considers the 9 species H, O, OH, H2, O2, H2O, HO2, H2O2 and Ar.

Finite volume scheme

We employ a time-operator splitting approach to decouple hydrodynamic trans-
port and chemical reaction numerically. A semi-implicit Rosenbrock-Wanner method
[9] is used to integrate the kinetics within each finite volume cell. Temperature-
dependent material properties are derived from look-up tables that are constructed
during start-up of the computational code. The expensive reaction rate expressions
are evaluated by a mechanism-specific Fortran-77 function, which is produced by a
source code generator on top of the Chemkin-II library in advance.

Since detonations involve supersonic shock waves, we use a finite volume dis-
cretization that achieves proper upwinding in all characteristic fields. The scheme
utilizes a quasi-one-dimensional approximate Riemann solver of Roe-type and is
extended to multiple space-dimensions via the method of fractional steps. Special
corrections are applied to avoid unphysical total densities and internal energies near
vacuum due to the Roe linearization, to ensure positive mass fractions, and to prevent
the disastrous carbuncle phenomenon. The MUSCL1-Hancock variable extrapola-
tion technique is employed to construct a second-order method. The upwind scheme
including all modifications is detailed in [7, 10].

In order to consider geometrically complex moving boundaries within an origi-
nally Cartesian upwind method, we use some of the finite volume cells as ghost cells
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to enforce immersed boundary conditions [11]. Their values are set immediately be-
fore the original numerical update to model rigid embedded walls. The boundary
geometry is mapped onto the Cartesian mesh by employing a scalar level set function
φ that stores the signed distance function. A cell is considered to be an interior cell if
the distance in the midpoint is positive and is treated as exterior otherwise. Beside the
alteration of the values in the embedded ghost cells the numerical stencil by itself is
not modified. Slight approximation errors due to this approach are alleviated by dy-
namic mesh adaptation. The detailed implementation of the immersed wall boundary
conditions for system (1) is described in [10].

Adaptive mesh refinement

In order to supply the required temporal and spatial resolution efficiently, we em-
ploy the block-structured adaptive mesh refinement method after Berger and Collela
[12], which is tailored especially for hyperbolic conservation laws on logically rectan-
gular finite volume grids. Instead of replacing single cells by finer ones, as it is done
in cell-oriented refinement techniques, the SAMR method follows a patch-oriented
approach. Cells being flagged by various error indicators (shaded in Figure 1) are
clustered with a special algorithm [13] into non-overlapping rectangular grids. Re-
finement grids are derived recursively from coarser ones and a hierarchy of succes-
sively embedded levels is thereby constructed (cf. Figure 1). All mesh widths on level
l are rl-times finer than on level l−1, i.e. ∆tl := ∆tl−1/rl and ∆xn,l := ∆xn,l−1/rl with
rl ≥ 2 for l > 0 and r0 = 1, and a time-explicit finite volume scheme (in principle)
remains stable on all levels of the hierarchy. Note that the application of recursive
time step refinement is a key difference between the SAMR approach and usual un-
structured adaptation strategies.

The numerical scheme is applied on level l by calling a single-grid routine in a
loop over all subgrids. The subgrids become computationally decoupled by employ-
ing additional ghost cells around each computational grid. Three types of ghost cells
have to be considered in the sequential case (see Figure 2). Cells outside of the root
domain are used to implement physical boundary conditions. Ghost cells overlaid by
a grid on level l have a unique interior cell analogue and are set by copying the data
value from the grid, where the interior cell is contained (synchronization). On the root
level no further boundary conditions need to be considered, but for l > 0 also internal
boundaries can occur. They are set by a conservative time-space interpolation from
two previously calculated time steps of level l−1.

Figure 1. SAMR employs a hierarchy of suc-
cessively embedded rectangular subgrids.

Figure 2. Sources of ghost cell values at the
boundaries of an SAMR subgrid.



Beside a general data tree that stores the topology of the hierarchy, the SAMR
method requires at most two regular arrays assigned to each subgrid. They contain
the discrete vector of state for the actual and updated time step. The regularity of
the data allows high performance on vector and super-scalar processors and cache
optimizations. Small data arrays are effectively avoided by leaving coarse level data
structures untouched when higher level grids are created. Values of cells covered by
finer subgrids are overwritten by averaged fine grid values subsequently. This opera-
tion leads to a modification of the numerical stencil on the coarse mesh and requires a
special flux correction in cells abutting a fine grid. The correction replaces the coarse
grid flux along the fine grid boundary by a sum of fine fluxes and ensures the dis-
crete conservation property of the hierarchical method at least for purely Cartesian
problems without embedded boundaries. See [12] or [14] for details.

Parallelization

Up to now, various reliable implementations of the SAMR method for single pro-
cessor computers have been developed [15, 16]. Even the usage of parallel com-
puters with shared memory is straightforward because a time-explicit scheme allows
the parallel calculation of the grid-wise numerical update [13]. But the question for
an efficient parallelization strategy becomes more complex for distributed memory
architectures. Due to the technical difficulties in implementing dynamical adaptive
methods in distributed memory environments only few parallelization strategies have
been considered in practice yet [17, 18].

In the AMROC framework, we follow a rigorous domain decomposition approach
and partition the SAMR hierarchy from the root level on. We assume a parallel ma-
chine with P identical nodes and split the root domain G0 into P non-overlapping
portions Gp

0 , p = 1, . . . ,P by

G0 =
P⋃

p=1

Gp
0 with Gp

0 ∩Gq
0 = /0 for p 6= q .

The key idea now is that all higher level domains Gi are required to follow the de-
composition of the root level, i.e.

Gp
l := Gl ∩Gp

0 . (2)

Condition (2) can cause the splitting of a subgrid Gl,m into multiple subgrids on dif-
ferent processors. Under requirement (2) we estimate the work on an arbitrary sub-
domain Ω⊂ G0 by

W (Ω) =
lmax

∑
l=0

[
Nl(Gl ∩Ω)

l

∏
κ=0

rκ

]
. (3)

Herein, Nl(·) denotes the total number of FV cells on level l in the given domain. The
product in (3) is used to consider the time step refinement. A nearly equal distribution
of the work necessitates

L p :=
P ·W (Gp

0)
W (G0)

≈ 1 for all p = 1, . . . ,P . (4)

In AMROC, decompositions Gp
0 with similar workload are found at runtime as the

hierarchy evolves by a hierarchical partitioning algorithm based on a generalization of



 1

 10

 100

 1  2  4  8  16  32  64  128

tim
e 

[s
]

CPU

Total time
Ideal

 0.1

 1

 10

 1  2  4  8  16  32  64  128

tim
e 

[s
]

CPU

Fluid dynamics
Chemical kinetics
Boundary setting

Embedded boundary
Recomposition

Figure 3. Strong scalability test for the two-dimensional chemically reactive SAMR code.
Total time required for one full integration and refinement cycle (left) and for the most impor-
tant operations (right).

Hilbert’s space-filling curve [19]. The space-filling curve defines an ordered sequence
on the cells of the root level that can easily be split in load-balanced portions. As such
curves are constructed recursively, they are locality preserving and therefore avoid an
excessive data redistribution overhead. Further on, the surface area is small, which
reduces synchronization costs.

The advantage of the rigorous domain decomposition approach is that it is compa-
rably easy to implement, with hierarchy recomposition and subgrid synchronization
being the only parallel operations [20], and overall work is well balanced. How-
ever, the work on each levels is not perfectly distributed, which causes slight delays
during subgrid synchronization (in operation Boundary setting). We have found the
approach well suited for parallel three-dimensional computations on up to a few hun-
dreds CPUs.

Results from a two-dimensional scalability test are depicted in Figure 3. The
simulation approximates the shock-induced combustion around a sphere that travels
at supersonic speed through a hydrogen-oxygen-argon mixture [10]. The computation
is carried out in the frame of reference of the body, leading to a steady flow field, and
uses a base mesh of only 70×40 cells and 3 additional levels refined by a factor of 2.
The test was run on a cluster of Intel Xeon 3.4 GHz dual-processors connected with a
Gigabit-Ethernet network. As can be inferred from the right graphic of Figure 3, the
numerical single-block operations for fluid dynamics and chemical kinetics update
scale linearly, however, the expense of the communication-dependent operations for
synchronization and hierarchy recomposition remains basically constant for larger
CPU counts.

Object-oriented implementation

In block-structured dynamically adaptive codes, three abstraction levels can be
identified. At the top level, a particular physical simulation problem is formulated by
providing a finite volume scheme, by setting boundary and initial conditions, and by
specifying interpolation (prolongation) and averaging (restriction) methods for the
inter-level transfer operations. Characteristic of block-structured methods is that at
this level only single-patch routines need to be provided. In AMROC, SAMR imple-
mentation classes call the single-patch routines through abstract class interfaces. For
a fully implemented SAMR algorithm, the system is used as an application frame-
work invoked by a generic main program. Classes implementing SAMR algorithms
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Figure 4. UML class diagram for the most important AMROC components implementing
the Cartesian Berger-Collela-type SAMR method.

and their auxiliary components operating on and manipulating complex hierarchical
data make up the second level. In AMROC, components such as the flagging of cells
for refinement depending on various criteria, the clustering of flagged cells into rect-
angular regions, inter-level data transfer and flux correction (fixup) reside in clearly
separated classes. This is highlighted in Figure 4 which displays the most impor-
tant AMROC classes and their relationships in Unified Modeling Language (UML)
notation [21] for the purely Cartesian case. The recursive Berger-Collela SAMR al-
gorithm tailored for the hyperbolic problems of interest here is realized in the central
class HypSAMRSolver; all others classes are generic, enabling the utilization of AM-
ROC as a software framework for the efficient implementation of different SAMR
algorithms typically implemented in new central SAMRSolver classes.

The intermediate AMROC design level naturally utilizes classes of the base level
that provides hierarchical data structures. The base level is divided into elementary
functionality for single grid patches and the implementation of various lists that store
these patches hierarchically. A common design for the base level (see also [17])
involves a Box class to specify a single rectangular box in global integer index space.
Methods for geometric operations on boxes like concatenation or intersection are
available. A Patch class adds consecutive data storage to a Box. In AMROC, the
geometrical description of all refinement areas is stored in hierarchical lists of Box
objects inside a single GridHierarchy. The templatized class GridFunction creates
Patch objects for various, possibly complex, data types according to the Box lists of
GridHierarchy. As the refinement lists in GridHierarchy evolve and are dynamically
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Figure 5. Extension of Figure 4 for level-set-based embedded boundary methods.

distributed to an evolving set of processors, the Patch objects in GridFunction are
automatically re-created, including parallel redistribution and synchronization.

The design of the hierarchical data structures in AMROC is based on the DAGH
(Distributive Adaptive Grid Hierarchies) package by Parashar and Browne [18] that
itself was intended as software framework for SAMR methods, however, the com-
plexity of the algorithms and their auxiliary components makes framework concepts
at higher design levels more effective. As an illustration, Figure 5 shows the most
important classes that have been added to the originally Cartesian SAMR framework
to implement level-set-based embedded boundary methods. An abstract class Lev-
elSetEvaluation is provided to evaluate the scalar GridFunction φ patch-wise; Em-
beddedBoundaryConditions allows the specification of the detailed boundary value
modification. Multiple EmbeddedBoundaryMethods can also be considered and are
incorporated with minimal implementation overhead into the existing algorithms of
the SAMRSolver class for hyperbolic problems, HypSAMRSolver, through the de-
rived class EBMHypSAMRSolver. The only operation that had to be extended was
that of applying physical boundary conditions.

RESULTS

The classical Zel’dovich-von Neumann-Döring (ZND) theory (cf. [1] or [14])
predicts the internal structure of a self-sustained one-dimensional stationary detona-
tion wave. However, the energetic interplay between the leading hydrodynamic shock
wave and the subsequent combustion region is inherently unstable and already early
experiments, e.g. [22], uncovered that the reduction to one space dimension is not
even justified in long combustion devices. The multi-dimensional instability mani-
fests itself in instationary shock waves propagating perpendicular to the detonation
front. A complex Mach reflection pattern is formed downstream of each triple point,
where the detonation front is intersected by a transverse shock.

Regular cellular detonation structure in 2D

Self-sustained detonations in low-pressure hydrogen-oxygen-argon mixtures are
known to produce very regular triple point movements [22]. The triple point trajecto-
ries form regular “fish-scale” patterns, so called detonation cells, with a characteristic
length L and width λ , that depend primarily on the energy release intrinsic to the
mixture.



Figure 6. Detonation front on triple point tracks (top) in a rectangular channel of 3.2cm width,
H2 : O2 : Ar mixture of molar ratios 2:1:7 at initially 298K and 10kPA. Lower row: Schlieren
plots of the density on the refinement levels (gray) visualize the dynamic mesh adaptation.

Two snapshots from the simulation of regular oscillating transverse waves in
a CJ detonation in two space dimensions are depicted in Figure 6. The mixture
is H2 : O2 : Ar of molar ratios 2:1:7 at initially 298K and 10kPA for which our
computations with the Westbrook mechanism [8] predict a detonation velocity of
dCJ = 1638.5m/s. The computation is initialized with the ZND solution; transverse
disturbances are initiated by placing a small rectangular unreacted pocket behind the
detonation front [2, 14]. After simulating several hundred micro-seconds of physical
time, the periodic oscillation is clearly established.

The results shown in Figure 6 were carried out in an Eulerian frame of reference
with a long channel of 1.0m× 3.2cm. The base mesh was 2000× 128 and four
additional levels of Cartesian mesh adaptation with refinement factors 2, 2, 2, and 4
were used giving an effective resolution of 67.6Pts within the half reaction length,
lig, the distance between shock and reaction zone according to ZND theory. Mesh
adaptation is based on a physically motivated combination of scaled gradients of ρ

and p and error estimation by Richardson extrapolation of the mass fractions Yi (see
[10] for details). The upper graphic of Figure 6 displays triple point trajectories in
a part of the computational domain with the detonation front at two points in time
overlaid. The trajectories are visualized by tracking the maximum of the magnitude
of the vorticity on a uniform auxiliary grid with the mesh widths of level 1. The
bottom row of Figure 6 shows the dynamic mesh for the two time steps.

An enlargement of the detonation structure in Figure 7 shortly before the collision
of two triple points shows clearly that the shock wave pattern around each triple point
is of double-Mach reflection (DMR) or strong type. The essential regions around a
triple point in Figure 7 are: inflow (A), Mach stem (B), transverse wave (C), and
incident shock (D). Regions B and C are separated by the slip line, a contact discon-
tinuity. Characteristic for the DMR pattern is a high supersonic velocity in region C
that leads to the formation of a further shock creating a secondary triple point on the
transverse wave. In Figure 7, this secondary shock separates regions C and E. The
very weak slip line, emanating from the secondary triple point between regions E and
F, can hardly be inferred.



TABLE I. STATES IN FIGURE 7.

p/pA ρ/ρA T [K] v[m/s] M
A 1.00 1.00 298 1775 5.078
B 31.45 4.17 2248 447 0.477
C 31.69 5.32 1775 965 1.153
D 19.17 3.84 1487 1178 1.533
E 35.61 5.72 1856 901 1.053
F 40.61 6.09 1987 777 0.880

Figure 7. Left: Schlieren image of clearly
established DMR pattern shortly before
next the triple point collision, S = 0.653.

In order to analyze a Mach reflection pattern quantitatively it is necessary to map
the velocity field of the simulation into a frame of reference attached to the triple
point. However, the reliable estimation of the triple point speed v0 from a single time
step is non-apparent. When evaluating v0 we take advantage of the fact that the triple
point is formed at the tip, where the Mach stem intersects the incident region, and
that the oblique shock relations [23, 24] between two points in regions A and B close
to the triple point must hold true. We only require the two relations

ρAvA sin(φB) = ρBvB sin(φB−θB) , (5)

pA +ρAv2
A sin2(φB) = pB +ρBv2

B sin2(φB−θB) . (6)

Inserting Eq. (5) into Eq. (6) allows the elimination of vB sin(φB−θB), which yields

vA =
1

sinφB

√
ρB(pB− pA)
ρA(ρB−ρA)

.

As the gas is initially at rest, the triple point velocity is v0 =−va and φB, the angle of
inflow, is given as the angle between Mach stem front and the triple point trajectory,
which can be measured from visualizations comparable to the upper graphic of Fig-
ure 6. The states close of the triple point of Figure 7 are given Table I. Since the triple
point is far ahead of the reaction region (the diffused downstream front in Figure 7),
changes in mixture are neglected in evaluating the Mach number M in the triple point
pattern. As it can be expected in a DMR [24], MC is clearly greater than 1. A fur-
ther important quantity for triple point structures is the strength S of the transverse
wave [1] that is defined as

S :=
pC− pD

pD
. (7)

For the present computation, S decreases throughout one regular detonation cell from
∼ 1.05 to ∼ 0.65 which indicates clearly that only the strong or DMR structure oc-
curs.

Detonation structure in smooth pipe bends in 2D

In order to study triple point structures under transient conditions, we simulate
the propagation of the regularly oscillating detonation through smooth pipe bends



Figure 8. Schlieren plot of density on triple point tracks (upper left) and on refinement regions
(shaded gray, upper right and lower row) for ϕ = 60o after t = 150 µs simulated time. Several
enlargement steps are necessary to visualize the secondary triple point structure captured by
the adaptive computation.

of varying angles. Particularly for low initial pressures, and therefore larger cellular
structures, detonation propagation through bends is rather complex. For small radius
and larger bending angle, the detonation wave structure is not maintained and triple
point quenching can be observed at the outer compressive side, while detonation fail-
ure and violent re-initiation occur at the inner diffractive wall (see Figure 5a of [25]).

Again, we choose for our study H2 : O2 : Ar/2 : 1 : 7 at 298K and 10.0kPa, for
which one-dimensional ZND theory would predict a maximal pressure of ∼ 270kPa.
The computations are initialized by reproducing the snapshot of a single detonation
cell with λ ≈ 1.6cm periodically with the detonation front approximately 13cm be-
fore the beginning of the curved section. To accommodate a reduction of the induc-
tion length when the detonation wave gets compressed, all computations again use
an effective resolution of 67.6Pts/lig, which is achieved by four additional levels of
Cartesian mesh adaptation with refinement factors 2, 2, 2, and 4. For instance, for
bend angle ϕ = 60o, with a base mesh of 1200× 992 cells, the adaptive computa-
tion uses approximately 7.1M to 3.4M cells on all and 4.8M to 1.8M cells on the
highest level instead of ∼ 1,219M in the uniform case. The calculations were run on
64 Intel Xeon 2.4GHz dual-processor nodes with Quadrics interconnect and required
nevertheless ∼ 70,000h CPU each (∼ 23 days wall time). The extraordinary high ef-
ficiency in capturing only the essential features near the detonation front is illustrated
in Figure 8, in which the characteristic DMR pattern (cf. Figure 6) is clearly resolved.

Large-scale flow features are best understood by looking at the history of the triple
point trajectories displayed in Figure 9. At the outer wall, the detonation becomes
accelerated as the leading shock front undergoes Mach reflection. Along the inner
wall, shock wave diffraction causes a continuous pressure decrease that results in a



Figure 9. Triple point tracks for ϕ = 15o (left, top), ϕ = 30o (left, bottom), and ϕ = 60o

(right).

slight temporary increase in detonation cell size for a bending angle of ϕ = 15o, in a
transmitted marginal detonation close to the limit of detonability for ϕ = 30o, and in
temporary detonation failure for ϕ ≥ 45o. For ϕ ≥ 30o, the appearance of unreacted
pockets behind the marginal detonation wave can also be observed (see Figure 8).

Diffraction and compression of the detonation wave at the bend also lead to
changes of the transverse wave strength S. While the state behind the transverse wave
C remains initially largely unchanged, the change in geometry alters the incident state
D. Near the inner bend wall, the incident pressure pD drops, leading to a consider-
able increase in S. The resulting triple point structure, as depicted in Figure 10, is of
DMR type, but note that the chemical reaction across the transverse wave is visibly
enhanced and Mc is considerably increased (compare Figure 7 and Table I). In the
compression region near the outer wall, however, pD increases drastically leading to
a considerable decrease of S. As a consequence, the flow in region C decelerates. The
secondary shock between C and E is no longer necessary for a stable configuration
and the triple point now exhibits a transitional Mach reflection (TMR) or weak pat-
tern (cf. Figure 11). Characteristic for the TMR structure is that the flow in region
C is just barely supersonic [24]. A TMR structure is also exhibited in the diffraction
region when a sufficiently large angle ϕ causes detonation failure. As the leading
shock and the reaction zone decouple, especially pC decreases and the wave strength
S declines. The exhibited pattern close to triple point failure is again the TMR type
(see Figure 12).

For the completely transmitted marginal case (ϕ = 30o), the transition back to
a regular oscillation is initiated by a strong triple point originating in the region of
detonation Mach reflection. For the configurations with ϕ ≥ 45o, in which addition-
ally partial detonation failure occurs, the transverse re-initiation wave itself becomes
a detonation. This interesting situation is depicted in Figure 13. The DMR pattern
formed at the detonation front is extremely strong; further on, an instationary triple
point arises on the transverse detonation itself that propagates toward the detonation
front. Very high pressures occur in states J and K behind the transverse wave of this
triple point. When it hits the inner wall, the simulation’s maximal pressure value of
3.4MPa does arise. For ϕ = 60o, a smaller peak pressure is reached as the critical
triple point merges with the primary triple point before wall contact. Note that com-



p/pA r/rA T [K] v[m/s] M
A 1.00 1.00 298 1835 5.249
B 33.77 4.33 2326 447 0.469
C 33.12 5.80 1701 1111 1.355
D 16.06 3.67 1304 1363 1.889
E 66.90 9.10 2191 758 0.818
F 57.94 7.64 2259 668 0.710
G 35.28 3.41 3235 699
H 38.98 3.41 3589 593
I 23.66 2.37 3149 969
J 13.58 1.67 2570 1347

Figure 10. Strong DMR structure in diffrac-
tion region behind bend, ϕ = 15, S = 1.062.

p/pA r/rA T [K] v[m/s] M
A 1.00 1.00 298 1908 5.459
B 34.14 4.21 2418 647 0.666
C 35.49 4.95 2135 929 1.015
D 26.53 4.09 1934 1085 1.243
E 34.91 4.88 2134 938 1.025

Figure 11. TMR structure in compression re-
gion shortly behind bend, ϕ = 15, S = 0.338.

p/pA r/rA T [K] v[m/s] M
A 1.00 1.00 298 1424 4.073
B 18.97 3.83 1475 502 0.656
C 18.73 4.30 1297 726 1.009
D 14.00 3.58 1167 848 1.240
E 19.08 4.20 1352 744 1.014

Figure 12. TMR structure in marginal region
near limit of detonability, ϕ = 30, S = 0.338.

p/pA r/rA T [K] v[m/s] M
A 1.00 1.00 298 1812 5.186
B 32.58 4.27 2272 456 0.483
C 33.23 6.21 1594 1156 1.454
D 13.98 3.58 1162 1446 2.119
E 31.54 6.30 1492 1208 1.569
F 16.13 4.14 1161 1393 2.042
G 41.63 7.45 1665 1034 1.274
H 30.57 6.31 1443 1180 1.557
I 14.11 3.85 1092 1431 2.161
J 77.31 9.08 2610 756
K 78.85 8.59 2812 521

Figure 13. Re-ignition with strong DMR and
transverse detonation, ϕ = 45, S = 1.377.



Figure 14. Schlieren planes of the density in the first (left, S ≈ 0.36) and second (right,
S ≈ 0.42) half of a detonation cell. Data displayed is for 5.0cm < x1 < 7.0cm and mirrored
at x2,x3 = 0.

putations on significantly coarser meshes, that fail to resolve the detonation structure
evolution accurately, are inherently unable to predict the re-ignition event correctly
and therefore severely underestimate the pressure maximum.

Regular cellular detonation structure in 3D

While it is nowadays feasible to investigate the evolution of fully resolved detona-
tion structures in realistic two-dimensional geometries (see above), three-dimensional
simulations are still restricted to elementary situations. As an example we show re-
sults from a simulation to analyze the detailed triple point structure for a CJ detona-
tion in H2 : O2 : Ar/2 : 1 : 7 at initially 298K and pressure 6.67kPa. The detonation
cell width in free space is λ ≈ 3.0cm [2, 3] and the ZND induction length lig ≈
1.4mm. Previous numerical studies [26, 14] have confirmed that this width is identi-
cal in two and three space dimensions. In rectangular three-dimensional domains, the
triple points manifest as orthogonal triple point lines [27], cf. Figure 14. A detailed
hydrodynamic analysis uncovers that, although the detonation velocity is unaltered,
the fluctuations in pressure, temperature, and therefore induction length are consid-
erably larger than in the two-dimensional case [28]. We show results from a highly
resolved computation in a frame of reference attached to the detonation front. The
domain has the dimensions [0cm,10cm]× [0cm,1.5cm]× [0cm,1.5cm] to simulate
exactly 1/4 of a regular detonation cell. A constant inflow with −dCJ = 1626.9m/s
is applied at the right, outflow conditions at the left boundary. Symmetry boundary
conditions are used at all other sides.

The computation uses a base mesh of 400× 24× 24 and two additional levels
of mesh adaptation with refinement factors 2, 4 giving an effective resolution of
44.8Pts/lig. Refinement criteria are chosen similarly as before, where all refinement
flags are overall deleted in the range 0cm < x1 < 4cm + wt with w := 20m/s. To
ensure a perfectly regular oscillation the computation is run for 7318 root level time
steps with CCFL ≈ 0.95 to te = 800 µs. After a simulation time of ≈ 600 µs a regular
cellular oscillation with identical strength in x2- and x3-direction can be observed, cf.
Figure 14. Note that in Figure 14 the data was mirrored twice to display a full deto-
nation cell. The exhibited three-dimensional mode of propagation of two transverse



Figure 15. Schlieren plot of the density on refinement levels and domain distribution to 128
CPU (indicated by color) for the two time steps shown in Figure 14.

wave lines in perfect phase has also been found in experiments [29]. While previous
investigations [26, 14] confirmed that our numerical approach is capable of capturing
the transverse wave oscillation well on three to four times coarser meshes, the present
computation also resolves secondary flow features. It allows the unambiguous classi-
fication of the triple point pattern displayed in the schlieren planes of the left graphic
of Figure 14 as a TMR pattern with S ≈ 0.36; the transverse wave strength of the
pattern shown in the planes of the right image is ∼ 0.42. Note that the regularly os-
cillating two-dimensional case discussed previously exhibits only much lager values
of S and therefore only the DMR pattern occurs.

The 3D computation was run on 32 nodes of a Compaq AlphaServer quad-core
system with high-speed Quadrics interconnect at Los Alamos National Laboratories
and required∼ 51,000h CPU, which corresponds to∼ 16.6 days wall time. A break-
down of the time in Table II confirms the good parallel efficiency of the implementa-
tion even for larger problems. The adaptive computation uses approximately 16.5M
cells on average instead of ∼ 118M in the uniform case, cf. upper row of Figure 15.
The lower row of Figure 15 visualizes by different color the domain decompositions
of the evolving hierarchy to 128 CPU with the refinement levels elevated. These pic-
tures illustrate the good stability of our partitioning methodology for small changes
in the workload.

TABLE II. BREAKDOWN OF THE COMPUTE TIME FOR THE 3D SIMULATION.

Task %
Fluid dynamics 37.6
Chemical kinetics 25.1
Boundary setting 24.4
Recomposition 6.6
Misc. 6.3
Total [h CPU] ∼ 51,000



CONCLUSIONS

We have described the parallelization and implementation of a dynamically adap-
tive Cartesian finite volume method for simulating detonations in realistic gas mix-
tures with great accuracy. High local resolution is mandatory in physically relevant
detonation simulations to accurately resolve the hydrodynamic sub-structures around
triple points that are intrinsic to detonations in combustible gas mixtures. While the
savings from dynamic mesh adaptation are necessarily moderate for simulations in
a Galilean frame of reference, they have been demonstrated to be enormous for Eu-
lerian settings. Large-scale adaptive two-dimensional structure simulations in pipe
bends have been demonstrated to exhibit reductions of the finest mesh size of at least
a factor of 250 and up to 680.

Utilizing the high resolution results provided by these computations, exemplary
triple point structures have been quantitatively analyzed at the scale of secondary
triple points. It is found that under transient geometric conditions an entire spectrum
of weak transitional Mach to very strong double-Mach reflection patterns occurs. The
type of Mach reflection exhibited seems to be primarily determined by the strength
of the transverse wave S as defined in Eq. (7). This observation is confirmed by an
exemplary high-resolution three-dimensional computation that shows lower values
for S and therefore a transition to TMR rather than the DMR pattern as in the two-
dimensional case. This result also indicates that fully predictive detonation simula-
tions in generally will have to be carried out in three space dimensions. Since it was
demonstrated that parallel capacity computing systems nowadays permit the accurate
computation of detonation waves in technically relevant two-dimensional devices and
the study of idealized three-dimensional configurations, this ultimate goal might al-
ready be attainable on available petaFLOPS supercomputers.
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