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ABSTRACT

This paper presents the use of a dynamically adaptive mesh refinement strategy
for the simulations of shock-driven turbulent mixing. Large-eddy simulations are
necessary due the high Reynolds number turbulent regime. In this approach, the large
scales are simulated directly and small scales at which the viscous dissipation occurs
are modeled. A low-numerical centered finite-difference scheme is used in turbulent
flow regions while a shock-capturing method is employed to capture shocks. Three-
dimensional parallel simulations of the Richtmyer-Meshkov instability performed in
plane and converging geometries are described.

FLOW CONFIGURATION

Acceleration-induced mixing of fluids, commonly observed in natural phenomena
such as supernova collapse or in technologies involving supersonic combustion, orig-
inates from the initial miss-alignment of the pressure gradient at existing shocks with
the local density gradients. The underlying fluid instability acting in this problem
is known as the Richtmyer-Meshkov instability (RMI), and was first studied numer-
ically by Richtmyer [1] and confirmed experimentally by Meshkov [2]. The RMI
fundamentally occurs when a perturbed interface separating two fluids of different
densities is accelerated impulsively by a shock wave depositing baroclinic vorticity
at the interface. It is often thought of as an impulsive version of the Rayleigh-Taylor
instability. The mixing between the fluids is enhanced when the mixing layer is pro-
cessed by additional compressible waves such as shock waves and expansion fans.

Description of the Problem

The reference problem consists of a thin air/SF6 plane interface in a light-to-
heavy configuration, initially impacted by a planar incident shock of Mach number
MI and then reshocked after reflection of the transmitted shock off the end-wall of
the shocktube [3]. Besides, a canonical simulation of the RMI in a 90◦ wedge has
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Figure 1. Wave diagrams for light-to-heavy air/SF6 MI = 1.2-shock interactions.

been set up in parallel to focusing shocktube experiments currently conducted by the
group of Prof. Dimotakis at GALCIT [4]. An imploding cylindrical shock impacts
a perturbed, cylindrically-shaped density interface that separates light air (outside)
from heavy SF6 (inside). The transmitted shock converges down the wedge, reflects
off the z-axis, and reshocks the interface, initiating a strong turbulent mixing between
light and heavy fluids, similar to the plane case.

A study of the wave diagrams describing the unperturbed shock-contact inter-
action with reshock shows differences between the two geometries, as presented in
Figure 1. In plane geometry, the heavy-to-light reshock refraction produces a re-
flected expansion wave traveling towards the end-wall and reverberating between the
mixing layer and the end-wall. The successive echoing expansion waves of decreas-
ing intensity deposit baroclinic vorticity over the course of their passage across the
mixing layer from head to tail. In converging geometry, a shock traveling towards the
end-wall is formed after the reflected expansion fan is generated by the first reshock
interaction. After reflection off the end-wall, this shock re-interacts a second time
with the layer. This sequence is repeated in a seemingly self-similar way, generating
vorticity at the layer impulsively.

Initial and Boundary Conditions

The initial contact discontinuity deformation is the result of small-wavelength
disturbances superposed to a smaller-amplitude long-wavelength symmetry-breaking
perturbation in the directions transverse to the main flow (x-direction of propagation
of the plane shock or r-direction of propagation of the converging shock). In plane
geometry, the y- and z-disturbances wavelengths are comparable. However, because
of the geometric contraction of the flow, azimuthal and axial disturbances at the cylin-
drical interface are initially chosen such that they are of comparable wavelengths at
the reshock time.

The plane shocktube is constituted of a reflecting end-wall, and periodic side-
walls in the transverse directions of the shocktube center line. In the converging
simulation, reflecting boundaries form both wedge walls and the wedge axis extends
in the periodic z-direction. Thanks to the ghost fluid method [5], an inner cylindrical



wall of radius r = rin is added to regularize the wedge corner, where flow quantities
can become singular. Assuming that shock-wave/boundary-layer interactions do not
play a dominant role in the growth of the mixing zone, slip boundary conditions are
applied at all reflecting walls. Consistent inflow boundary conditions are prescribed
at the open end of the shocktube/wedge.

COMPUTATIONAL PROCEDURE

The flow presented in the previous section exercises both the large-eddy simula-
tions (LES) and the shock-capturing features of the solver with dynamically adaptive
meshes.

Large-Eddy Simulations

The reshock process produces a large dynamical range of turbulent scales, neces-
sitating the use of LES. The stretched-vortex subgrid-scale (SGS) model of Misra &
Pullin [6], extended to compressible flows by Kosovic et al. [7] and subgrid scalar
transport by Pullin [8], is based on an explicit structural modeling of small-scale dy-
namics. The model utilizes stretching vortices as the essential subgrid element in the
closure of Favre-filtered Navier-Stokes equations by providing the subgrid momen-
tum stress τi j, the subgrid turbulent temperature flux qT

i , and the mixture fraction flux
qψ

i . The model parameters required are determined entirely locally without the tradi-
tional use of spatial averaging. This model also enables a computational paradigm for
multi-scale LES that extends estimates of some turbulent statistics from the resolved
cutoff-scale to the Kolmorogov and Batchelor scales.

The resolution requirements imposed by the flow physics vary greatly both spa-
tially and temporally for these simulations. For example, different key features such
as shock waves of different strengths and turbulent mixing regions (as seen on Fig-
ures 5 and 4) need more resolution than other smoother regions of the flow. This
is provided presently through LES within the AMROC framework [9] and based on
the structured adaptive mesh refinement algorithm (AMR) of Berger & Oliger [10].
Discrete conservation of mass, momentum, and energy is accomplished by using a
flux-based conservative finite-difference approach [11].

Hybrid Shock-Capturing/Low-Numerical Dissipation Scheme

The numerical method is formulated for Cartesian uniform grids, and is applied
to each subgrid of the mesh hierarchy. It is an extension of the hybrid method
by Hill & Pullin [12] to structured AMR meshes. A weighted, essentially non-
oscillatory (WENO) scheme is used to capture discontinuities (such as shock waves
or fine/coarse mesh interfaces) but switches to a low-numerical dissipation, explicit,
tuned center-difference scheme (TCD) in the smooth or turbulent regions, optimal for
the functioning of explicit LES such as the SGS stretched-vortex method. To ensure
discrete numerical stability of the inviscid terms (momentum, scalar and energy con-
vection terms), the centered discretization are written in a stable, energy preserving
(skew-symmetric) formulation adapted to compressible flows [13].

For the subgrid activity to be correctly computed, thereby assuring the quality
of the LES, the use of WENO is restrained to regions containing shock waves only.
Switching between WENO and TCD has been optimized using a detection criterion
based on Lax’s entropy condition [14].



Adaptive Mesh Refinement

The core idea of the AMR method [10] is to cluster regions that require refinement
into non-overlapping rectangular subgrids (patches) Gl,m which define the domain of
an entire level l = 0, . . . ,L by Gl :=

⋃Ml
m=1 Gl,m. The refinement process proceeds re-

cursively and construcs a hierarchy of subgrids successively contained within the next
coarser level domain. In contrast to cell-based mesh adaptation techniques the patch-
based approach does not require a special coarsening operations; subgrids are simply
removed from the hierarchy. The coarsest possible resolution is thereby restricted to
the level 0 grid. Usually, it is assumed that the spatial and temporal discretization
on a particular level are refined by the same factor, thereby ensuring the validity of a
basically unaltered CFL-type stability condition on all levels of the hierarchy.

The numerical update is applied on each level by calling a single-grid routine
implementing the finite volume scheme in a loop over all the subgrids Gl,m. The
regularity of the input data allows a straightforward implementation of the scheme
and further permits optimizations to take advantage of high-level caches, pipelining,
etc. New refinement grids are initialized by interpolating the vector of conservative
quantities from the next coarser level. However, data in cells already refined is copied
directly from the previous refinement patches. Ghost or halo cells around each patch
are used to decouple the subgrids computationally. Ghost cells outside of the root do-
main G0 are used to implement physical boundary conditions. Ghost cells in Gl have
a unique interior cell analogue and are set by copying the data value from the patch
where the interior cell is contained (synchronization). For l > 0, internal boundaries
can also be used. If recursive time step refinement is employed, ghost cells at the
internal refinement boundaries on the level l are set by time-space interpolation from
the two previously calculated time steps of level l−1. Otherwise, spatial interpolation
from the level l−1 is sufficient.

Parallelization Strategy

The parallelization strategy implemented in AMROC is a rigorous domain de-
composition approach. On a parallel machine with P identical nodes the root domain
G0 is split into P non-overlapping portions by G0 =

⋃P
p=1 Gp

0 . The key idea now is that
all higher level domains are required to follow the decomposition of the root level,
i.e. Gp

l := Gl ∩Gp
0 . The work on an arbitrary subdomain Ω ⊂ G0 is heuristically

estimated with the expression W (Ω) = ∑
lmax
l=0

[
Nl(Gl ∩Ω)∏

l
κ=0 rκ

]
. Herein, Nl(·)

denotes the total number of finite volume cells on level l in a given domain and the
product accounts for the recursive time step refinement. Note that minor workload
imbalances due to the hybridization of WENO with the TCD scheme are currently
neglected. Decompositions Gp

0 with similar workload are found at runtime as the hi-
erarchy evolves with a partitioning algorithm based on a generalization of Hilbert’s
space-filling curve [15]. The space-filling curve defines an ordered sequence on the
cells of the root level that can easily be split in load-balanced portions. As such
curves are constructed recursively, they are locality-preserving and lead to moderate
data redistribution and parallel synchronization costs.

As a scalability test for AMROC we consider a 3-level simulation of a confined
explosion problem using only the WENO scheme. The time per base level iteration
of the most expensive operations is displayed in Figure 2(a). As it can be expected
with the chosen parallelization approach, linear speed-up is achieved for the block-
based numerical update of the finite volume scheme (“Integration”), while the scaling
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Figure 2. CPU scalability test: 3D adaptive computation with 3 grid levels (coarse grid of
30×30×30 cells, uniformly refined grid of 120×120×120 cells (1.73 Mcells)) of a circular
shock-wave expanding in an enclosed box. The reflected shocks interact in a complex manner.
(a) represents the breakdown of computational costs in second per iteration, (b) the total time
per iteration.

of the operations “Boundary value setting” and “Recomposition” of the refinement
hierarchy, that involve parallel communication, is less optimal. We have found the
parallel performance of the overall algorithm (cf. Figure 2(b)) suitable for effective
parallel computations on several hundred processors.

COMPUTATIONAL RESULTS

To illustrate the need of AMR for the RMI, consider our larger converging cylin-
drical simulation (MI = 2.0 incident cylindrical shock as it impacts the cylindrical
interface). The simulation is conducted in a wedge-like geometry of angle π/2. The
computational domain, in cylindrical coordinates (r,θ ,z) is:

rin < r < rout , 0 < θ < π/2, 0 < z < R0 (1)

The inner cylindrical reflecting wall of radius rin = 0.04R0 and the outer radial dis-
tance rout = 0.94π/2R0, where R0 is the location of the initial shock-contact interac-
tion. There are 7 initial perturbation modes in the z-direction and 6 in the θ -direction.

Flow History

Figure 3 depicts the three-dimensional evolution of mixing zone throughout the
simulation through the levels of mass fraction (blue for light portions of fluid, red for
heavy ones, white for equal mass fraction of light and heavy fluids). In Figure 4, two-
dimensional Schlieren images in azimuthal and axial views are arranged together to
show the density gradients across the mixing layer and the compressible waves trav-
eling within the domain. From these figures, we recall the different stages in the
mixing layer growth. Subfigures (a) show the state of the flow following the initial
light-to-heavy shock refraction. A transmitted shock is produced, followed by the
interface accelerating towards the center. Growing mushroom-like structures char-
acteristic of baroclinic instabilities are visible in the azimuthal and axial directions.
The imploding shock reflects off the axis of the wedge and reshock the contracting
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Figure 3. Light-to-heavy air/SF6 MI = 2.0-converging cylindrical RMI: levels of mixed fluid
across the mixing zone (white for regions of 50% mass fraction) (a) after the first imploding
shock interaction (flow contraction); (b) after the first exploding reshock (flow expansion);
(c) at about than twice the reshock time and (d) at late time once most compressible waves
have existed the computational domain.

interface, inverting its motion. The energy deposited by the reshock is such that the
growth of the mixing layer is further increased. As shown in Subfigures (b), as the
fluids begin to interpenetrate, the spectrum of physical scales involved in the flow dy-
namics broadens: large scales become larger while smaller scales appear. Subfigures
(c) and (d) describe late stages in the growth of the mixing region. As can be inferred
from Subfigure 4(c), the density gradients are reduced and the flow can be considered
quasi-incompressible as only weakly compressible waves remain in the wedge. Por-
tions of heavy fluid penetrating into light fluid (also known as spikes) and light fluid
into heavy fluid (or bubbles) can still be distinguished. Ultimately (from Subfigures
(d) and at later times), the flow becomes fully turbulent (see also spectral analysis in
Subsection 5.2). The mixing zone extends in the axial and radial directions, with no
recollection of the orderly azimuthal and axial modes initially present, and the largest
scales produced become comparable to the domain size.
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Figure 4. Light-to-heavy air/SF6 MI = 2.0-converging cylindrical RMI: azimuthal view (plane
slice z = 0) and axial view (plane slice x = 0) of Schlieren density gradient photographs
showing shock waves and density stratifications (a) after the first imploding shock interaction
(flow contraction); (b) after the first exploding reshock (flow expansion) and (c) at about twice
the reshock time.

Computational Details

In the displayed computation, the domain is discretized with 95× 95× 64 cells
on the base grid with three additional levels of refinement based on the local density
gradient. The refinement ratio between each level is equal to two for all levels and
directions, and the subgrid cutoff scale is set to that of the finest mesh. As the flow
evolves, the distribution of the AMR hierarchy to different processors is adjusted
dynamically to balance the work and all parallel data structures are automatically
rearranged. The simulation was performed using 32 AMD Opteron 2.5 GHz-quad-
processor nodes (16 GB memory each) and consumed about 70,000 h CPU time. The
cell count varies from a minimum of approximately 10 million cells in the early times
of the simulation, when the mixing zone has not yet radially expanded, to a peak of
around 140 million at late times. AMR reduces the computational expenses compared
to the equivalent finest unigrid 760×760×512 problem that would have used approx-
imately up to 3 times more storage and taken more than 3 times longer to complete.
In Figure 5, the mesh adaptation and distribution to the 128 available processors is
displayed for two exemplary snapshots in time. The graphics in the left column show
the mixing zone (white for regions of 50% mass fraction) on background planes that
represent the domains of different mesh refinement in different gray shades (the 4
levels are displayed), the right graphics display the domains of different processors
by color.
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Figure 5. Mesh adaptation and processor distribution for the light-to-heavy air/SF6 MI = 2.0-
converging cylindrical RMI: (a) after the first imploding shock interaction (flow contraction)
and (b) after the first exploding reshock (flow expansion).

DATA ANALYSIS

A detailed quantitative analysis of results can however be obtained from post-
processing on saved parallel data files that are read in on smaller CPU count. Owing
to the symmetry of the flow for each geometry, the data (at a given time) are scru-
tinized over surfaces normal to the main flow direction. In plane (resp. cylindrical)
geometry, we consider plane (resp. cylindrical) surfaces normal to the direction of
the incident shock and determined by their axial position x (resp. radius r).

Surface-Averaged Statistics

The investigation includes space-time histories of instantaneous plane/cylindrical
surface-averages 〈.〉 of diverse quantities Q, taken parallel/concentrically to the main
shock. Typically, we need to evaluate surface-averages of about a hundred base
quantities (〈ρ〉, 〈ρ2〉, etc.) across the entire domain. For each time considered, the
post-processing required around 1,000 h CPU for the largest simulations performed
(cf. Subsection 3.3). From the base surface-averages, we define, for example in the
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Figure 6. Light-to-heavy air/SF6 MI = 1.2-RMI: resolved+subgrid volume-averaged TKE (in
arbitrary units) vs. time (in ms) for the (a) plane and (b) cylindrical geometries.

cylindrical geometry, the perturbations with respect to the surface-average 〈Q〉 or the
density-weighted surface-average Q̃:

Q′(r,θ ,z, t) = Q(x, t)−〈Q〉(r, t), (2)

Q′′(r,θ ,z, t) = Q(x, t)− Q̃(r, t), (3)

where

Q̃(r, t) =
〈ρ Q〉
〈ρ〉

, (4)

with ρ total density field. From the perturbation field Q′′ defined at a surface of radius
r at time t, a density-weighted variance of Q follows:

Varρ(Q)(r, t) = Q̃2− Q̃2 =
〈ρQ2〉
〈ρ〉

− 〈ρQ〉2

〈ρ〉2
. (5)

Among important turbulent quantities, we focus on the turbulent kinetic energy
(TKE), that is a result of a resolved-scale contribution 〈K〉 and a subgrid (modeled)
counterpart 〈k〉:

〈K〉 =
1
2

Varρ(uiui), (6)

〈k〉 =
1
2
〈τii〉
〈ρ〉

. (7)

The resolved+subgrid TKE is then summed over the direction of anisotropy of the
problem, leading to a measure of the volume-averaged TKE at a given time, whose
evolution is shown in Figure 6. This figure summarizes the main events of the flow.
First, the total amount of TKE deposited by the initial shock, visible as a small bump
near t = 0, as well as that owing to the first reshock. The first reshock is followed
by a steep decay of TKE and a second interaction of comparable energy to that of
the reshock but with slower increase. The second interaction is clearly indicative of
the first expansion wave interacting with the mixing layer (cf. Subsection 2.1). In
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Figure 7. Light-to-heavy air/SF6 MI = 1.2-RMI: late-time power spectra computed over
a plane or cylindrical slice across the mixing zone center. For the plane geometry (a), k-
power spectrum of the velocity component ux (anisotropic contribution, solid line) and com-
bined power spectrum of the components uy,uz (isotropic contribution, dashed line), with

k =
√

k2
y + k2

z (all computed wavenumbers shown and kmax = 128). For the cylindrical geom-
etry (b), kz-power spectra of the velocity components ur (anisotropic contribution, solid line),
uθ (small-dashed line), and uz (long-dashed line), with k = kz (all computed wavenumbers
shown and kzmax = 256).

the converging flow, the shock forming behind the reflected expansion do not seem
to have a significant influence on the TKE evolution. After about twice the reshock
time, the TKE starts to slowly decay, since none of the secondary reverberations
deposit enough energy across the mixing zone to sustain the turbulent activity.

Power Spectra

Diverse spectra, including velocity components, density, and scalar spectra, as
well as other quantities such as Taylor and Kolmogorov microscales can be evaluated
within the turbulent mixing zone. Consider first the plane geometry. Periodic bound-
ary conditions in the (y,z)-cross-section of the shocktube allow for two isotropic di-
rections within the mixing layer and the calculation of radial power spectra at a given
instant in time. For an arbitrary field f (x,y,z, t), we define the instantaneous radial
power spectrum of f on the plane located at the center of the mixing zone x = xc(t),
at the instant t by:

E f (k;xc(t)) =
k
2

∫ 2π

0

∣∣∣ f̂ (k,β ;xc(t))
∣∣∣2 dβ , (8)

where f̂ (., .;xc(t)) is the (y,z) two-dimensional Fourier transform of f (xc(t), ., ., t) in
polar wavenumber space with k and β the radial and angular wavenumbers, related
to the Cartesian wavenumbers ky = k cos(β ) and kz = k sin(β ). In the converging
geometry, the spectra are defined over a surface of radius r = rc(t) slicing through the
mixing zone, and associated to the waveumber kz, the z-axis being the only periodic
direction of the flow. The Fourier coefficients are then averaged over the azimuthal
direction of the flow. Results for both geometry are represented in Figure 7 from data
across the mixing zone at late-time during the decay of TKE (many reshock times).



The inertial subrange with Kolmogorov scaling approaching k−5/3 seems reached for
each velocity components, in both geometries. Except for very large scales which are
aware of the anisotropy of the main flow, the velocity spectrum of each component
are comparable in the inertial subrange, which suggest that the turbulent mixing has
reached some isotropy. Some anisotropy is detectable at the smallest scales and it is
still to be determined whether or not it is an effect of the subgrid modeling.

CONCLUSIONS

We highlighted the use of AMR for shock-driven flows containing a strong di-
rection of anisotropy (the axis of the straight shocktube or the radial direction of the
wedge) and leading to late-time turbulent mixing. Surface-averaged statistics in the
directions transverse to the direction of the base flow showed similarities and dif-
ferences between the plane and converging geometries. Future work will consist in
performing comparable simulations when the incident shock is traveling from the
heavy fluid to the light one, in both geometries.
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