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Computational fluid dynamics – CFD

Solve the equations of fluid dynamics computationally, usually on a grid

I 1st generation: structured non-Cartesian grid

I 2nd generation: unstructured grids

I 3rd generation: adaptive Cartesian (with geometry embedding)

Approach with commercial CFD software separated into the steps

1. Pre-processing

2. Solution

3. Post-processing

Idea of Cartesian methods is to automate the grid generation and
incorporate it into the solution.

Especially with Cartesian methods post-processing is also increacingly
incorporated into the solution process.
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Motivation

FSI simulation with unstructured grids

- Global grid (re-)generation is part of the simulation (major parallelization
and scalability obstacle)

- Sophisticated data remapping required when grid topology changes

I Some generalities about unstructured grids:

+ Hanging nodes can be avoided

- Higher order difficult to achieve

- High computational performance challenging

−→ Alternative: Adaptive Cartesian CFD methods with embedded boundaries
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Complex geometry handling

Geometry handling in Cartesian methods

Methods that represent the boundary sharply

I Cut-cell approach constructs appropriate finite
volumes

I Conservative by construction. Correct
boundary flux

I Key question: How to avoid small-cell time
step restriction in explicit methods?

Methods that diffuse the boundary in one cell [Mittal and Iaccarino, 2005]

I Related to the immersed boundary method by Peskin, cf.
[Roma et al., 1999]

I Boundary prescription often by internal ghost cell values

I Not conservative by construction but conservative correction possible

I Usually combined with implicit geometry representation

Volume of fluid methods that resemble a cut-cell technique, e.g.

[Berger and Helzel, 2002]
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Complex geometry handling

Level-set method for boundary embedding

I Implicit boundary representation via distance
function ϕ, normal n = ∇ϕ/|∇ϕ|

I Complex boundary moving with local velocity
w, treat interface as moving rigid wall

I Construction of values in embedded boundary
cells by interpolation / extrapolation

Interpolate / constant value ex-
trapolate values at x̃ = x + 2ϕn

Velocity in ghost cells
No-slip: u′ = 2w − u
Slip:

u′ = (2w · n− u · n)n + (u · t)t
= 2 ((w − u) · n) n + u

ρj−1 ρj ρj ρj−1

uj−1 uj 2w − uj 2w − uj−1

pj−1 pj pj pj−1

ut

ut

ut

w

uj

2w − uj
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Complex geometry handling

Closest point transform algorithm

The signed distance ϕ to a surface I satisfies the eikonal equation

|∇ϕ| = 1 with ϕ
∣∣
I = 0

Distance computation trivial for non-overlapping elementary shapes but difficult
to do efficiently for triangulated surface meshes

I Geometric solution approach with plosest-point-transform (CPT)
algorithm [Mauch, 2003]

b-rep

Surface mesh I Distance ϕ Normal to closest point
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Adaptive mesh refinement

Structured mesh refinement techniques

I Block-based data of equal size

I Block stored in a quad-tree

I Time-step refinement

I Global index coordinate system

I Neighborhoods need not be stored

+ Easy to implement

+ Simple load-balancing

+ Parent/Child relations according to
tree

- Larger stencil for higher-order
schemes are major problem for
cell-based AMR
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9 10 11 12

Wasted boundary space in a quad-tree
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Adaptive mesh refinement

Block-structured adaptive mesh refinement (SAMR)

I Refined blocks overlay coarser ones

I Refinement in space and time by factor rl

[Berger and Colella, 1988]

I Block (aka patch) based data structures

+ Numerical scheme (here finite volume)

Qn+1
jk = Qn

jk −
∆t

∆x

[
Fj+ 1

2
,k − Fj− 1

2
,k

]
−

∆t

∆y

[
Gj,k+ 1

2
− Gj,k− 1

2

]
only for single patch necessary

+ Efficient cache-reuse / vectorization
possible

- Cells without mark are refined

- Cluster-algorithm necessary

- Difficult to implement

G2,1

G2,2

G1,1

G1,2

G1,3

G0,1
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Adaptive mesh refinement

Recursive integration order

I Space-time interpolation to create data at refinement boundaries

I Regridding:

I Creation of new grids, copy existing cells on level l > 0
I Spatial interpolation to initialize new cells on level l > 0

1

2

3 4

5

6 7

8

9 10

11

12 13

Root Level
r0 = 1

Level 1
r1 = 4

Level 2
r2 = 2

Time

Regridding of finer levels.
Base level ( ) stays fixed.
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Adaptive mesh refinement

Parallelization strategies

Decomposition of the hierarchical data

I Distribution of each grid

I Separate distribution of each level, cf.
[Rendleman et al., 2000]

I Rigorous domain decomposition

I Data of all levels resides on same
node

I Grid hierarchy defines unique
”floor-plan”

I Redistribution of data blocks
during reorganization of
hierarchical data

I Synchronization when setting
ghost cells

Processor 1 Processor 2
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Fluid-structure coupling

Construction of coupling data

I Moving boundary/interface is treated as a moving contact discontinuity
and represented by level set

I Construction of level set from
triangulated surface data with CPT
algorithm

I One-sided construction of mirrored
ghost cell and new FEM nodal point
values

I Explicit coupling possible if geometry
and velocities are prescribed for the
more compressible medium

uF := uS (t)|I
UpdateFluid(∆t )
σS

nm := σF
nm(t + ∆t)|I

UpdateSolid(∆t )
t := t + ∆t

Coupling conditions on interface
Viscous fluid:

uS = uF

σS
nm = σF

nm

∣∣∣∣
I

with σF
nm = −pF δnm + ΣF

nm
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values

I Explicit coupling possible if geometry
and velocities are prescribed for the
more compressible medium

uF
n := uS

n (t)|I σS
nm := −pF (t)δnm|I

UpdateFluid(∆t ) UpdateSolid(∆t )
t := t + ∆t

[Deiterding and Wood, 2013]

Coupling conditions on interface
Inviscid fluid:

uS
n = uF

n

σS
nm = −pF δnm

∣∣∣∣
I
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Fluid-structure coupling

Coupling elements
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AMROC/VTF software

AMROC framework and most important solvers
I Implements described algorithms and facilitates easy exchange of the

block-based numerical scheme

I Altogether ∼ 500, 000 LOC in C++, C, Fortran-77, Fortran-90

I Templatized SAMR kernel ∼ 50, 000 lines of code (LOC)

I V2.0 plus FSI coupling routines as open source at http://www.vtf.website

I Used here V3.0 with enhanced parallelization (V2.1 not released)

I Scientifically most relevant patch solvers:

I Ideal gas dynamics: various 2nd order methods
I Hybrid WENO methods for LES and DNS
I Shock-induced combustion with detailed chemistry (uses Chemkin 2)
I Two-temperature model for non-equilibrium hypersonics
I Compressible multi-phase flows
I Ideal magneto-hydrodynamics
I Level-set method for Eulerian solid mechanics
I Lattice Boltzmann method for LES

I Structural solvers:

I SFC thin shell solver
I Adlib volumetric FEM solver (not released)
I Dyna3d (requires DOE license)

R. Deiterding – 3rd generation CFD: examples of adaptive Cartesian simulations with AMROC 14
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Verification and validation

Proximal bodies in hypersonic flow

Flow modeled by Euler equations for a single ideal gas with p = (γ − 1) ρe

∂tρ+∂xn (ρun) = 0 , ∂t (ρuk )+∂xn (ρuk un+δknp) = 0 , ∂t (ρE)+∂xn (un(ρE +p)) = 0

Numerical approximation with

I Finite volume flux-vector splitting scheme with MUSCL reconstruction,
dimensional splitting

I Spherical bodies, force computation with overlaid lattitude-longitude mesh to

obtain drag and lift coefficients CD,L =
2FD,L

ρv2πr2

I inflow M = 10, CD and CL on secondary sphere, lateral position varied, no
motion
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Verification and validation

Verification and validation
Static force measurements, M = 10:
[Laurence et al., 2007]

I Refinement study: 40× 40× 32 base grid ,
up to without AMR up to ∼ 209.7 · 106

cells, largest run ∼ 35, 000 h CPU

lmax CD ∆CD CL ∆CL

1 1.264 -0.176
2 1.442 0.178 -0.019 0.157
3 1.423 -0.019 0.052 0.071
4 1.408 -0.015 0.087 0.035

I Comparison with experimental results: 3
additional levels, ∼ 2000 h CPU

Experimental Computational
CD 1.11 ± 0.08 1.01
CL 0.29 ± 0.05 0.28

Dynamic motion, M = 4:

I Base grid 150× 125× 90, two
additional levels with factor 2

I 24,704 time steps, 36, 808 h CPU on
256 cores IBM BG/P

[Laurence and Deiterding, 2011]
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Verification and validation

Schlieren graphics on refinement regions
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Verification and validation

Shock-driven elastic panel motion
Test case with shock at M = 1.21 suggested by [Giordano et al., 2005]

I Forward facing step geometry, fixed walls everywhere except at inflow

r=1.6458 kg/m
=112.61 m/s, =0

=156.18 kPa

3

u u

p
1 2

r=1.2 kg/m
=0, =0

=100 kPa

3

u u

p
1 2

400 mm

80 mm

265 mm

250 mm

130 mm

65 mm

I SAMR base mesh 320× 64(×2), 2 additional levels with factor 2

I Intel 3.4GHz Xeon dual processors, GB Ethernet interconnect

I ∼ 450 h CPU on 15 fluid CPU + 1 solid CPU for DYNA3D [Hallquist and Lin, 2005]

Tip displacement in simulation and
experiment
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Train-tunnel aerodynamics

Train aerodynamics of NGT2 prototype

I Next Generation Train 2 (NGT2) geometry by the German Aerospace Centre
(DLR) [Fragner and Deiterding, 2017]

I Mirrored train head of length ∼ 60m, no wheels or tracks, train models 0.17m
above ground above the ground level.

I Train velocities 100m/s and −100m/s, middle axis 6m apart, initial distance
between centers 200m

I Base mesh of 360× 40× 30 for domain of 360m× 40m× 30m

I Two/three additional levels, refined by factor 2. Refinement based on pressure
gradient and level set. Parallel redistribution at every level-0 time step.

I On 96 cores Intel Xeon E5-2670 2.6GHz a final te = 3 sec was reached after
12, 385 sec / 43, 395 sec wall time, i.e., 330 h and 1157 h CPU
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Train-tunnel aerodynamics

Passing in open space – AMR and dynamic distribution

Domains of three-level refinement

Distribution to 96 processors

Enlargement of domain center shown
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Train-tunnel aerodynamics

Pressure transects
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Damage from blast waves

Plastic deformation of reinforced concrete column

I Column of 6.4m and 500× 900mm cross-section as in [Ngo et al., 2007]

I DYNA3D elastic-plastic concrete model: strength σmax = 80MPa

I ρs = 2010 kg/m3, E = 21.72GPa, ν = 0.2, yield stress
σy = 910 kPa, ET = 11.2GPa, β = 0.03

I Spherical energy deposition ≡ 150 kg
TNT, 0.5m distance, 2m above the
ground

I 297h CPU on 33+1 CPU 3.4 GHz
Intel-Xeon
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Damage from blast waves

Blast explosion in a multistory building

I 20m× 40m× 25m seven-story building similar to
[Luccioni et al., 2004]

I Spherical energy deposition ≡ 400 kg TNT,
r = 0.5m in lobby of building

I SAMR: 80× 120× 90 base level, three additional
levels with factor 2, FSI coupling at level 1

I Simulation with ground: 1, 070 coupled time
steps, 830 h CPU (∼ 25.9 h wall time) on 31+1
cores

I ∼ 8, 000, 000 cells instead of 55, 296, 000
(uniform)

I 69, 709 hexahedral elements and with material
parameters

ρs [kg/m3] σ0 [MPa] ET [GPa] β K [GPa] G [GPa] ε̄p pf [MPa]
Columns 2010 50 11.2 1.0 21.72 4.67 0.02 -30

Walls 2010 25 11.2 1.0 6.22 4.67 0.01 -15

R. Deiterding – 3rd generation CFD: examples of adaptive Cartesian simulations with AMROC 23
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Damage from blast waves

Blast explosion in a multistory building – II

t = 0

[Deiterding and Wood, 2013]
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Damage from blast waves

Blast explosion in a multistory building – II

t = 6.1ms

[Deiterding and Wood, 2013]
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Damage from blast waves

Blast explosion in a multistory building – II

t = 29.2ms

[Deiterding and Wood, 2013]
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Damage from blast waves

Blast explosion in a multistory building – II

t = 48.7ms

[Deiterding and Wood, 2013]
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Detonation propagation

Prototypical hydrogen explosion in nuclear reactor

Chapman-Jouguet detonation in hydrogen-air mixture at atmospheric pressure. Euler
equations with single exothermic reaction A −→ B

∂tρ+ ∂xn (ρun) = 0 , ∂t (ρuk ) + ∂xn (ρuk un + δknp) = 0 , k = 1, . . . , d

∂t (ρE) + ∂xn (un(ρE + p)) = 0 , ∂t (Y ρ) + ∂xn (Y ρun) = ψ

with

p = (γ − 1)(ρE −
1

2
ρunun − ρYq0) and ψ = −kY ρ exp

(
−EAρ

p

)
modeled with empirical detonation model by [Mader, 1979]

V := ρ−1, V0 := ρ−1
0 , VCJ := ρCJ

Y ′ := 1− (V − V0)/(VCJ − V0)
If 0 ≤ Y ′ ≤ 1 and Y > 10−8 then

If Y < Y ′ and Y ′ < 0.9 then Y ′ := 0
If Y ′ < 0.99 then p′ := (1− Y ′)pCJ

else p′ := p
ρA := Y ′ρ
E := p′/(ρ(γ − 1)) + Y ′q0 + 1

2
unun

Used parameters for H2-Air, sto-
ichiometry 0.5, induction length
3.2mm, dCJ ≈ 1620m/s

ρ0 0.985 kg/m3

p0 100 kPa
ρCJ 1.951 kg/m3

pCJ 1378 kPa
γ 1.266

R. Deiterding – 3rd generation CFD: examples of adaptive Cartesian simulations with AMROC 25



Adaptive Cartesian methods Compressible flows Weakly compressible flows Conclusions

Detonation propagation

Prototypical hydrogen explosion in nuclear reactor

Chapman-Jouguet detonation in hydrogen-air mixture at atmospheric pressure. Euler
equations with single exothermic reaction A −→ B

∂tρ+ ∂xn (ρun) = 0 , ∂t (ρuk ) + ∂xn (ρuk un + δknp) = 0 , k = 1, . . . , d

∂t (ρE) + ∂xn (un(ρE + p)) = 0 , ∂t (Y ρ) + ∂xn (Y ρun) = ψ

with

p = (γ − 1)(ρE −
1

2
ρunun − ρYq0) and ψ = −kY ρ exp

(
−EAρ

p

)
modeled with empirical detonation model by [Mader, 1979]

V := ρ−1, V0 := ρ−1
0 , VCJ := ρCJ

Y ′ := 1− (V − V0)/(VCJ − V0)
If 0 ≤ Y ′ ≤ 1 and Y > 10−8 then

If Y < Y ′ and Y ′ < 0.9 then Y ′ := 0
If Y ′ < 0.99 then p′ := (1− Y ′)pCJ

else p′ := p
ρA := Y ′ρ
E := p′/(ρ(γ − 1)) + Y ′q0 + 1

2
unun

Used parameters for H2-Air, sto-
ichiometry 0.5, induction length
3.2mm, dCJ ≈ 1620m/s

ρ0 0.985 kg/m3

p0 100 kPa
ρCJ 1.951 kg/m3

pCJ 1378 kPa
γ 1.266

R. Deiterding – 3rd generation CFD: examples of adaptive Cartesian simulations with AMROC 25



Adaptive Cartesian methods Compressible flows Weakly compressible flows Conclusions

Detonation propagation

Prototypical hydrogen explosion in nuclear reactor

Chapman-Jouguet detonation in hydrogen-air mixture at atmospheric pressure. Euler
equations with single exothermic reaction A −→ B

∂tρ+ ∂xn (ρun) = 0 , ∂t (ρuk ) + ∂xn (ρuk un + δknp) = 0 , k = 1, . . . , d

∂t (ρE) + ∂xn (un(ρE + p)) = 0 , ∂t (Y ρ) + ∂xn (Y ρun) = ψ

with

p = (γ − 1)(ρE −
1

2
ρunun − ρYq0) and ψ = −kY ρ exp

(
−EAρ

p

)
modeled with empirical detonation model by [Mader, 1979]

V := ρ−1, V0 := ρ−1
0 , VCJ := ρCJ

Y ′ := 1− (V − V0)/(VCJ − V0)
If 0 ≤ Y ′ ≤ 1 and Y > 10−8 then

If Y < Y ′ and Y ′ < 0.9 then Y ′ := 0
If Y ′ < 0.99 then p′ := (1− Y ′)pCJ

else p′ := p
ρA := Y ′ρ
E := p′/(ρ(γ − 1)) + Y ′q0 + 1

2
unun

Used parameters for H2-Air, sto-
ichiometry 0.5, induction length
3.2mm, dCJ ≈ 1620m/s

ρ0 0.985 kg/m3

p0 100 kPa
ρCJ 1.951 kg/m3

pCJ 1378 kPa
γ 1.266

R. Deiterding – 3rd generation CFD: examples of adaptive Cartesian simulations with AMROC 25



Adaptive Cartesian methods Compressible flows Weakly compressible flows Conclusions

Detonation propagation

H2-Air detonation
in reactor building

Four materials used

I orange: high strength

I yellow: low strength

I dark gray: concrete,
girders

I light gray: paneling

19502 solid hexahedron ele-
ments
Exemplary ignition in center
plane
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Computational approach

Lattice Boltzmann method (LBM)

Instead of solving the Navier-Stokes equations, we use the lattice Boltzmann
method.

The LBM is based on solving the Boltzmann equation with a simplified collision
operator

∂t f + u · ∇f = ω(f eq − f ) + F
I Kn = lf /L� 1, where lf is replaced with ∆x

I Weak compressibilty and small Mach number assumed

I Genuine Cartesian embedded boundary approach

Equation is approximated with a splitting approach:

1.) Transport step solves ∂t fα + eα · ∇fα = 0

2.) Collision step ∂t fα = ω(f eq
α − fα) + Fα

Macroscopic quantities from moments:

ρ(x, t) =
18∑
α=0

fα(x, t), ρ(x, t)ui (x, t) =
18∑
α=0

eαi fα(x, t)

The LBM uses an explicit update based on the speed of sound of the gas.

Initial conditions are constructed for instance as f eq
α (ρ(t = 0), u(t = 0))
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Vehicle aerodynamics

Wind tunnel simulation of a prototype car
Fluid velocity and pressure on vehicle

I Inflow 40 m/s. LES model active. Characteristic boundary conditions.
I To t = 0.5 s (∼ 4 characteristic lengths) with 31,416 time steps on finest level in ∼ 37 h on

200 cores (7389 h CPU). Channel: 15 m× 5 m× 3.3 m

R. Deiterding – 3rd generation CFD: examples of adaptive Cartesian simulations with AMROC 28
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Vehicle aerodynamics

Mesh adaptation
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Vehicle aerodynamics

Mesh adaptation
Used refinement blocks and levels (indicated by color)

I SAMR base grid 600× 200× 132 cells, 3 additional levels
with factor 2 yielding finest resolution of ∆x = 3.125 mm

I Adaptation based on level set and scaled gradient of
magnitude of vorticity vector

I 236M cells vs. 8.1 billion (uniform) at t = 0.4075 s

Refinement at t = 0.4075 s

Level Grids Cells
0 11,605 15,840,000
1 11,513 23,646,984
2 31,382 144,447,872
3 21,221 52,388,336

R. Deiterding – 3rd generation CFD: examples of adaptive Cartesian simulations with AMROC 29
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Vehicle aerodynamics

Flow over a motorcycle
I Inflow 40m/s. Bouzidi pressure boundary conditions at outflows. LES model

active.

I SAMR base grid 200× 80× 80 cells, 3 additional levels with factor 2 yielding
finest resolution of ∆x = 6.25mm. 23560 time steps on finest level

I Forces in AMROC-LBM are time-averaged over interval [0.5s, 1s]

I Unstructured STAR-CCM+ mesh has significantly finer as well as coarser cells

AMROC-LBM LES at t = 1 s STAR-CCM+ steady RANS

Velocity in flow direction

Forces (N) Cores Wall Time CPU Time
Variables Drag Sideforce Lift Total h h

STAR-CCM+ 297 5 9 297 10 4.9 78
AMROC 297 10 23 298 64 10 635

R. Deiterding – 3rd generation CFD: examples of adaptive Cartesian simulations with AMROC 30
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Wind turbine wakes

Single Vestas V27 wind turbine

I Inflow velocity u∞ = 8m/s. Prescribed motion of rotor with nrpm = 33,
r = 14.5m: tip speed 46.7m/s, Rer ≈ 919, 700, tip speed ratio (TSR) 5.84

I Simulation with three additional levels with refinement factors 2, 2, 4

I Refinement based on vorticity and level set

I Computing 84,806 highest level iterations to te = 18 s

I ∼ 24 time steps for 1o rotation

R. Deiterding – 3rd generation CFD: examples of adaptive Cartesian simulations with AMROC 31
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Wind turbine wakes

Simulation of the SWIFT array
I Three Vestas V27 turbines (geometric details prototypical). 225 kW power

generation at wind speeds 14 to 25m/s (then cut-off)

I Prescribed motion of rotor with 33 and 43 rpm. Inflow velocity 8 and 25m/s

I TSR: 5.84 and 2.43, Rer ≈ 919, 700 and 1,208,000

I Simulation domain 448m×240m×100m

I Base mesh 448× 240× 100 cells with
refinement factors 2, 2,4. Resolution of
rotor and tower ∆x = 6.25 cm

I 94,224 highest level iterations to te = 40 s
computed, then statistics are gathered for
10 s [Deiterding and Wood, 2016]

R. Deiterding – 3rd generation CFD: examples of adaptive Cartesian simulations with AMROC 32
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Wind turbine wakes

Vorticity – inflow at 30o, u = 8m/s, 33 rpm

I Top view in plane in z-direction at 30 m (hub height)
I Turbine hub and inflow at 30o yaw leads to off-axis wake impact.
I 160 cores Intel-Xeon E5 2.6 GHz, 33.03 h wall time for interval [50, 60] s (including

gathering of statistical data)

R. Deiterding – 3rd generation CFD: examples of adaptive Cartesian simulations with AMROC 33
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Wind turbine wakes

Levels – inflow at 30o, u = 8m/s, 33 rpm

I At 63.8 s approximately 167M cells used vs. 44 billion (factor
264)

I ∼ 6.01 h per revolution (961 h CPU) −→ ∼ 5.74 h CPU/1M
cells/revolution

Level Grids Cells
0 2,463 10,752,000
1 6,464 20,674,760
2 39,473 131,018,832
3 827 4,909,632

R. Deiterding – 3rd generation CFD: examples of adaptive Cartesian simulations with AMROC 34
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Wind turbine wakes

Vorticity development – inflow at 0o, u = 8m/s, 33 rpm

I Refinement of wake up to level 2 (∆x = 25 cm).
I Vortex break-up before 2nd turbine is reached.

R. Deiterding – 3rd generation CFD: examples of adaptive Cartesian simulations with AMROC 35
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Wind turbine wakes

Refinement – inflow at 0o, u = 8m/s, 33 rpm

R. Deiterding – 3rd generation CFD: examples of adaptive Cartesian simulations with AMROC 36
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Wind turbine wakes

Mean point values – inflow at 0o,
I Turbines located at (0, 0, 0),

(135, 0, 0), (−5.65, 80.80, 0)

I Lines of 13 sensors with
∆y = 5m, z = 37m (approx.
center of rotor)

I u and p measured over
[40 s, 50 s] (1472 level-0 time
steps) and averaged

u = 25 m/s, 43 rpm, TSR=2.43
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I Velocity deficits larger for higher TSR [Deiterding and Wood, 2016]
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Wind turbine wakes

Mean point values – inflow at 0o,
I Turbines located at (0, 0, 0),

(135, 0, 0), (−5.65, 80.80, 0)

I Lines of 13 sensors with
∆y = 5m, z = 37m (approx.
center of rotor)

I u and p measured over
[40 s, 50 s] (1472 level-0 time
steps) and averaged
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Summary

Conclusions

I Cartesian CFD with block-based AMR has gained drastically in popularity
in recent years

I Automatic mesh generation approach fits well into CAE tool chains

I Outstanding potential for FSI problems with complex motion and/or
compute-intensive multi-scale flow problems

I Patch-based solver approach allows easy incorporation of new methods

I High computational performance on modern massively parallel computer
systems

I Hybrid MPI-GPU parallelization is “easier” for block-based AMR than for
cell-based approaches

Ongoing work

I Turbulent wall function
boundary condition
models (particularly for
LBM)

I Hybrid overset and
“strand-type” meshing
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