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The Virtual Test Facility

I Developed for first DOE ASC Center at the Caltech under Dan Meiron

I Overall idea: Use Cartesian embedded boundary approach based on level
sets in combination with AMR to enable generic fluid-structure interaction
coupling to numerous explicit solid mechanics solvers

I Targets strongly driven problems (shocks, blast, detonations)

I http://www.cacr.caltech.edu/asc

I Papers: [Deiterding, 2011, Deiterding et al., 2009, Deiterding et al., 2007,
Deiterding et al., 2006], etc: http://www.csm.ornl.gov/∼r2v

I AMROC V2.0 plus some solid mechanics solvers (SFC, beam solver)

I ∼ 430, 000 lines of code total in C++, C, Fortran-77, Fortran-90

I autoconf / automake environment with support for typical parallel
high-performance system

I Used in here AMROC V2.1 (not released yet)

I New interface to DYNA3D - first prototype by Patrick Hung, Julian
Cummings (CACR)
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Structured adaptive mesh refinement

Block-structured adaptive mesh refinement (SAMR)

For simplicity ∂tq(x, t) +∇ · f(q(x, t)) = 0

I Refined blocks overlay coarser ones

I Refinement in space and time by
factor rl

I Block (aka patch) based data
structures

+ Numerical scheme
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Complex geometry embedding

Level-set method for boundary embedding

I Implicit boundary representation via distance
function ϕ, normal n = ∇ϕ/|∇ϕ|

I Complex boundary moving with local velocity
w, treat interface as moving rigid wall

I Construction of values in embedded boundary
cells by interpolation / extrapolation

Interpolate / constant value ex-
trapolate values at

x̃ = x + 2ϕn

Velocity in ghost cells

u′ = (2w · n− u · n)n + (u · t)t

= 2 ((w − u) · n) n + u
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uj−1 uj 2w − uj 2w − uj−1

pj−1 pj pj pj−1

ut

ut

ut

w

uj

2w − uj
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Complex geometry embedding

Verification: shock reflection

I Reflection of a Mach 2.38 shock in nitrogen at 43o wedge

I 2nd order MUSCL scheme with Roe solver, 2nd order multidimensional
wave propagation method

Cartesian base grid 360 × 160 cells on domain of
36 mm × 16 mm with up to 3 refinement levels
with rl = 2, 4, 4 and ∆x1,2 = 3.125µm, 38 h CPU

GFM base grid 390 × 330 cells on domain of
26 mm × 22 mm with up to 3 refinement levels
with rl = 2, 4, 4 and ∆xe,1,2 = 2.849µm, 200 h
CPU
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Complex geometry embedding

Shock reflection: SAMR solution for Euler equations

∆x = 25 mm ∆x = 12.5 mm ∆x = 3.125 mm

∆xe = 22.8 mm ∆xe = 11.4 mm ∆xe = 2.849 mm

2nd order MUSCL scheme
with Van Leer FVS, dimen-
sional splitting

∆x = 12.5 mm ∆x = 3.125 mm
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Parallelization

Parallelization strategies

I Data of all levels resides on same node

I Grid hierarchy defines unique ”floor-plan”

I Workload estimation

W(Ω) =

lmaxX
l=0

"
Nl (Gl ∩ Ω)

lY
κ=0

rκ

#

I Parallel operations

I Synchronization of ghost cells
I Redistribution of data blocks

within regridding operation
I Flux correction of coarse grid cells

Processor 1 Processor 2

I Clip grid lists with properly chosen quadratic bounding box before using ∩, \
I All topological operations in Recompose(l) involving global lists can be reduced

to local ones

I Present code still uses MPI allgather() to communicate global lists to all nodes

I Global view useful to evaluate new local portion of hierarchy and for data
redistribution
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Parallelization

Parallelized construction of space-filling curve

Computation of space filling curve

I Partition-Init

1. Compute aggregated workload for
new grid hierarchy and project result
onto level 0

2. Construct recursively SFC-units until
work in each unit is homogeneous,
GuCFactor defines minimal
coarseness relative to level-0 grid

I Partition-Calc

1. Compute entire workload and new work for each processor
2. Go sequentially through SFC-ordered list of partitioning units and

assign units to processors, refine partition if necessary and possible

I Ensure scalability of Partition-Init by creating SFC-units strictly local

I Currently still use of MPI allgather() to create globally identical input for
Partition-Calc (can be a bottleneck for weak scalability)
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Parallelization

Partitioning example

I Cylinders of spheres in supersonic flow

I Predict force on secondary body

I Right: 200x160 base mesh, 3 Levels, factors 2,2,2, 8 CPUs

[Laurence et al., 2007]
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Performance data from AMROC

First performance assessment

I Test run on 2.2 GHz AMD Opteron
quad-core cluster connected with
Infiniband

I Cartesian test configuration

I Spherical blast wave, Euler equations,
3rd order WENO scheme, 3-step
Runge-Kutta update

I AMR base grid 643, r1,2 = 2, 89 time
steps on coarsest level

I With embedded boundary method: 96
time steps on coarsest level

I Redistribute in parallel every 2nd base
level step

I Uniform grid 2563 = 16.8 · 106 cells

Level Grids Cells
0 115 262,144
1 373 1,589,808
2 2282 5,907,064

Grid and cells used on 16 CPUs
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Performance data from AMROC

Cost of SAMR and ghost-fluid method

I Flux correction is
negligible

I Clustering is negligible
(already local
approach). For the
complexities of a
scalable global
clustering algorithm see
[Gunney et al., 2007]

I Costs for GFM constant
around ∼ 36%

I Main costs: Regrid(l)

operation and ghost cell
synchronization

CPUs 16 32 64
Time per step 32.44s 18.63s 11.87s

Uniform 59.65s 29.70s 15.15s
Integration 73.46% 64.69% 50.44%

Flux Correction 1.30% 1.49% 2.03%
Boundary Setting 13.72% 16.60% 20.44%

Regridding 10.43% 15.68% 24.25%
Clustering 0.34% 0.32% 0.26%

Output 0.29% 0.53% 0.92%
Misc. 0.46% 0.44% 0.47%

CPUs 16 32 64
Time per step 43.97s 25.24s 16.21s

Uniform 69.09s 35.94s 18.24s
Integration 59.09% 49.93% 40.20%

Flux Correction 0.82% 0.80% 1.14%
Boundary Setting 19.22% 25.58% 28.98%

Regridding 7.21% 9.15% 13.46%
Clustering 0.25% 0.23% 0.21%

GFM Find Cells 2.04% 1.73% 1.38%
GFM Interpolation 6.01% 10.39% 7.92%

GFM Overhead 0.54% 0.47% 0.37%
GFM Calculate 0.70% 0.60% 0.48%

Output 0.23% 0.52% 0.74%
Misc. 0.68% 0.62% 0.58%
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Performance data from AMROC

AMROC scalability tests

Basic test configuration

I Spherical blast wave, Euler
equations, 3D wave
propagation method

I AMR base grid 323 with
r1,2 = 2, 4. 5 time steps on
coarsest level

I Uniform grid
2563 = 16.8 · 106 cells, 19
time steps

I Flux correction deactivated

I No volume I/O operations

I Tests run IBM BG/P
(mode VN)

Weak scalability test

I Reproduction of configuration each 64
CPUs

I On 1024 CPUs: 128× 64× 64 base
grid, > 33, 500 Grids, ∼ 61 · 106 cells,
uniform 1024× 512× 512 = 268 · 106

cells
Level Grids Cells

0 606 32,768
1 575 135,312
2 910 3,639,040

Strong scalability test

I 64× 32× 32 base grid, uniform
512× 256× 256 = 33.6 · 106 cells

Level Grids Cells
0 1709 65,536
1 1735 271,048
2 2210 7,190,208

R. Deiterding, S. Wood – Parallel FSI simulation with a block-structured AMR method 14



Introduction Parallel SAMR Fluid-structure interaction Conclusions

Performance data from AMROC

Weak scalability test
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Integration Syncing Partition Recompose Misc

I Costs for Syncing basically constant

I Partitioning, Recompose, Misc (origin not clear) increase

I 1024 required usage of -DUAL option due to usage of global lists data
structures in Partition-Calc and Recompose
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Performance data from AMROC

Strong scalability test

16 32 64 128 256 512 1024

101

102

CPUs

se
c

Time per higest level step

SAMR

Uniform

16 32 64 12
8

25
6

51
2

10
24

0

10

20

30

40

50

60

70

se
c

Breakdown of time per step with SAMR

Integration Syncing Partition Recompose Misc

I Uniform code has basically linear scalability (explicit method)

I SAMR visibly looses efficiency for > 512 CPU, or 15, 000 finite volume
cells per CPU
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Performance data from AMROC

Strong scalability test - II
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I Perfect scaling of Integration, reasonable scaling of Syncing

I Strong scalability of Partition needs to be addressed (eliminate global lists)
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Coupling to a solid mechanics solver

Construction of coupling data

I Moving boundary/interface is treated as a moving contact discontinuity and
represented by level set [Fedkiw, 2002][Arienti et al., 2003]

I Efficient construction of level set from
triangulated surface data with
closest-point-transform (CPT) algorithm
[Mauch, 2003]

I One-sided construction of mirrored ghost
cell and new FEM nodal point values

I FEM ansatz-function interpolation to
obtain intermediate surface values

I Explicit coupling possible if geometry and
velocities are prescribed for the more
compressible medium [Specht, 2000]

uF
n := uS

n (t)|I
UpdateFluid(∆t )
σS

nn := −pF (t + ∆t)|I
UpdateSolid(∆t )
t := t + ∆t

Coupling conditions on interface

uS
n = uF

n

σS
nn = −pF

σS
nm = 0

˛̨̨̨
˛̨
I
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Coupling to a solid mechanics solver

Coupling elements
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Coupling to a solid mechanics solver

Usage of SAMR

I Eulerian SAMR + non-adaptive Lagrangian FEM scheme

I Exploit SAMR time step refinement for effective coupling to solid solver

I Lagrangian simulation is called only at level lc ≤ lmax

I SAMR refines solid boundary at least at level lc
I Additional levels can be used resolve geometric ambiguities

I Nevertheless: Inserting sub-steps accommodates for time step reduction
from the solid solver within an SAMR cycle

I Communication strategy:

I Updated boundary info from solid solver must be received before
regridding operation

I Boundary data is sent to solid when highest level available

I Inter-solver communication (point-to-point or globally) managed
on-the-fly by special Eulerian-Lagrangian coupling (ELC) module
[Deiterding et al., 2006]
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Coupling to a solid mechanics solver

SAMR algorithm for FSI coupling
F1

Time

S1 S5S3 S7S2 S6S4 S8

F2

l=0

l=2

l=l =1
c

F5

F3 F6F4 F7

AdvanceLevel(l)

Repeat rl times

Set ghost cells of Ql (t)
CPT(ϕl, C l, I, δl)

If time to regrid?

Regrid(l)
UpdateLevel(l)
If level l + 1 exists?

Set ghost cells of Ql (t + ∆tl )
AdvanceLevel(l + 1)
Average Ql+1(t + ∆tl ) onto Ql (t + ∆tl )

If l = lc?
SendInterfaceData(pF (t + ∆tl )|I)
If (t + ∆tl ) < (t0 + ∆t0)?

ReceiveInterfaceData(I, uS |I)
t := t + ∆tl

I Call CPT algorithm
before Regrid(l)

I Include also call to
CPT(·) into
Recompose(l) to
ensure consistent level
set data on levels that
have changed

I Communicate boundary
data on coupling level lc
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Coupling to a solid mechanics solver

Fluid and solid update / exchange of time steps
FluidStep( )

∆τ
F

:= min
l=0,··· ,lmax

(Rl · StableFluidTimeStep(l), ∆τ
S
)

∆tl := ∆τ
F
/Rl for l = 0, · · · , L

ReceiveInterfaceData(I, uS |I)
AdvanceLevel(0)

SolidStep( )

∆τ
S

:= min(K · Rlc · StableSolidTimeStep(), ∆τ
F
)

Repeat Rlc times

tend := t + ∆τ
S
/Rlc, ∆t := ∆τ

S
/(KRlc )

While t < tend

SendInterfaceData(I(t), ~uS |I (t))
ReceiveInterfaceData(pF |I)
UpdateSolid(pF |I, ∆t)
t := t + ∆t
∆t := min(StableSolidTimeStep(), tend − t)

I Time step stays
constant for Rlc steps,
which correponds to
one fluid step at level 0

with Rl =
Ql
ι=0 rι
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Verification and validation configurations

Shock-driven elastic panel motion

I Thin steel plate (thickness h = 1 mm, length 50 mm), clamped at lower end

I ρs = 7600 kg/m3, E = 220 GPa, I = h3/12, ν = 0.3 [Giordano et al., 2005]

I SAMR base mesh 320× 64(×2), r1,2 = 2, lc = 2, 4 solid sub-iterations

I Intel 3.4GHz Xeon dual processors, GB Ethernet interconnect

I ∼ 450 h CPU on 15 fluid CPU + 1 solid CPU for DYNA3D
[Hallquist and Lin, 2005]

t ≈ 0.06 ms t ≈ 0.24 ms

Tip displacement in simulation and
experiment

[Deiterding, 2010]
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Verification and validation configurations

Plastic deformation of reinforced concrete column

I Column of 6.4 m and 500× 900 mm cross-section as in [Ngo et al., 2007]

I DYNA3D elastic-plastic concrete model: strength σmax = 80 MPa

I ρs = 2010 kg/m3, E = 21.72 GPa, ν = 0.2, yield stress
σy = 910 kPa, ET = 11.2 GPa, β = 0.03

I Spherical energy deposition ≡ 150 kg
TNT, 0.5 m distance, 2 m above the
ground

I 297 h CPU on 33+1 CPU 3.4 GHz
Intel-Xeon
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Blast-driven deformation

Highway bridge
I Case follows [Agrawal and Yi, 2009]: 150 kg TNT 0.5 m in front of the high

middle column, 2 m above the ground

I Concrete modeled with DYNA3D plastic
concrete model, 3365 solid hexahedron
elements

I SAMR: 240× 40× 80 base level, three
additional levels r1,2,3 = 2, lc = 2, Rlc = 1

I 487 h CPU on 63+1 CPU 3.4 GHz Intel-Xeon,
1504 coupled time steps to tend = 20 ms
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Blast-driven deformation

Highway bridge - meshing detail
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Blast-driven deformation

Coupled FSI - strong scalability

I SAMR: 240× 40× 80, two levels: r1 = 2, r2 = 4; coupling: lc = 2, Rlc = 1

I Timing done on fluid side for 24 steps on finest level

I ∼ 56, 500, 000 cells instead 393, 216, 000

8 16 32 64 128 256
101

102

CPUs

se
c

Time per higest level step in sec

SAMR

Ideal

CPUs 8 16 32 64 128 256
Integration 290 133 62 29 14 6.9
Syncing 50 41 15 14 6.6 4.5
Interpolation 20 9.2 4.4 2.1 1.0 0.5
GFM 15 6.5 3.0 1.5 0.7 0.4
Regridding 4.8 2.2 1.1 1.4 0.7 0.6
Coupling 4.3 1.7 0.8 0.4 0.2 0.1
Level set 3.4 1.5 0.7 0.4 0.2 0.1
ELC 0.7 0.4 0.3 0.5 1.1 2.2
Misc 12 8.1 7.3 6.5 4.1 2.8

I Interpolation: 1/3 SAMR interpolation, 2/3 GFM extrapolation/interpolation

I Regridding: Partition (negligible in this case) + Recompose + Clustering

I Coupling: Computation of coupling data on fluid side

I Level set: Overhead + CPT algorithm

I ELC: waiting to receive solid data on fluid side
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Blast-driven deformation

Coupled FSI scalability - main operations

8 16 32 64 128 256

10−1

100

101

102

CPUs

Time per higest level step in sec

Integration

Syncing

Interpolation

GFM

Regridding

Coupling

Level set

ELC
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Blast-driven deformation

Coupled FSI scalability - main operations II
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Breakdown of CPU time with SAMR in %

Integration Syncing Interpolation GFM Regridding Coupling Level set ELC Misc

I ELC (waiting for solid data) increases unproportionally in strong scalability test

I Problem: only serial DYNA3D version easily available → change splitting
approach slightly and evaluate fluid and solid simultaenously for same time step
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Detonation-driven deformations

Prototypical hydrogen explosion in nuclear reactor

Chapman-Jouguet detonation in hydrogen-air mixture at atmospheric pressure. Euler
equations with single exothermic reaction A −→ B

∂tρ+ ∂xn (ρun) = 0 , ∂t (ρuk ) + ∂xn (ρuk un + δknp) = 0 , k = 1, . . . , d

∂t (ρE) + ∂xn (un(ρE + p)) = 0 , ∂t (Y ρ) + ∂xn (Y ρun) = ψ

with

p = (γ − 1)(ρE −
1

2
ρunun − ρYq0) and ψ = −kY ρ exp

„
−EAρ

p

«
modeled with heuristic detonation model by [Mader, 1979]

V := ρ−1, V0 := ρ−1
0 , VCJ := ρCJ

Y ′ := 1− (V − V0)/(VCJ − V0)
If 0 ≤ Y ′ ≤ 1 and Y > 10−8 then

If Y < Y ′ and Y ′ < 0.9 then Y ′ := 0
If Y ′ < 0.99 then p′ := (1− Y ′)pCJ

else p′ := p
ρA := Y ′ρ
E := p′/(ρ(γ − 1)) + Y ′q0 + 1

2
unun

Used parameters for H2-Air, sto-
ichiometry 0.5, induction length
3.2 mm, dCJ ≈ 1620 m/s

ρ0 0.985 kg/m3

p0 100 kPa
ρCJ 1.951 kg/m3

pCJ 1378 kPa
γ 1.266
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Detonation-driven deformations

H2-Air detonation
in reactor building

Four materials used

I orange: high strength

I yellow: low strength

I dark gray: concrete,
girders

I light gray: paneling

19502 solid hexahedron ele-
ments
Exemplary ignition in center
plane
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Detonation-driven deformations

H2-Air detonation in reactor building - meshing details
I SAMR base mesh: 120× 120× 180, two levels r1,2 = 2

I coupling level lc = 2, Rl2 = 15 sub-iterations, 2852 coupled time steps to
tend = 50 ms

I 3742 h CPU on 63+1 CPU 3.4 GHz Intel-Xeon

I ∼ 16, 300, 000 (t = 0) to ∼ 50, 300, 000 (tend) instead of 165, 888, 000 cells
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Conclusions

I Developed and demonstrated the parallel coupling of AMROC with
DYNA3D for sophisticated, real-world engineering scenarios

I Future directions
I Increase level of detail and realism on structural side
I Investigate more sophisticated detonation models on fluid side

I Parallelization
I Rigorous domain decomposition scales acceptably for hierarchies that

are not too deep and will scale fully in the weak sense
I Improved strong and weak scalability requires complete elimination

of global data for recomposition and partitioning
I Recomposition and partitioning bottlenecks will be reduced by

implementing hybrid MPI-OpenMP parallelization in AMROC
I Improved scalability for FSI coupled application requires slight

algorithmic change to enable overlapping of computation on fluid
and solid side
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