A block-structured parallel adaptive Lattice-Boltzmann method for rotating geometries

Ralf Deiterding* & Stephen Wood⁺

*Deutsches Zentrum für Luft- und Raumfahrt Bunsenstr. 10, Göttingen, Germany E-mail: ralf.deiterding@dlr.de

⁺University of Tennessee - Knoxville The Bredesen Center, Knoxville, TN 37996

SIAM Conference on Parallel Processing for Scientific Computing February 19, 2014

Adaptive LBM	Realistic computations	Conclusions

Introduction AMROC software

Introduction AMROC software

- Lattice Boltzmann method
- Structured adaptive mesh refinement
- Verification
- Performance assessment
- Complex geometry consideration

Introduction AMROC software

Adaptive LBM

Lattice Boltzmann method Structured adaptive mesh refinement Verification Performance assessment Complex geometry consideration

Realistic computations

Static geometries Simulation of wind turbines

Introduction AMROC software

Adaptive LBM

Lattice Boltzmann method Structured adaptive mesh refinement Verification Performance assessment Complex geometry consideration

Realistic computations

Static geometries Simulation of wind turbines

Conclusions

Things to address

S. Wood was partially sponsored by TN-Score and the Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC under Contract No. DE-AC05-000R22725.

Introduction	Adaptive LBM	Realistic computations	Conclusions
•			
AMROC software			
AMROC			

- Cartesian adaptive fluid solver framework for explicit finite volume methods. Implements for instance Berger-Collela-type AMR.
- Many shock-capturing methods (MUSCL, (hybrid) WENO, etc.) implemented for complex flux functions.

Introduction	Adaptive LBM	Realistic computations	Conclusions
•			
AMROC software			
AMROC			

- Cartesian adaptive fluid solver framework for explicit finite volume methods. Implements for instance Berger-Collela-type AMR.
- Many shock-capturing methods (MUSCL, (hybrid) WENO, etc.) implemented for complex flux functions.
- Used to drive Virtual Test Facility (VTF) FSI software.
- Targets strongly driven problems (shocks, blast, detonations)
- Geometry embedding via ghost fluid techniques and level set functions. Distance computation with CPT algorithm [Mauch, 2000].

Introduction	Adaptive LBM	Realistic computations	Conclusions
•			
AMROC software			
AMROC			

- Cartesian adaptive fluid solver framework for explicit finite volume methods. Implements for instance Berger-Collela-type AMR.
- Many shock-capturing methods (MUSCL, (hybrid) WENO, etc.) implemented for complex flux functions.
- Used to drive Virtual Test Facility (VTF) FSI software.
- Targets strongly driven problems (shocks, blast, detonations)
- Geometry embedding via ghost fluid techniques and level set functions. Distance computation with CPT algorithm [Mauch, 2000].
- $\blacktriangleright~\sim$ 430,000 LOC in C++, C, Fortran-77, Fortran-90.
- Version V2.0 at http://www.cacr.caltech.edu/asc. V1.1 (no complex boundaries) still at http://amroc.sourceforge.net.
- Version used here V3.0 with significantly enhanced parallelization (V2.1 not released).
- Papers: [Deiterding, 2011, Deiterding and Wood, 2013, Deiterding et al., 2009, Deiterding et al., 2007, Deiterding et al., 2006] and at http://www.rdeiterding.de

Adaptive LBM

Realistic computations

Conclusions O

Lattice Boltzmann method

Boltzmann equation: $\partial_t f + \mathbf{u} \cdot \nabla f = \omega(f^{eq} - f)$ Two-dimensional LBM for weakly compressible flows Formulated on FV grids! (\rightarrow boundary conditions!)

$$\rho(\mathbf{x},t) = \sum_{\alpha=0}^{8} f_{\alpha}(\mathbf{x},t), \quad \rho(\mathbf{x},t)u_{i}(\mathbf{x},t) = \sum_{\alpha=0}^{8} \mathbf{e}_{\alpha i}f_{\alpha}(\mathbf{x},t)$$

cf. [Hähnel, 2004]

Adaptive LBM

Realistic computations

Conclusions O

Lattice Boltzmann method

Boltzmann equation: $\partial_t f + \mathbf{u} \cdot \nabla f = \omega (f^{eq} - f)$ Two-dimensional LBM for weakly compressible flows Formulated on FV grids! (\rightarrow boundary conditions!)

$$\rho(\mathbf{x},t) = \sum_{\alpha=0}^{8} f_{\alpha}(\mathbf{x},t), \quad \rho(\mathbf{x},t)u_{i}(\mathbf{x},t) = \sum_{\alpha=0}^{8} \mathbf{e}_{\alpha i}f_{\alpha}(\mathbf{x},t)$$

cf. [Hähnel, 2004]

1.) Transport step \mathcal{T} : $\tilde{f}_{\alpha}(\mathbf{x} + \mathbf{e}_{\alpha}\Delta t, t + \Delta t) = f_{\alpha}(\mathbf{x}, t)$

Adaptive LBM

Realistic computations

Conclusions O

Lattice Boltzmann method

Boltzmann equation: $\partial_t f + \mathbf{u} \cdot \nabla f = \omega (f^{eq} - f)$ Two-dimensional LBM for weakly compressible flows Formulated on FV grids! (\rightarrow boundary conditions!)

$$\rho(\mathbf{x},t) = \sum_{\alpha=0}^{8} f_{\alpha}(\mathbf{x},t), \quad \rho(\mathbf{x},t)u_{i}(\mathbf{x},t) = \sum_{\alpha=0}^{8} \mathbf{e}_{\alpha i}f_{\alpha}(\mathbf{x},t)$$

1.) Transport step \mathcal{T} : $\tilde{f}_{\alpha}(\mathbf{x} + \mathbf{e}_{\alpha}\Delta t, t + \Delta t) = f_{\alpha}(\mathbf{x}, t)$ 2.) Collision step \mathcal{C} :

$$f_lpha(\cdot,t+\Delta t)= ilde{f}_lpha(\cdot,t+\Delta t)+\omega\Delta t\left(ilde{f}^{eq}_lpha(\cdot,t+\Delta t)- ilde{f}_lpha(\cdot,t+\Delta t)
ight)$$

Adaptive LBM

Realistic computations

Conclusions O

Lattice Boltzmann method

Boltzmann equation: $\partial_t f + \mathbf{u} \cdot \nabla f = \omega (f^{eq} - f)$ Two-dimensional LBM for weakly compressible flows Formulated on FV grids! (\rightarrow boundary conditions!)

$$\rho(\mathbf{x},t) = \sum_{\alpha=0}^{8} f_{\alpha}(\mathbf{x},t), \quad \rho(\mathbf{x},t)u_{i}(\mathbf{x},t) = \sum_{\alpha=0}^{8} \mathbf{e}_{\alpha i}f_{\alpha}(\mathbf{x},t)$$

1.) Transport step T: $\tilde{f}_{\alpha}(\mathbf{x} + \mathbf{e}_{\alpha}\Delta t, t + \Delta t) = f_{\alpha}(\mathbf{x}, t)$ 2.) Collision step C:

$$f_lpha(\cdot,t+\Delta t)= ilde{f}_lpha(\cdot,t+\Delta t)+\omega\Delta t\left(ilde{f}^{eq}_lpha(\cdot,t+\Delta t)- ilde{f}_lpha(\cdot,t+\Delta t)
ight)$$

with equilibrium function

$$f_{\alpha}^{eq}(\rho, \mathbf{u}) = \rho t_{\alpha} \left[1 + \frac{\mathbf{e}_{\alpha}\mathbf{u}}{c_{s}^{2}} + \frac{(\mathbf{e}_{\alpha}\mathbf{u})^{2}}{2c_{s}^{4}} - \frac{\mathbf{u}^{2}}{2c_{s}^{4}} \right]$$
mit $t_{\alpha} = \frac{1}{9} \left\{ 4, 1, 1, 1, \frac{1}{4}, \frac{1}{4}, 1, \frac{1}{4}, \frac{1}{4} \right\}$

cf. [Hähnel, 2004]

Adaptive LBM ●0000000

Realistic computations

Conclusions O

Lattice Boltzmann method

Boltzmann equation: $\partial_t f + \mathbf{u} \cdot \nabla f = \omega(f^{eq} - f)$ Two-dimensional LBM for weakly compressible flows Formulated on FV grids! (\rightarrow boundary conditions!)

$$\rho(\mathbf{x},t) = \sum_{\alpha=0}^{8} f_{\alpha}(\mathbf{x},t), \quad \rho(\mathbf{x},t)u_{i}(\mathbf{x},t) = \sum_{\alpha=0}^{8} \mathbf{e}_{\alpha i}f_{\alpha}(\mathbf{x},t)$$

1.) Transport step T: $\tilde{f}_{\alpha}(\mathbf{x} + \mathbf{e}_{\alpha}\Delta t, t + \Delta t) = f_{\alpha}(\mathbf{x}, t)$ 2.) Collision step C:

$$f_lpha(\cdot,t+\Delta t)= ilde{f}_lpha(\cdot,t+\Delta t)+\omega\Delta t\left(ilde{f}^{eq}_lpha(\cdot,t+\Delta t)- ilde{f}_lpha(\cdot,t+\Delta t)
ight)$$

with equilibrium function

$$f_{\alpha}^{eq}(\rho,\mathbf{u}) = \rho t_{\alpha} \left[1 + \frac{\mathbf{e}_{\alpha}\mathbf{u}}{c_s^2} + \frac{(\mathbf{e}_{\alpha}\mathbf{u})^2}{2c_s^4} - \frac{\mathbf{u}^2}{2c_s^4} \right]$$

mit $t_{\alpha} = \frac{1}{9} \left\{ 4, 1, 1, 1, \frac{1}{4}, \frac{1}{4}, 1, \frac{1}{4}, \frac{1}{4} \right\}$ Lattice speed of sound: $c_s = \frac{1}{\sqrt{3}} \frac{\Delta x}{\Delta t}$, pressure $p = \sum_{\alpha} f_{\alpha}^{eq} c_s^2 = \rho c_s^2 = \rho RT$ Collision frequency vs. kinematic viscosity: $\omega = \frac{c_s^2}{\nu + \Delta t c_s^2/2}$ cf. [Hähnel, 2004]
 Introduction
 Adaptive LBM
 Reslistic computations

 0
 00000000
 00000000

 5tructured adaptive mesh refinement
 0
 0

Block-structured adaptive mesh refinement (SAMR)

Refined blocks overlay coarser ones

Block-structured adaptive mesh refinement (SAMR)

Refined blocks overlay coarser ones

 Introduction
 Adaptive LBM
 Realistic computations
 Conclusion

 O
 OOOOOOOO
 OOOOOOOOO
 O

 Structured adaptive mesh refinement
 Conclusion
 Conclusion
 Conclusion

Block-structured adaptive mesh refinement (SAMR)

Refined blocks overlay coarser ones

Block-structured adaptive mesh refinement (SAMR)

- Refined blocks overlay coarser ones
- Recursive refinement in space and time by factor r_l [Berger and Colella, 1988] ideal for LBM

Adaptive LBM ○●○○○○○○○ Realistic computations

Conclusions O

Structured adaptive mesh refinement

Block-structured adaptive mesh refinement (SAMR)

- Refined blocks overlay coarser ones
- Recursive refinement in space and time by factor r_l [Berger and Colella, 1988] ideal for LBM
- Block (aka patch) based data structures
- + Numerical scheme only for single patch necessary
- + Most efficient LBM implementation with patch-wise for-loops

Realistic computations

Conclusions O

Structured adaptive mesh refinement

Block-structured adaptive mesh refinement (SAMR)

- Refined blocks overlay coarser ones
- Recursive refinement in space and time by factor r_l [Berger and Colella, 1988] ideal for LBM
- Block (aka patch) based data structures
- + Numerical scheme only for single patch necessary
- + Most efficient LBM implementation with patch-wise for-loops
- + Cache efficient
- Spatial interpolation and averaging can be used unaltered
- Cluster-algorithm necessary

	Adaptive LBM	Realistic computations	Conclusions
	0000000		
Structured adaptive mesh re	finement		

1. Complete update on coarse grid: $f_{\alpha}^{\mathcal{C},n+1} := \mathcal{CT}(f_{\alpha}^{\mathcal{C},n})$

	Adaptive LBM	Realistic computations	Conclusions
	00000000		
Structured adaptive mesh refinement			

- 1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := CT(f_{\alpha}^{C,n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.

	Adaptive LBM	Realistic computations	Conclusions
	00000000		
Structured adaptive mesh refinement			

- 1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := CT(f_{\alpha}^{C,n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.

$$f^{f,n}_{\alpha,in}$$

	Adaptive LBM	Realistic computations	Conclusions
	0000000		
Structured adaptive mesh refinement			

- 1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := CT(f_{\alpha}^{C,n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.
- 3. $\tilde{f}^{f,n}_{\alpha} := \mathcal{T}(f^{f,n}_{\alpha})$ on whole fine mesh. $f^{f,n+1/2}_{\alpha} := \mathcal{C}(\tilde{f}^{f,n}_{\alpha})$ in interior.

$$\tilde{f}^{f,n}_{\alpha,in}$$

	Adaptive LBM	Realistic computations	Conclusions
	0000000		
Structured adaptive mesh refinement			

- 1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := CT(f_{\alpha}^{C,n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.
- 3. $\tilde{f}^{f,n}_{\alpha} := \mathcal{T}(f^{f,n}_{\alpha})$ on whole fine mesh. $f^{f,n+1/2}_{\alpha} := \mathcal{C}(\tilde{f}^{f,n}_{\alpha})$ in interior.
- 4. $\tilde{f}_{\alpha}^{f,n+1/2} := \mathcal{T}(f_{\alpha}^{f,n+1/2})$ on whole fine mesh. $f_{\alpha}^{f,n+1} := \mathcal{C}(\tilde{f}_{\alpha}^{f,n+1/2})$ in interior.

$$\tilde{f}^{f,n+1/2}_{lpha,in}$$

	Adaptive LBM	Realistic computations	Conclusions
	0000000		
Structured adaptive mesh refinement			

- 1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := CT(f_{\alpha}^{C,n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.
- 3. $\tilde{f}_{\alpha}^{f,n} := \mathcal{T}(f_{\alpha}^{f,n})$ on whole fine mesh. $f_{\alpha}^{f,n+1/2} := \mathcal{C}(\tilde{f}_{\alpha}^{f,n})$ in interior.
- 4. $\tilde{f}_{\alpha}^{f,n+1/2} := \mathcal{T}(f_{\alpha}^{f,n+1/2})$ on whole fine mesh. $f_{\alpha}^{f,n+1} := \mathcal{C}(\tilde{f}_{\alpha}^{f,n+1/2})$ in interior.

				>	\mathbf{N}	
				1	1	
				₩	₩	
				₩	₩	
7	1	¥	¥	米	兼	
1	1	¥	¥	米	釆	

 $\tilde{f}^{f,n+1/2}_{\alpha,in}$

 $f_{\alpha,out}^{f,n}$

	Adaptive LBM	Realistic computations	Conclusions
	0000000		
Structured adaptive mesh refinement			

- 1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := CT(f_{\alpha}^{C,n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.
- 3. $\tilde{f}_{\alpha}^{f,n} := \mathcal{T}(f_{\alpha}^{f,n})$ on whole fine mesh. $f_{\alpha}^{f,n+1/2} := \mathcal{C}(\tilde{f}_{\alpha}^{f,n})$ in interior.
- 4. $\tilde{f}_{\alpha}^{f,n+1/2} := \mathcal{T}(f_{\alpha}^{f,n+1/2})$ on whole fine mesh. $f_{\alpha}^{f,n+1} := \mathcal{C}(\tilde{f}_{\alpha}^{f,n+1/2})$ in interior.

				×	X	
				≯	₩	
				₩	≭	
				₩	≭	
X	₩	₩	¥	₩	¥	
X	¥	¥	¥	*	1	

 $\tilde{f}^{f,n}_{\alpha,out}$

	Adaptive LBM	Realistic computations	Conclusions
	0000000		
Structured adaptive mesh refinement			

- 1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := CT(f_{\alpha}^{C,n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.
- 3. $\tilde{f}_{\alpha}^{f,n} := \mathcal{T}(f_{\alpha}^{f,n})$ on whole fine mesh. $f_{\alpha}^{f,n+1/2} := \mathcal{C}(\tilde{f}_{\alpha}^{f,n})$ in interior.
- 4. $\tilde{f}^{f,n+1/2}_{\alpha} := \mathcal{T}(f^{f,n+1/2}_{\alpha})$ on whole fine mesh. $f^{f,n+1}_{\alpha} := \mathcal{C}(\tilde{f}^{f,n+1/2}_{\alpha})$ in interior.

 $\tilde{f}^{f,n+1/2}_{lpha,out}$

	Adaptive LBM	Realistic computations	Conclusions
	0000000		
Structured adaptive mesh refinement			

- 1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := CT(f_{\alpha}^{C,n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.
- 3. $\tilde{f}^{f,n}_{\alpha} := \mathcal{T}(f^{f,n}_{\alpha})$ on whole fine mesh. $f^{f,n+1/2}_{\alpha} := \mathcal{C}(\tilde{f}^{f,n}_{\alpha})$ in interior.
- 4. $\tilde{f}_{\alpha}^{f,n+1/2} := \mathcal{T}(f_{\alpha}^{f,n+1/2})$ on whole fine mesh. $f_{\alpha}^{f,n+1} := \mathcal{C}(\tilde{f}_{\alpha}^{f,n+1/2})$ in interior.

						1	1
						1	1
				₩	₩	≯	₩
				₩	₩	≯	¥
		<u>*</u>	*	釆	釆	₩	ょ
		×	¥	米	米	훆	凗
1	1	¥	¥	¥	¥	7	1
1	1	¥	¥	¥	¥	1	1

$$\tilde{f}^{f,n+1/2}_{lpha,out}, \tilde{f}^{f,n+1/2}_{lpha,in}$$

	Adaptive LBM	Realistic computations	Conclusions
	0000000		
Structured adaptive mesh refinement			

- 1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := CT(f_{\alpha}^{C,n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.
- 3. $\tilde{f}_{\alpha}^{f,n} := \mathcal{T}(f_{\alpha}^{f,n})$ on whole fine mesh. $f_{\alpha}^{f,n+1/2} := \mathcal{C}(\tilde{f}_{\alpha}^{f,n})$ in interior.
- 4. $\tilde{f}^{f,n+1/2}_{\alpha} := \mathcal{T}(f^{f,n+1/2}_{\alpha})$ on whole fine mesh. $f^{f,n+1}_{\alpha} := \mathcal{C}(\tilde{f}^{f,n+1/2}_{\alpha})$ in interior.

5. Average $\tilde{f}_{\alpha,out}^{f,n+1/2}$ (inner halo layer), $\tilde{f}_{\alpha,out}^{f,n}$ (outer halo layer) to obtain $\tilde{f}_{\alpha,out}^{C,n}$.

	Adaptive LBM	Realistic computations	Conclusions
	0000000		
Structured adaptive mesh refinement			

- 1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := CT(f_{\alpha}^{C,n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.
- 3. $\tilde{f}_{\alpha}^{f,n} := \mathcal{T}(f_{\alpha}^{f,n})$ on whole fine mesh. $f_{\alpha}^{f,n+1/2} := \mathcal{C}(\tilde{f}_{\alpha}^{f,n})$ in interior.
- 4. $\tilde{f}_{\alpha}^{f,n+1/2} := \mathcal{T}(f_{\alpha}^{f,n+1/2})$ on whole fine mesh. $f_{\alpha}^{f,n+1} := \mathcal{C}(\tilde{f}_{\alpha}^{f,n+1/2})$ in interior.

5. Average $\tilde{f}_{\alpha,out}^{f,n+1/2}$ (inner halo layer), $\tilde{f}_{\alpha,out}^{f,n}$ (outer halo layer) to obtain $\tilde{f}_{\alpha,out}^{C,n}$.

	Adaptive LBM	Realistic computations	Conclusions
	0000000		
Structured adaptive mesh refinement			

- 1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := CT(f_{\alpha}^{C,n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.
- 3. $\tilde{f}_{\alpha}^{f,n} := \mathcal{T}(f_{\alpha}^{f,n})$ on whole fine mesh. $f_{\alpha}^{f,n+1/2} := \mathcal{C}(\tilde{f}_{\alpha}^{f,n})$ in interior.
- 4. $\tilde{f}_{\alpha}^{f,n+1/2} := \mathcal{T}(f_{\alpha}^{f,n+1/2})$ on whole fine mesh. $f_{\alpha}^{f,n+1} := \mathcal{C}(\tilde{f}_{\alpha}^{f,n+1/2})$ in interior.

- 5. Average $\tilde{f}_{\alpha,out}^{f,n+1/2}$ (inner halo layer), $\tilde{f}_{\alpha,out}^{f,n}$ (outer halo layer) to obtain $\tilde{f}_{\alpha,out}^{C,n}$.
- 6. Revert transport into halos: $\bar{f}_{\alpha,out}^{C,n} := \mathcal{T}^{-1}(\tilde{f}_{\alpha,out}^{C,n})$

	Adaptive LBM	Realistic computations	Conclusions
	0000000		
Structured adaptive mesh refinement			

- 1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := CT(f_{\alpha}^{C,n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.
- 3. $\tilde{f}_{\alpha}^{f,n} := \mathcal{T}(f_{\alpha}^{f,n})$ on whole fine mesh. $f_{\alpha}^{f,n+1/2} := \mathcal{C}(\tilde{f}_{\alpha}^{f,n})$ in interior.
- 4. $\tilde{f}^{f,n+1/2}_{\alpha} := \mathcal{T}(f^{f,n+1/2}_{\alpha})$ on whole fine mesh. $f^{f,n+1}_{\alpha} := \mathcal{C}(\tilde{f}^{f,n+1/2}_{\alpha})$ in interior.

- 5. Average $\tilde{f}_{\alpha,out}^{f,n+1/2}$ (inner halo layer), $\tilde{f}_{\alpha,out}^{f,n}$ (outer halo layer) to obtain $\tilde{f}_{\alpha,out}^{C,n}$.
- 6. Revert transport into halos: $\bar{f}_{\alpha,out}^{C,n} := \mathcal{T}^{-1}(\tilde{f}_{\alpha,out}^{C,n})$
- 7. Parallel synchronization of $f_{\alpha}^{C,n}, \overline{f}_{\alpha,out}^{C,n}$

	Adaptive LBM	Realistic computations	Conclusions
	0000000		
Structured adaptive mesh refinement			

- 1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := CT(f_{\alpha}^{C,n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.
- 3. $\tilde{f}_{\alpha}^{f,n} := \mathcal{T}(f_{\alpha}^{f,n})$ on whole fine mesh. $f_{\alpha}^{f,n+1/2} := \mathcal{C}(\tilde{f}_{\alpha}^{f,n})$ in interior.
- 4. $\tilde{f}^{f,n+1/2}_{\alpha} := \mathcal{T}(f^{f,n+1/2}_{\alpha})$ on whole fine mesh. $f^{f,n+1}_{\alpha} := \mathcal{C}(\tilde{f}^{f,n+1/2}_{\alpha})$ in interior.

- 5. Average $\tilde{f}_{\alpha,out}^{f,n+1/2}$ (inner halo layer), $\tilde{f}_{\alpha,out}^{f,n}$ (outer halo layer) to obtain $\tilde{f}_{\alpha,out}^{C,n}$.
- 6. Revert transport into halos: $\bar{f}_{\alpha,out}^{C,n} := \mathcal{T}^{-1}(\tilde{f}_{\alpha,out}^{C,n})$
- 7. Parallel synchronization of $f_{\alpha}^{C,n}, \overline{f}_{\alpha,out}^{C,n}$
- 8. Cell-wise update where correction is needed: $f_{\alpha}^{C,n+1} := CT(f_{\alpha}^{C,n}, \bar{f}_{\alpha,out}^{C,n})$

	Adaptive LBM	Realistic computations	Conclusions
	0000000		
Structured adaptive mesh refinement			

- 1. Complete update on coarse grid: $f_{\alpha}^{C,n+1} := CT(f_{\alpha}^{C,n})$
- 2. Interpolate $f_{\alpha,in}^{C,n}$ onto $f_{\alpha,in}^{f,n}$ to fill fine halos. Set physical boundary conditions.
- 3. $\tilde{f}^{f,n}_{\alpha} := \mathcal{T}(f^{f,n}_{\alpha})$ on whole fine mesh. $f^{f,n+1/2}_{\alpha} := \mathcal{C}(\tilde{f}^{f,n}_{\alpha})$ in interior.
- 4. $\tilde{f}_{\alpha}^{f,n+1/2} := \mathcal{T}(f_{\alpha}^{f,n+1/2})$ on whole fine mesh. $f_{\alpha}^{f,n+1} := \mathcal{C}(\tilde{f}_{\alpha}^{f,n+1/2})$ in interior.

- 5. Average $\tilde{f}_{\alpha,out}^{f,n+1/2}$ (inner halo layer), $\tilde{f}_{\alpha,out}^{f,n}$ (outer halo layer) to obtain $\tilde{f}_{\alpha,out}^{C,n}$.
- 6. Revert transport into halos: $\bar{f}_{\alpha,out}^{C,n} := \mathcal{T}^{-1}(\tilde{f}_{\alpha,out}^{C,n})$
- 7. Parallel synchronization of $f_{\alpha}^{C,n}, \bar{f}_{\alpha,out}^{C,n}$
- 8. Cell-wise update where correction is needed: $f_{\alpha}^{C,n+1} := CT(f_{\alpha}^{C,n}, \bar{f}_{\alpha,out}^{C,n})$

Algorithm equivalent to [Chen et al., 2006].

Structured adaptive mesh refinement

Verification - driven cavity

- Re = 1500 in air, $\nu = 1.5 \cdot 10^{-5} \,\mathrm{m^2/s}$, $u = 22.5 \,\mathrm{m/s}$.
- Domain size $1 \text{ mm} \times 1 \text{ mm}$.
- Reference computation uses 800 × 800 lattice.
- ▶ 588,898 time steps to $t_e = 5 \cdot 10^{-3} \, \text{s}$, ~ 35 h CPU.
- Statically adaptive computation uses 100×100 lattice with $r_{1,2} = 2$.
- > 294,452 time steps to $t_e = 5 \cdot 10^{-3}$ s on finest level.

Isolines of density. Left: reference, right on refinement at t_e .

 Introduction
 Adaptive LBM
 Realistic computations
 Conclusion:

 0
 0000●0000
 0
 0

 verification

 0
 0

Driven cavity - dynamic refinement

- \blacktriangleright Dynamic refinement based on heuristic error estimation of $|\mathbf{u}|$
- Threshold intentionally chosen to show refinement evolution

Isolines of density on refinement (left), distribution to 4 processors (right).
Introduction
 Adaptive LBM
 Realistic computations
 Conclusion:

 0
 0000●0000
 0
 0

 verification

 0
 0

Driven cavity - dynamic refinement

- \blacktriangleright Dynamic refinement based on heuristic error estimation of $|\mathbf{u}|$
- Threshold intentionally chosen to show refinement evolution

 Introduction
 Adaptive LBM
 Realistic computations
 Conclusion

 0
 0000€0000
 0
 0

 Verification

Driven cavity - dynamic refinement

- \blacktriangleright Dynamic refinement based on heuristic error estimation of $|\mathbf{u}|$
- Threshold intentionally chosen to show refinement evolution

 Introduction
 Adaptive LBM
 Realistic computations
 Conclusion:

 0
 0000●0000
 0
 0

 verification

 0
 0

Driven cavity - dynamic refinement

- \blacktriangleright Dynamic refinement based on heuristic error estimation of $|\mathbf{u}|$
- Threshold intentionally chosen to show refinement evolution

 Introduction
 Adaptive LBM
 Realistic computations
 Conclusion

 0
 0000●0000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0</td

Driven cavity - dynamic refinement

- > Dynamic refinement based on heuristic error estimation of $|\mathbf{u}|$
- Threshold intentionally chosen to show refinement evolution

 Introduction
 Adaptive LBM
 Realistic computations
 Conclusion

 0
 0000●0000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0</td

Driven cavity - dynamic refinement

- > Dynamic refinement based on heuristic error estimation of $|\mathbf{u}|$
- Threshold intentionally chosen to show refinement evolution

 Introduction
 Adaptive LBM
 Realistic computations
 Conclusion

 0
 0000●0000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0</td

Driven cavity - dynamic refinement

- > Dynamic refinement based on heuristic error estimation of $|\mathbf{u}|$
- Threshold intentionally chosen to show refinement evolution

 Introduction
 Adaptive LBM
 Realistic computations
 Conclusion

 0
 0000€0000
 0
 0

 Verification

Driven cavity - dynamic refinement

- > Dynamic refinement based on heuristic error estimation of $|\mathbf{u}|$
- Threshold intentionally chosen to show refinement evolution

 Introduction
 Adaptive LBM
 Realistic computations
 Conclusio

 0
 0000●0000
 00000000
 0

 Verification

Driven cavity - dynamic refinement

- Dynamic refinement based on heuristic error estimation of |u|
- Threshold intentionally chosen to show refinement evolution

 Introduction
 Adaptive LBM
 Realistic computations
 Conclusic

 0
 0000€0000
 0
 0

 Verification
 Verification
 Verification
 Verification

Driven cavity - dynamic refinement

- > Dynamic refinement based on heuristic error estimation of $|\mathbf{u}|$
- Threshold intentionally chosen to show refinement evolution

 Introduction
 Adaptive LBM
 Realistic computations
 Conclusio

 0
 0000●0000
 00000000
 0

 Verification

Driven cavity - dynamic refinement

- Dynamic refinement based on heuristic error estimation of |u|
- Threshold intentionally chosen to show refinement evolution

Introduction O Verification Adaptive LBM

Realistic computations

Conclusions O

Driven cavity - dynamic refinement

- \blacktriangleright Dynamic refinement based on heuristic error estimation of $|\mathbf{u}|$
- Threshold intentionally chosen to show refinement evolution

Driven cavity - dynamic refinement

- \blacktriangleright Dynamic refinement based on heuristic error estimation of $|\mathbf{u}|$
- Threshold intentionally chosen to show refinement evolution

Driven cavity - 3d cavity

- Similar setup as in 2d. No-slip wall everywhere except at lid. Re = 1000 in air, u = 15 m/s.
- AMR 64^3 base mesh with $r_{1,2} = 2$. Regridding and repartition only at every 2nd base level step.
- 95 time steps on coarsest level benchmarked.

• Uniform grid $256^3 = 16.8 \cdot 10^6$ cells.

Level	Grids	Cells
0	178	262,144
1	668	1,538,912
2	2761	7,842,872

Grid and cells used on 24 cores

Cores	6	12	24	48	96
Time per step	1.82s	0.94s	0.50s	0.28s	0.16s
LBM Update	44.97%	42.83%	39.64%	35.37%	31.10%
Error Estimation	1.37%	1.30%	1.20%	1.07%	0.94%
Regridding	14.59%	14.79%	15.60%	16.75%	19.14%
Fixup	4.18%	3.96%	3.74%	3.42%	3.07%
Interp. Boundaries	9.34%	9.15%	8.30%	7.17%	6.13%
Interp. Regridding	3.53%	3.23%	3.02%	2.73%	2.44%
Sync Boundaries	8.69%	11.20%	14.28%	18.26%	21.07%
Sync Fixup	2.41%	3.41%	4.70%	6.50%	7.99%
Sync Regridding	0.77%	0.72%	0.74%	0.83%	0.99%
Phys. Boundaries	0.69%	0.68%	0.63%	0.56%	0.49%
Clustering	0.55%	0.48%	0.44%	0.40%	0.36%
Misc	8.90%	8.25%	7.72%	6.95%	6.26%

Driven cavity - 3d cavity

- ▶ Intel Xeon-2.67 GHz 6-core (Westmere) dual-processor nodes with Qlogics interconnect
- Unigrid with 2 ghost cells

Cores	6	12	24	48	96
Time per step	3.44s	1.81s	0.92s	0.47s	0.24s
Par. Efficiency	100.00%	95.04%	93.34%	92.40%	91.38%
LBM Update	74.86%	74.60%	72.48%	70.78%	67.58%
Synchronization	12.42%	13.32%	15.48%	17.35%	20.52%
Phys. Boundary	0.78%	0.74%	0.69%	0.69%	0.65%
Misc	11.94%	11.34%	11.34%	11.18%	11.25%

AMR with 2 ghost cells

Cores	6	12	24	48	96
Time per step	1.82s	0.94s	0.50s	0.28s	0.16s
Par. Efficiency	100.00%	96.47%	90.00%	81.68%	73.04%
LBM Update	46.34%	44.13%	40.84%	36.44%	32.04%
Synchronization	11.87%	15.33%	19.72%	25.58%	30.06%
Phys. Boundary	0.69%	0.68%	0.63%	0.56%	0.49%
Regridding	14.59%	14.79%	15.60%	16.75%	19.14%
Interpolation	12.88%	12.38%	11.31%	9.90%	8.57%
Fixup	4.18%	3.96%	3.74%	3.42%	3.07%
Misc	9.45%	8.73%	8.16%	7.36%	6.62%

Performance assessment

Driven cavity - 3d cavity

- ▶ Intel Xeon-2.67 GHz 6-core (Westmere) dual-processor nodes with Qlogics interconnect
- Unigrid with 2 ghost cells

Cores	6	12	24	48	96
Time per step	3.44s	1.81s	0.92s	0.47s	0.24s
Par. Efficiency	100.00%	95.04%	93.34%	92.40%	91.38%
LBM Update	74.86%	74.60%	72.48%	70.78%	67.58%
Synchronization	12.42%	13.32%	15.48%	17.35%	20.52%
Phys. Boundary	0.78%	0.74%	0.69%	0.69%	0.65%
Misc	11.94%	11.34%	11.34%	11.18%	11.25%

AMR with 2 ghost cells

Cores	6	12	24	48	96
Time per step	1.82s	0.94s	0.50s	0.28s	0.16s
Par. Efficiency	100.00%	96.47%	90.00%	81.68%	73.04%
LBM Update	46.34%	44.13%	40.84%	36.44%	32.04%
Synchronization	11.87%	15.33%	19.72%	25.58%	30.06%
Phys. Boundary	0.69%	0.68%	0.63%	0.56%	0.49%
Regridding	14.59%	14.79%	15.60%	16.75%	19.14%
Interpolation	12.88%	12.38%	11.31%	9.90%	8.57%
Fixup	4.18%	3.96%	3.74%	3.42%	3.07%
Misc	9.45%	8.73%	8.16%	7.36%	6.62%

Expense for boundary is increased compared to FV methods because the algorithm uses few floating point operations but a large state vector! Introduction O Adaptive LBM ○○○○○○○●○ Realistic computations

Conclusions O

Performance assessment

Driven cavity - 3d cavity

Unigrid with 1 ghost cell

Cores	6	12	24	48	96
Time per step	2.80s	1.46s	0.73s	0.37s	0.18s
Par. Efficiency	100.00%	96.09%	95.33%	95.21%	94.82%
LBM Update	78.05%	77.08%	75.85%	74.50%	71.38%
Synchronization	7.25%	8.67%	10.00%	11.32%	14.35%
Phys. Boundary	0.51%	0.46%	0.45%	0.44%	0.44%
Misc	14.19%	13.79%	13.70%	13.73%	13.83%

AMR with 4 ghost cells

Cores	6	12	24	48	96
Time per step	3.32s	1.90s	1.21s	0.54s	0.30s
Par. Efficiency	100.00%	87.42%	68.76%	77.02%	68.19%
LBM Update	43.44%	40.93%	31.33%	34.64%	30.11%
Synchronization	14.13%	18.26%	34.73%	25.76%	30.69%
Phys. Boundary	1.03%	0.98%	0.77%	0.86%	0.77%
Regridding	15.53%	16.02%	13.87%	18.72%	20.82%
Interpolation	16.74%	15.71%	11.95%	13.15%	11.51%
Fixup	2.89%	2.60%	2.02%	2.28%	2.03%
Misc	6.22%	5.50%	5.33%	4.59%	4.08%

Basically linear dependency on number of ghost cells used

Introduction O

Adaptive LBM ○○○○○○○● Realistic computations

Conclusions O

Complex geometry consideration

Level-set method for boundary embedding

- Implicit boundary representation via distance function φ , normal $\mathbf{n} = \nabla \varphi / |\nabla \varphi|$.
- Complex boundary moving with local velocity w, treat interface as moving rigid wall.
- Construction of macro-values in embedded boundary cells by interpolation / extrapolation.

troduction

Adaptive LBM ○○○○○○○○ Realistic computations

Conclusions O

Complex geometry consideration

Level-set method for boundary embedding

- Implicit boundary representation via distance function φ , normal $\mathbf{n} = \nabla \varphi / |\nabla \varphi|$.
- Complex boundary moving with local velocity w, treat interface as moving rigid wall.
- Construction of macro-values in embedded boundary cells by interpolation / extrapolation.

Interpolate / constant value extrapolate values at

$$\tilde{\mathbf{x}} = \mathbf{x} + 2\varphi \mathbf{n}$$

Introduction

Adaptive LBM

Realistic computations

Conclusions O

Complex geometry consideration

Level-set method for boundary embedding

- Implicit boundary representation via distance function φ , normal $\mathbf{n} = \nabla \varphi / |\nabla \varphi|$.
- Complex boundary moving with local velocity w, treat interface as moving rigid wall.
- Construction of macro-values in embedded boundary cells by interpolation / extrapolation.

Interpolate / constant value extrapolate values at

$$\tilde{\mathbf{x}} = \mathbf{x} + 2\varphi \mathbf{n}$$

Macro-velocity in ghost cells: No-slip: $\mathbf{u}' = 2\mathbf{w} - \mathbf{u}$ Slip:

$$\begin{split} \mathbf{u}' &= (2\mathbf{w}\cdot\mathbf{n} - \mathbf{u}\cdot\mathbf{n})\mathbf{n} + (\mathbf{u}\cdot\mathbf{t})\mathbf{t} \\ &= 2\left(\left(\mathbf{w} - \mathbf{u}\right)\cdot\mathbf{n}\right)\mathbf{n} + \mathbf{u} \end{split}$$

Introduction O

Adaptive LBM

Realistic computations

Conclusions O

Complex geometry consideration

Level-set method for boundary embedding

Interpolate / constant value extrapolate values at

$$\tilde{\mathbf{x}} = \mathbf{x} + 2\varphi \mathbf{n}$$

Macro-velocity in ghost cells: No-slip: $\mathbf{u}'=2\mathbf{w}-\mathbf{u}$ Slip:

$$\begin{split} \mathbf{u}' &= (2\mathbf{w}\cdot\mathbf{n} - \mathbf{u}\cdot\mathbf{n})\mathbf{n} + (\mathbf{u}\cdot\mathbf{t})\mathbf{t} \\ &= 2\left((\mathbf{w} - \mathbf{u})\cdot\mathbf{n}\right)\mathbf{n} + \mathbf{u} \end{split}$$

- Implicit boundary representation via distance function φ , normal $\mathbf{n} = \nabla \varphi / |\nabla \varphi|$.
- Complex boundary moving with local velocity w, treat interface as moving rigid wall.
- Construction of macro-values in embedded boundary cells by interpolation / extrapolation.
- Then use f^{αq}_c(ρ', u') to construct distributions in embedded ghost cells.
- 2nd order improvements possible, cf. [Peng and Luo, 2008].

	Adaptive LBM	Realistic computations	Conclusions
		•••••	
Static geometries			

Side-wind investigation for a train model

 1:25 train model represented with 74,670 triangles (41,226 front body, 12,398 back body, 21,006 blade)

R. Deiterding, S. Wood - A block-structured adaptive LBM

Side-wind investigation for a train model

- 1:25 train model represented with 74,670 triangles (41,226 front body, 12,398 back body, 21,006 blade)
- Wind tunnel conditions: air at room temperature with 60.25 m/s (M = 0.18), Re = 450,000
- ▶ Systematic side wind investigation with $0 \ge \beta \ge 30^{\circ}$ to obtain lift, drag and roll moment coefficients
- Instationary, turbulent flow conditions make replacing/supplementing experiments with simulations very challenging. Typical DLR problem and good real-world CFD benchmark.

R. Deiterding, S. Wood - A block-structured adaptive LBM

 Introduction
 Adaptive LBM
 Realistic computations
 Conclusion

 0
 00000000
 0●0000000
 0

 Static geometries

Flow prediction, $\mathrm{Re}=450,000$, $\beta=30^o$

- Domain $10 \text{ m} \times 2.4 \text{ m} \times 1.6 \text{ m}$
- Computation started in 3 steps. Full resolution after 5889 coarsest level steps or $t \ge 0.4 \, {
 m s}$
- \blacktriangleright \sim 1140 coarsest level steps in 24 h on 96 cores shown above. Overall cost \sim 4600 h CPU.

Vorticity vector component perpendicular to middle axis.

Flow prediction, $\mathrm{Re}=450,000,\ \beta=30^{o}$

- Domain $10 \text{ m} \times 2.4 \text{ m} \times 1.6 \text{ m}$
- \blacktriangleright Computation started in 3 steps. Full resolution after 5889 coarsest level steps or $t \geq$ 0.4 s
- $\blacktriangleright~\sim$ 1140 coarsest level steps in 24 h on 96 cores shown above. Overall cost \sim 4600 h CPU.

Experiment (time-averaged)

AMROC-LBM Simulation (instantaneous snapshots)

Vorticity component (seen from behind) in axial direction $80 \ \mathrm{mm}$ and $290 \ \mathrm{mm}$ away from model tip.

Flow prediction, $\mathrm{Re}=450,000,\ \beta=30^{o}$

- Domain $10 \text{ m} \times 2.4 \text{ m} \times 1.6 \text{ m}$
- \blacktriangleright Computation started in 3 steps. Full resolution after 5889 coarsest level steps or $t \geq$ 0.4 s
- $\blacktriangleright~\sim$ 1140 coarsest level steps in 24 h on 96 cores shown above. Overall cost \sim 4600 h CPU.

Experiment (time-averaged)

AMROC-LBM Simulation (instantaneous snapshots)

Vorticity component (seen from behind) in axial direction $80\ \mathrm{mm}$ and $290\ \mathrm{mm}$ away from model tip.

Flow prediction, $\mathrm{Re}=$ 450,000, $\beta=$ 30 o

- Domain $10 \text{ m} \times 2.4 \text{ m} \times 1.6 \text{ m}$
- Computation started in 3 steps. Full resolution after 5889 coarsest level steps or $t \ge 0.4 \, {
 m s}$
- $\blacktriangleright~\sim$ 1140 coarsest level steps in 24 h on 96 cores shown above. Overall cost \sim 4600 h CPU.

Experiment (time-averaged)

AMROC-LBM Simulation (instantaneous snapshots)

Vorticity component (seen from behind) in axial direction $80\ \mathrm{mm}$ and $290\ \mathrm{mm}$ away from model tip.

Flow prediction, $\mathrm{Re}=$ 450,000, $\beta=$ 30 o

- Domain $10 \text{ m} \times 2.4 \text{ m} \times 1.6 \text{ m}$
- Computation started in 3 steps. Full resolution after 5889 coarsest level steps or $t \ge 0.4 \, {
 m s}$
- $\blacktriangleright~\sim$ 1140 coarsest level steps in 24 h on 96 cores shown above. Overall cost \sim 4600 h CPU.

Experiment (time-averaged)

AMROC-LBM Simulation (instantaneous snapshots)

Introd	
Static	geometries

Adaptive LBM

Realistic computations

Conclusions O

- Base mesh 500 \times 120 \times 80 cells, refinement factors 2,2,4.
- Refinement based on error estimation of |u| up to second highest level.
- Highest level reserved to geometry refinement with $\Delta x = 1.25 \,\mathrm{mm}$.

Introd	
Static	geometries

Adaptive LBM

Realistic computations

Conclusions O

- Base mesh 500 × 120 × 80 cells, refinement factors 2,2,4.
- Refinement based on error estimation of |u| up to second highest level.
- Highest level reserved to geometry refinement with $\Delta x = 1.25 \text{ mm}$.

Introd	
Static	geometries

Adaptive LBM

Realistic computations

Conclusions O

- ▶ Base mesh 500 × 120 × 80 cells, refinement factors 2,2,4.
- Refinement based on error estimation of |u| up to second highest level.
- Highest level reserved to geometry refinement with $\Delta x = 1.25 \,\mathrm{mm}$.

- Base mesh 500 × 120 × 80 cells, refinement factors 2,2,4.
- Refinement based on error estimation of |u| up to second highest level.
- Highest level reserved to geometry refinement with $\Delta x = 1.25 \,\mathrm{mm}$.

- Base mesh 500 \times 120 \times 80 cells, refinement factors 2,2,4.
- Refinement based on error estimation of |u| up to second highest level.
- Highest level reserved to geometry refinement with $\Delta x = 1.25 \text{ mm.}$

	Adaptive LBM	Realistic computations	Conclusion	
		00000000		
Static geometries				

Strong scalability test

- Computation is restarted from disk checkpoint at t = 0.526408 s.
- Time for initial re-partitioning removed from benchmark.
- 200 coarse level time steps computed.
- Regridding and re-partitioning every 2nd level-0 step.
- Computation starts with 51.8M cells (I3: 10.2M, I2: 15.3M, I1: 21.5M, I0= 4.8M) vs. 19.66 billion (uniform).

Strong scalability test

- Computation is restarted from disk checkpoint at t = 0.526408 s.
- Time for initial re-partitioning removed from benchmark.
- 200 coarse level time steps computed.
- Regridding and re-partitioning every 2nd level-0 step.
- Computation starts with 51.8M cells (I3: 10.2M, I2: 15.3M, I1: 21.5M, I0= 4.8M) vs. 19.66 billion (uniform).

					-		
Cores	48	96	192	288	384	576	768
Time per step	132.43s	69.79s	37.47s	27.12s	21.91s	17.45s	15.15s
Par. Efficiency	100.0	94.88	88.36	81.40	75.56	63.24	54.63
LBM Update	5.91	5.61	5.38	4.92	4.50	3.73	3.19
Regridding	15.44	12.02	11.38	10.92	10.02	8.94	8.24
Partitioning	4.16	2.43	1.16	1.02	1.04	1.16	1.34
Interpolation	3.76	3.53	3.33	3.05	2.83	2.37	2.06
Sync Boundaries	54.71	59.35	59.73	56.95	54.54	52.01	51.19
Sync Fixup	9.10	10.41	12.25	16.62	20.77	26.17	28.87
Level set	0.78	0.93	1.21	1.37	1.45	1.48	1.47
Interp./Extrap.	3.87	3.81	3.76	3.49	3.26	2.75	2.39
Misc	2.27	1.91	1.79	1.67	1.58	1.38	1.25

Time in % spent in main operations

Strong scalability test

- Computation is restarted from disk checkpoint at t = 0.526408 s.
- Time for initial re-partitioning removed from benchmark.
- 200 coarse level time steps computed.
- Regridding and re-partitioning every 2nd level-0 step.
- Computation starts with 51.8M cells (I3: 10.2M, I2: 15.3M, I1: 21.5M, I0= 4.8M) vs. 19.66 billion (uniform).
- Portions for parallel communication quite considerable (4 ghost cells still used).

Cores	48	96	192	288	384	576	768
Time per step	132.43s	69.79s	37.47s	27.12s	21.91s	17.45s	15.15s
Par. Efficiency	100.0	94.88	88.36	81.40	75.56	63.24	54.63
LBM Update	5.91	5.61	5.38	4.92	4.50	3.73	3.19
Regridding	15.44	12.02	11.38	10.92	10.02	8.94	8.24
Partitioning	4.16	2.43	1.16	1.02	1.04	1.16	1.34
Interpolation	3.76	3.53	3.33	3.05	2.83	2.37	2.06
Sync Boundaries	54.71	59.35	59.73	56.95	54.54	52.01	51.19
Sync Fixup	9.10	10.41	12.25	16.62	20.77	26.17	28.87
Level set	0.78	0.93	1.21	1.37	1.45	1.48	1.47
Interp./Extrap.	3.87	3.81	3.76	3.49	3.26	2.75	2.39
Misc	2.27	1.91	1.79	1.67	1.58	1.38	1.25

Time in % spent in main operations

Simulation of a single turbine

- $\blacktriangleright\,$ Geometry from realistic Vestas V27 turbine. Rotor diameter 27 $\rm m,\,tower$ height $\sim35\,\rm m.\,$ Ground considered.
- Prescribed motion of rotor with 15 rpm. Inflow velocity 7 m/s.
- Simulation domain 200 m \times 100 m \times 100 m.
- Base mesh 400 \times 200 \times 200 cells with refinement factors 2,2,4. Resolution of rotor and tower $\Delta x=3.125\,{\rm cm}.$
- 141,344 highest level iterations to $t_e = 30 \text{ s}$ computed.

R. Deiterding, S. Wood - A block-structured adaptive LBM
- $\blacktriangleright\,$ Geometry from realistic Vestas V27 turbine. Rotor diameter 27 $\rm m,\,tower$ height $\sim35\,\rm m.\,$ Ground considered.
- Prescribed motion of rotor with 15 rpm. Inflow velocity 7 m/s.
- Simulation domain $200 \text{ m} \times 100 \text{ m} \times 100 \text{ m}$.
- Base mesh 400 \times 200 \times 200 cells with refinement factors 2,2,4. Resolution of rotor and tower $\Delta x=3.125\,{\rm cm}.$
- ▶ 141,344 highest level iterations to $t_e = 30 \text{ s}$ computed.

- $\blacktriangleright\,$ Geometry from realistic Vestas V27 turbine. Rotor diameter 27 $\rm m,\,tower$ height $\sim35\,\rm m.\,$ Ground considered.
- Prescribed motion of rotor with 15 rpm. Inflow velocity 7 m/s.
- Simulation domain 200 m \times 100 m \times 100 m.
- Base mesh 400 \times 200 \times 200 cells with refinement factors 2,2,4. Resolution of rotor and tower $\Delta x=3.125\,{\rm cm}.$
- ▶ 141,344 highest level iterations to $t_e = 30 \text{ s}$ computed.

- $\blacktriangleright\,$ Geometry from realistic Vestas V27 turbine. Rotor diameter 27 $\rm m,\,tower$ height $\sim35\,\rm m.\,$ Ground considered.
- Prescribed motion of rotor with 15 rpm. Inflow velocity 7 m/s.
- Simulation domain 200 m \times 100 m \times 100 m.
- Base mesh 400 \times 200 \times 200 cells with refinement factors 2,2,4. Resolution of rotor and tower $\Delta x=3.125\,{\rm cm}.$
- ▶ 141,344 highest level iterations to $t_e = 30 \text{ s}$ computed.

- $\blacktriangleright\,$ Geometry from realistic Vestas V27 turbine. Rotor diameter 27 $\rm m,\,tower\,height\sim35\,m.$ Ground considered.
- Prescribed motion of rotor with 15 rpm. Inflow velocity 7 m/s.
- Simulation domain $200 \text{ m} \times 100 \text{ m} \times 100 \text{ m}$.
- Base mesh 400 \times 200 \times 200 cells with refinement factors 2,2,4. Resolution of rotor and tower $\Delta x=3.125\,{\rm cm}.$
- ▶ 141,344 highest level iterations to $t_e = 30 \text{ s}$ computed.

- $\blacktriangleright\,$ Geometry from realistic Vestas V27 turbine. Rotor diameter 27 $\rm m,\,tower$ height $\sim35\,\rm m.\,$ Ground considered.
- Prescribed motion of rotor with 15 rpm. Inflow velocity 7 m/s.
- Simulation domain 200 m \times 100 m \times 100 m.
- Base mesh 400 \times 200 \times 200 cells with refinement factors 2,2,4. Resolution of rotor and tower $\Delta x=3.125\,{\rm cm}.$
- ▶ 141,344 highest level iterations to $t_e = 30 \text{ s}$ computed.

- $\blacktriangleright\,$ Geometry from realistic Vestas V27 turbine. Rotor diameter 27 $\rm m,\,tower$ height $\sim35\,\rm m.\,$ Ground considered.
- Prescribed motion of rotor with 15 rpm. Inflow velocity 7 m/s.
- Simulation domain $200 \text{ m} \times 100 \text{ m} \times 100 \text{ m}$.
- Base mesh 400 \times 200 \times 200 cells with refinement factors 2,2,4. Resolution of rotor and tower $\Delta x = 3.125 \text{ cm}$.
- 141,344 highest level iterations to $t_e = 30 \text{ s}$ computed.

- $\blacktriangleright\,$ Geometry from realistic Vestas V27 turbine. Rotor diameter 27 $\rm m,\,tower$ height $\sim35\,\rm m.\,$ Ground considered.
- Prescribed motion of rotor with 15 rpm. Inflow velocity 7 m/s.
- Simulation domain $200 \text{ m} \times 100 \text{ m} \times 100 \text{ m}$.
- Base mesh 400 \times 200 \times 200 cells with refinement factors 2,2,4. Resolution of rotor and tower $\Delta x = 3.125$ cm.
- 141,344 highest level iterations to $t_e = 30 \, \text{s}$ computed.

	Adaptive LBM 000000000	Realistic computations	Conclusion
Simulation of wind turbines			
Wake field	behind turbine		

- > Simulation on 96 cores Intel Xeon-Westmere. \sim 10, 400 h CPU.
- Error estimation in $|\mathbf{u}|$ refines wake up to level 1 ($\Delta x = 25 \text{ cm}$).
- Rotation starts at t = 4 s.

Adaptive LBM 00000000 Realistic computations

Adaptive refinement

Dynamic evolution of refinement blocks (indicated by color).

Simulation of the SWIFT array

- \blacktriangleright Three Vestas V27 turbines. 225 $\rm kW$ power generation at wind speeds 14 to 25 $\rm m/s$ (then cut-off).
- Prescribed motion of rotor with 15 rpm. Inflow velocity 7 m/s (power generation 52.5 kW).
- Simulation domain $488 \text{ m} \times 240 \text{ m} \times 100 \text{ m}$.
- Base mesh $448 \times 240 \times 100$ cells with refinement factors 2,2,2. Resolution of rotor and tower $\Delta x = 12.5$ cm.
- 47,120 highest level iterations to t_e = 40 s computed.

- Simulation on 288 cores Intel Xeon-Westmere. \sim 140,000 h CPU.
- Refinement of wake up to level 2 ($\Delta x = 25 \text{ cm}$).
- Rotation starts at t = 4 s, full refinement at t = 8 s to avoid refining initial acoustic waves.

	Adaptive LBM	Realistic computations	Conclusions
			•
hings to address			

Conclusions

- Developed and demonstrated a first version of a block-based dynamically adaptive LBM for real-world CFD with moving boundaries.
- Reuse of templatized AMROC classes from previous finite volume methods already provides robust real-world capabilities.

Introduction	
Things to address	

Conclusions

- Developed and demonstrated a first version of a block-based dynamically adaptive LBM for real-world CFD with moving boundaries.
- Reuse of templatized AMROC classes from previous finite volume methods already provides robust real-world capabilities.
- Improve refinement criteria (e.g., vorticity-based) to capture wake fields reliably.

Conclusions

- Developed and demonstrated a first version of a block-based dynamically adaptive LBM for real-world CFD with moving boundaries.
- Reuse of templatized AMROC classes from previous finite volume methods already provides robust real-world capabilities.
- Improve refinement criteria (e.g., vorticity-based) to capture wake fields reliably.
- Performance for moderate core count is reasonable, some improvements for larger core count still desirable.
 - Reduce communication width to a single halo layer.
 - Consider workload due to embedded boundary method in partitioning algorithm.
 - Allow other than rigorous domain decomposition.

Realistic computations

Contour Var. Varticity_of_w_and_v

-01

eudocolor x: PRESSURES_

-1.250++0

Conclusions

Conclusions

- Developed and demonstrated a first version of a block-based dynamically adaptive LBM for real-world CFD with moving boundaries.
- Reuse of templatized AMROC classes from previous finite volume methods already provides robust real-world capabilities.
- Improve refinement criteria (e.g., vorticity-based) to capture wake fields reliably.
- Performance for moderate core count is reasonable, some improvements for larger core count still desirable.
 - Reduce communication width to a single halo layer.
 - Consider workload due to embedded boundary method in partitioning algorithm.
 - Allow other than rigorous domain decomposition.
- Use system for understanding turbine-turbine interactions.
- Realistic turbine model with dynamic pitch angle, nacelle rotation, etc. under development.

NREL $5 \,\mathrm{MW}$ turbine

References I

- [Berger and Colella, 1988] Berger, M. and Colella, P. (1988). Local adaptive mesh refinement for shock hydrodynamics. *J. Comput. Phys.*, 82:64–84.
- [Chen et al., 2006] Chen, H., Filippova, O., Hoch, J., Molvig, K., Shock, R., Teixeira, C., and Zhang, R. (2006). Grid refinement in lattice Boltzmann methods based on volumetric formulation. *Physica A*, 362:158–167.
- [Deiterding, 2011] Deiterding, R. (2011). Block-structured adaptive mesh refinement - theory, implementation and application. *European Series in Applied and Industrial Mathematics: Proceedings*, 34:97–150.
- [Deiterding et al., 2009] Deiterding, R., Cirak, F., and Mauch, S. P. (2009). Efficient fluid-structure interaction simulation of viscoplastic and fracturing thin-shells subjected to underwater shock loading. In Hartmann, S., Meister, A., Schäfer, M., and Turek, S., editors, Int. Workshop on Fluid-Structure Interaction. Theory, Numerics and Applications, Herrsching am Ammersee 2008, pages 65–80. kassel university press GmbH.

References II

- [Deiterding et al., 2007] Deiterding, R., Cirak, F., Mauch, S. P., and Meiron, D. I. (2007). A virtual test facility for simulating detonation- and shock-induced deformation and fracture of thin flexible shells. *Int. J. Multiscale Computational Engineering*, 5(1):47–63.
- [Deiterding et al., 2006] Deiterding, R., Radovitzky, R., Mauch, S. P., Noels, L., Cummings, J. C., and Meiron, D. I. (2006). A virtual test facility for the efficient simulation of solid materials under high energy shock-wave loading. *Engineering* with Computers, 22(3-4):325–347.
- [Deiterding and Wood, 2013] Deiterding, R. and Wood, S. L. (2013). Parallel adaptive fluid-structure interaction simulations of explosions impacting building structures. *Computers & Fluids*, 88:719–729.
- [Hähnel, 2004] Hähnel, D., editor (2004). Molekulare Gasdynamik. Springer.
- [Mauch, 2000] Mauch, S. (2000). A fast algorithm for computing the closest point and distance transform. *SIAM J. Scientific Comput.*
- [Peng and Luo, 2008] Peng, Y. and Luo, L.-S. (2008). A comparative study of immersed-boundary and interpolated bounce-back methods in Ibe. *Prog. Comp. Fluid Dynamics*, 8(1-4):156–167.