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Abstract The crucial components of a dynamically adaptive, parallel lattice Boltz-
mann method are described. By utilizing a level set approach for geometry em-
bedding the method can handle rotating and moving structures effectively. The ap-
proach is validated for the canonical six degrees of freedom test case of a hinged
wing. Subsequently, the wake field in an array of three Vestas V27 wind turbines
at prescribed rotation rate and under constant inflow condition is simulated for two
different scenarios. The results show that the low dissipation properties of the lat-
tice Boltzmann scheme in combination with dynamic mesh adaptation are able to
predict well-resolved vortex structures far downstream at moderate computational
costs.

1 Introduction

The rotor of a horizontal axis wind turbine creates a significant wake field in the
downstream wind direction. When multiple wind turbines are placed in an array, the
question of optimal placement arises. If a turbine is exposed to a major vortex field,
its energy output will generally be reduced and additionally induced structural vibra-
tions will cause disproportionally accelerated material fatigue. In order to simulate
the flow field in a turbine array layout, e.g., for a dominant wind direction, vortex
or disc actuator models are presently most frequently adopted. Computational fluid
dynamics (CFD) with accurate consideration of the moving structures is still rarely
applied, which is due to the complexities involved in solving the weakly or incom-
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pressible Navier-Stokes equations on moving three-dimensional meshes effectively,
cf. [11].

As an alternative to the implicit, typically pressure-correction based CFD solu-
tion algorithms generally applied in wind engineering [11], we adopt in here the lat-
tice Boltzmann method (LBM). The LBM is based on solving the Boltzmann equa-
tion in a specially chosen, discrete phase space and fully explicit in time [7]. The
LBM is constructed on uniform Cartesian grids and geometrically complex bound-
aries are considered with an immersed boundary approach, making the method well
suited for considering moving structures. Here, we utilize a level set distance func-
tion to represent embedded objects. Dynamic mesh adaptation is applied in addition
in order to increase the local resolution based on the level set function and features
detected in the flow field [4]. Distributed memory parallelization is adopted to allow
for large-scale simulations.

The paper is organized as follows: In Section 2, we recall the construction prin-
ciples of the LBM and our embedded boundary treatment method. In Section 3,
the block-based mesh adaptation procedure and in particular the incorporation of
the LBM are presented. Section 4 explains our approach in dealing with embedded
geometries. Section 5 discusses a first validation configuration of a hinged wing
and Section 6 presents first simulations of entire wind turbines that demonstrate the
benefit of the proposed overall approach. The conclusions are given in Section 7.

2 Lattice Boltzmann method

The lattice Boltzmann method is based on computing approximations of the Boltz-
mann equation with a simplified collision operator

∂t f +u ·∇ f = ω( f eq− f ) (1)

on a rectangular grid of characteristic domain length L with isotropic mesh spac-
ing ∆x under the assumption of a small Knudsen number Kn = l f /L� 1, where the
mean free path length l f is replaced with ∆x. A crucial idea of the LBM is to approx-
imate Eq. (1) in a specially chosen discrete phase space, in which a partial density
distribution function fα(x, t) is associated to every discrete lattice velocity eα . The
total density distribution is given as ρ(x, t) = ∑α fα(x, t) and the macroscopic mo-
ments as ρ(x, t)ui(x, t) = ∑α eαi fα(x, t). A splitting approach is then adopted that
first solves the homogeneous transport equation with the time-explicit update step

T : f̃α(x+ eα ∆ t, t +∆ t) = fα(x, t). (2)

Here, we apply the D3Q19 model for which the lattice velocities are defined as

eα =

0, α = 0,
(±1,0,0)c,(0,±1,0)c,(0,0,±1)c, α = 1, . . . ,6,
(±1,±1,0)c,(±1,0,±1)c,(0,±1,±1)c, α = 7, . . . ,18,
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with c = ∆x/∆ t. The physical speed of sound cs is related to c by cs = c/
√

3. The
right-hand of Eq. (1) is integrated subsequently by the collision operator

C : fα(·, t +∆ t) = f̃α(·, t +∆ t)+ωL∆ t
(

f̃ eq
α (·, t +∆ t)− f̃α(·, t +∆ t)

)
(3)

with equilibrium function

f eq
α (ρ,u) = ρtα

[
1+

3eα u
c2 +

9(eα u)2

2c4 − 3u2

2c2

]
(4)

Fig. 1 The velocities eα of the D3Q19 lat-
tice.

with t0 = 1/3, tα = 1/18 for α = 1, . . . ,6
and t = 1/36 for α = 7, . . . ,18. The hydrody-
namic pressure for the equilibrium function
(4) reads p = ∑α f eq

α c2
s = ρc2

s .
Applying a Chapman-Enskog expansion

procedure, it can be shown [8] that the
sketched LBM converges to a solution of
the weakly compressible Navier-Stokes equa-
tions

∂tρ +∇ · (ρu) = 0, (5a)

∂tu+u ·∇u =−∇p+ν∇
2u. (5b)

It can be shown further, cf. [7], that the kine-
matic viscosity ν and the collision frequency of the LBM, ωL, are connected by the
relation

ωL = τ
−1
L =

c2
s

ν +∆ tc2
s/2

. (6)

While the sketched model can be used directly to simulate laminar flows, it is
mandatory to apply a turbulence model in addition in high Reynolds number situ-
ations. In the context of LBM, it is common to adopt a large eddy simulation ap-
proach and assume that the partial density distribution functions used in the scheme
represent the resolved scales. The subgrid scale turbulence is then considered by
adding a turbulent viscosity νt to the physical one and utilize the effective viscos-
ity ν? = ν +νt =

1
3

(
τ?L
∆ t −

1
2

)
c∆x with τ?L = τL + τt =: 1/ω?

L in (3) throughout the
scheme. Like Hou et al. [8], we apply the Smagorinsky model to evaluate νt , for
which νt = (Csm∆x)2S̄, where we use Csm = 0.2 here, with

S̄ =
√

2∑
i, j

S̄i jS̄i j, S̄i j =
Σi j

2ρ0c2
s τ?L

(
1− ωL∆ t

2

) =
1

2ρ0c2
s τ?L

∑
α

eαieα j( f̄ eq
α − f̄α), (7)

where Σi j denotes the deviatoric stress tensor. From (7) one ultimately obtains [8]

τt =
1
2

(√
τ2

L +18
√

2(ρ0c2)−1C2
sm∆xS̄− τL

)
. (8)
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(a)

f C,n
α,in

(b)

f f ,n
α,in

f̃ f ,n+1
α,out

(c)

T −1( f̃ C,n
α,out)

Fig. 2 Visualization of distributions involved in necessary data exchange at a coarse-fine boundary.
The thick black lines indicate a physical boundary. (a) Coarse distributions going into fine grid; (b)
ingoing interpolated fine distributions in halos (top), outgoing distributions in halos after two fine-
level transport steps (bottom); (c) averaged distributions replacing coarse values before update is
repeated in cells next to boundary.

3 Dynamic mesh adaptation

For local dynamic mesh adaptation we have adopted the block-structured adaptive
mesh refinement (SAMR) method after Berger & Collela [1]. In order to fit smoothly
into our existing, fully parallelized finite volume SAMR software system AMROC
[4], we have implemented the LBM cell-based, which makes the scheme also con-
servative in ρ and ρui. In the SAMR approach, finite volume cells are clustered
with a special algorithm into non-overlapping rectangular grids. The grids have a
suitable layer of halo cells for synchronization and applying inter-level and physical
boundary conditions. Refinement levels are integrated recursively. The spatial mesh
width ∆xl and the time step ∆ tl are refined by the same factor rl , where we assume
rl ≥ 2 for l > 0 and r0 = 1. Note that in an adaptive LBM the collision frequency
ωL is not a constant but needs to be adjusted according to Eq. (6) for the update on
each level. In addition to this, the interface region requires a specialized treatment.
Distinguishing between the transport and collision operators, T and C , cf. Eqs. (2)
and (3), the crucial steps of our method are:

1. Use coarse grid distributions f C,n
α,in that propagate into the fine grid, cf. Fig. 2a, to

construct initial fine grid halo values f f ,n
α,in, cf. Fig. 2b, by interpolation.

2. Transport f̃ f ,n
α := T ( f f ,n

α ) on entire fine mesh. Collision f f ,n+1/2
α := C ( f̃ f ,n

α ) is
applied only in the interior cells (yellow in Fig. 2b). Repeat rl−1 times.

3. Average outgoing distributions from fine grid halos (Fig. 2c) to obtain f̃ C,n
α,out .

4. Reverse transport for averaged outgoing distributions, f̄ C,n
α,out :=T −1( f̃ C,n

α,out), and
overwrite those in the previous coarse grid time step, cf. Fig. 2d.

5. Repeat LBM update on coarse grid cells next to coarse-fine boundary only.
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This algorithm is computationally equivalent to the method by Chen et al. [2] but
tailored to the SAMR recursion that updates coarse grids in their entirety before
fine grids are computed. Because of the nonlinearity of the collision operator C it
becomes necessary under this paradigm to repeat the LBM update for those coarse
grid cells that share a face or corner with a fine grid.

4 Embedded structure handling

We represent non-Cartesian boundaries implicitly on the adaptive Cartesian grid by
utilizing a scalar level set function ϕ that stores the distance to the boundary surface.
The boundary surface it located exactly at ϕ = 0 and the boundary outer normal in
every mesh point can be evaluated as n =−∇ϕ/|∇ϕ| [3]. We treat a fluid cell as an
embedded ghost cell if its midpoint satisfies ϕ < 0.

In order to implement non-Cartesian boundary conditions with the LBM, we have
chosen to pursue a 1st order accurate ghost fluid approach that was already available
in AMROC [3]. In our technique, the density distributions in embedded ghost cells
are adjusted to model the boundary conditions of a non-Cartesian reflective wall
moving with velocity w before applying the unaltered LBM. The last step involves
interpolation and mirroring of ρ , u across the boundary to ρ ′ and ū and modification
of the macro velocity in the immersed boundary cells to u′ = 2w− ū, cf. [4]. From
the newly constructed macroscopic values the density distributions in the embedded
ghost cells are simply set to f eq

α (ρ ′,u′).
Real-world geometries are considered in AMROC as triangular surface meshes.

The computation of the level set distance information in every Cartesian cell mid-
point could principally be accomplished by simply iterating over the entire surface
mesh; yet, this would lead to detrimental performance for increasing problem size.
Instead, we employ a specially developed algorithm based on characteristic recon-
struction and scan conversion by Mauch [10] that is used to compute the distance
exactly only in a small band around the embedded structure.

The dynamics of multi-body systems undergoing interaction with the fluid are
modeled as sets of triangulated surface meshes configured in kinetic chains. The
dynamics of these mechanisms are solved by a recursive Newton-Euler method at
each time step [13]. Considering an arbitrary link with a coordinate frame located
at point P that is not coincident with its associated body’s center of mass, the force
and torque applied by the preceding link are(

F
τP

)
=

(
m1 −m[c]×

m[c]×Icm −m[c]×[c]×

)(
aP
α

)
+

(
m[ω]×[ω]×c

[ω]×(Icm−m[c]×[c]×)ω

)
. (9)

Here, we additionally define the total force and torque acting on a body, F= (FFSI +
Fprescribed) ·C xyz and τ = (τFSI + τprescribed) ·C αβγ respectively. Where C xyz and
C αβγ are the translational and rotational constraints, respectively. FFSI and τFSI are
determined for each body by integrating the fluid pressure on the triangular facets of
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Table 1 Kinematic parameters

A0 (cm) 7.1
c(cm) 5.1
d (cm) 0.25
β π/4
σt 0.628
σr 0.628
Φ 0
Ret 73, 370
Rer 100, 500
ρb (kg/m3) 5080
f (Hz) 0.15

Fig. 3 Model system consisting of two rigid elliptical sec-
tions connected by a hinge with torsion spring and damper.

the respective body’s surface mesh. Each surface mesh is associated with a kinetic
link in a chain that begins with a base link in the global coordinate frame. Links are
connected by joints that may be independently constrained in six degrees of freedom
relative to the preceding link. The evolution of the triangular surface mesh as well as
the velocity w in each node are communicated to the LBM fluid solver in dedicated
coupling time steps. The data exchange corresponds to the time step of an SAMR
level but this does not have to be the finest refinement level available, cf. [5].

5 Fluid-structure interaction verification

A canonical problem of fluid-structure interaction and wake prediction proposed by
Toomey & Eldredge [12] is selected for verification. This model, depicted in Fig. 3,
utilizes a system of two articulated rigid bodies connected by a torsion spring and
damper. The kinematics of the centroid of the driven wing are prescribed, while
the trailing body responds passively to the aerodynamic and inertial/elastic forces.
The principle unknown in this rigid body dynamics problem is the hinge angle θ .
The set of parametric kinematic equations (1)-(5) in [12] describe the motion of the
driven body. The parameters utilized in this work and in Case 1 of [12] to specify the
kinematics are given in Table 1. The mean and peak values of the dimensionless fluid
dynamic force, Fx,y = 2F∗x,y/(ρ

2
f c3), and moment, M = 2M∗/(ρ f f 2c4), generated

by the wing motion are presented in Table 2 for the rotational Reynolds numbers
Rer = 2πβσr f c2/(tanh(σr)ν) = {100,500}. The relative error between the results
of this work and the computational results in [12] evaluated over three periods of
motion is presented in Table 2. The used spatial resolution in [12] was ∆x/c =
0.013 and ∆x/c = 0.0032 for Rer = 100 and 500, respectively, while we have used
an adaptive mesh with up to three additional levels with finest spatial resolution
around the structure of ∆x/c= 0.0122 for both cases. Due to the time-explicit nature
of the LBM, our finest temporal resolution is respectively ∼ 113 and ∼ 28 higher
than in the computations in [12]. The good quantitative agreement of the LBM-
based predictions with those from the viscous vortex particle method adopted in
[12] provides verification for our fluid-structure coupling methodology.
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Table 2 Nondimensional mean and peak force
and moments

Rer = 100 Rer = 500
Mean Peak Mean Peak

Fx 2.63 498.0 3.77 498.0
∆Fx (%) -2.59 4.4 -3.4 4.4

Fy 31.0 228.0 58.0 235.0
∆Fy (%) 3.33 5.07 5.45 3.98

M -2.50 184.0 0.77 184.0
∆M (%) -3.85 -3.66 -3.75 -4.17

Fig. 4 Left: Computed vorticity field at t/T= 0.6,
0.8 for Rer = 500

Our simulation results of wing deflection and vorticity production at Rer = 500
are depicted in Fig. 4. Figure 5 displays the hinge deflection angle predicted by this
simulation over three periods versus the experimental result from [12]. Note that the
rotational Reynolds number in the experiment is slightly larger with Rer = 2200,
while the values 100 and 500 were chosen in [6, 12] to reduce the required spatial
resolution. Nevertheless, wing behavior and computationally predicted loads are
well comparable to the experiment, providing validation for our approach.

6 Simulation of wakes behind wind turbines

Utilizing the developed LBM solver for moving geometries, we have carried out
a simulation campaign to test the suitability of the overall approach to simulate
the flow fields created by wind turbines. We have built a tailored flexible surface
mesh model of a Vestas V27 turbine. The V27 has a rotor diameter of D = 27m, a
tower height of ∼ 35m and achieves its maximal energy output of 225kW at wind
velocities from 14 to 25m/s. A prototypical ground topology is also included into
the surface mesh model that represents the time-dependent geometry with∼ 23,300
facets per turbine. It is assumed that the inflow wind direction is always in direction
of the turbine middle axis and the pitch blade angle is at 0 degree.

Figure 6 shows a snapshot from a first test simulation with three additional levels
refined by the factors r1,2 = 2 and r3 = 4. Displayed are the Cartesian cells in the
rotor midplane and the moving structure colored by the length of the prescribed
velocity vector, which illustrates how the mesh is following the rotating structure.
The effective resolution around rotor and tower is ∆x = 3.125cm.

The setup investigated more in depth considers three V27 turbines and corre-
sponds to the U.S. Department of Energy’s Scaled Wind Farm Technology (SWIFT)
facility. Two turbines are positioned 3D apart in the wind direction; the third tur-
bine is placed 5D downstream exactly in the rotor middle axis of the first one. The
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Fig. 5 Hinge deflection angle over time. Experimental re-
sults (–); Current (- -).

Fig. 6 Snapshot of SAMR Mesh
in rotor midplane.

Fig. 7 2D Color planes depict the length of the vorticity vector for 7m/s (left) and 25m/s (right)
inflow velocity. Simulated physical time is t ≈ 37s.

tower center lines are perpendicular to the xy-plane and their locations are (0,0),
(135m,0), and (−5.65m,80.80m). For wind in the x-direction, this setup allows
direct comparison of the wake fields created by two interacting turbines and a sin-
gle, isolated turbine. Our computations use a domain of 448m× 240m× 100m,
which is discretized with a base resolution of 448× 240× 100 cells and refined
isotropically by the factors 2,2,4 (resolution near the rotors is ∆x = 6.25cm). Dy-
namic refinement of the wake field is permitted up to level 2, yielding a resolution
in the wake of ∆x = 25cm.

Two simulations have been carried out: a case with u1 = 7m/s inflow velocity
and all turbines operating at 15rpm and a simulation with u1 = 25m/s and 43rpm,
which corresponds to the maximal rotation rate under normal operations. 94,224
highest level iterations to a time of t = 40s were computed. Figure 7 depicts the
wake fields for both cases after t ≈ 37s simulated time. The color coding in both
graphics uses the same scale and it is apparent that vorticity production is consid-
erably increased in the second configuration. In both simulations, the diameter of
the main vortex systems are only sightly increasing. Overall, vorticity seems well
preserved and a strong influence of the tower on the wake field can be seen. The
difference between the single- and the two-turbine wake is striking.

A quantitative analysis of characteristic flow field statistics is provided for the
case u1 = 25m/s and 43rpm. This simulation is continued for another 23,555 iter-
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Fig. 8 Analysis of the mean flow field in
selected locations. Left, upper: Normalized
averaged velocity in wind direction; left,
lower: averaged dynamic pressure; right:
sensor locations in array.

ations for the interval [40s,50s] to compute time-averaged values in selected point
locations arranged in lines 50m apart at z = 37m. The sensor positions are indicated
by the red spheres in the right graphic of Fig. 8. The left graphics depict the deficit in
the normalized mean velocity component in the x-direction and the mean dynamic
pressure due to the presence of the turbines. The introduction of an additional ve-
locity deficit by the second turbine that is decreasing with increasing downstream
distance can be clearly inferred. On the other hand, an increase in average pressure
in front of the second turbine (at x = 100m) is also visible.

The used SAMR grids and total number of cells on each level for this simulation
at t = 40s are given in Table 3. Note that a corresponding uniform mesh would
require 44 ·109 cells and take four times more time steps than level 2, which contains

Level Grids Cells
0 3,234 10,752,000
1 11,921 21,020,256
2 66,974 102,918,568
3 896 5,116,992

Table 3 Grids and cells at te.

the majority of cells. The computation of the statistics
interval from t = 40s to t = 50s on 288 cores on a cluster
of Intel-Ivybridge CPUs required just 38.5h wall clock
time (11,090h CPU), which gives evidence for the prac-
tical feasibility of carrying out these computations on
compute clusters of moderate size.

7 Conclusions

The prototype of a dynamically adaptive, three-dimensional lattice-Boltzmann method
for simulating the wake fields behind realistic, rotating wind turbines has been de-
veloped. First validation has been achieved for a canonical FSI problem from [12].
We have confirmed that our approach is able to simulate the propagation of wake
fields created by the rotation of accurate Vestas V27 wind turbine rotor geometry,
including the interaction with the tower, with apparent good quality and comparably
moderate computational costs.
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Immediate future work will concentrate on validating the approach for available
laboratory benchmarks, e.g., the Mexico wind tunnel experiments [11] and then to
consider the dynamic elastic response of the blades in the turbine model. Further
on, it is planned to incorporate enhanced wall-near treatment approaches into the
LBM for turbulent flows. For cases that fully resolve turbulent boundary layers,
the damping of the Smagorinsky constant by the van Driest approach can be easily
implemented, cf. [14]; for high Reynolds number situations, in which accurate res-
olution of the boundary layer is prohibitively expensive with a Cartesian method, a
wall function model will be implemented. The consistent integration of a wall func-
tion model into the LBM with Smagorinsky large-eddy simulation approach has
been demonstrated by Malaspinas & Sagaut [9].
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