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Abstract

The approximation of transient detonation waves requires numerical methods that
are able to resolve a wide range of different scales. Especially the accurate consid-
eration of detailed chemical kinetics is extremely demanding. This thesis describes
an efficient solution strategy for the Euler equations of gas dynamics for mixtures
of thermally perfect species with detailed, non-equilibrium reaction that tackles the
problem of source term stiffness by temporal and spatial dynamic mesh adaptation.
All gas dynamically relevant scales are sufficiently resolved.

The blockstructured adaptive mesh refinement technique of Berger and Colella
is utilized to supply the required resolution locally on the basis of hydrodynamic
refinement criteria. This adaptive method is tailored especially for time-explicit
finite volume schemes and uses a hierarchy of spatially refined subgrids which are
integrated recursively with reduced time steps. A parallelization strategy for dis-
tributed memory machines is developed and implemented. It follows a rigorous
domain decomposition approach and partitions the entire grid hierarchy.

A time-operator splitting technique is employed to decouple hydrodynamic trans-
port and chemical reaction. It allows the separate numerical integration of the ho-
mogeneous Euler equations with time-explicit finite volume methods and the usage
of an time-implicit discretization only for the stiff reaction terms. High-resolution
shock capturing schemes are constructed for the homogeneous Euler equations with
complex equation of state. In particular, a reliable hybrid Roe-solver-based method
is derived. The scheme avoids unphysical values due to the Roe linearization and uti-
lizes additional numerical viscosity to stabilize the approximation of strong shocks
that inherently appear at the head of detonation waves. In different test config-
urations it is shown that this hybrid Roe-type method is superior for detonation
simulation to any other method considered.

Large-scale simulations of unstable detonation structures of hydrogen-oxygen
detonations run on recent Beowulf clusters demonstrate the efficiency of the entire
approach. In particular, computations of regular cellular structures in two and
three space dimensions and their development under transient conditions, e.g. Mach
reflection and diffraction, are presented. The achieved resolutions go far beyond
previously published results and provide new reference solutions.



Parallele Adaptive Simulation Mehrdi-
mensionaler Detonationsstrukturen

Die Approximation transienter Detonationswellen erfordert numerische Verfahren,
die über die Fähigkeit verfügen, einen großen Bereich verschiedener Skalen aufzulö-
sen. Insbesondere die Berücksichtigung detaillierter Reaktionskinetik ist außeror-
dentlich schwierig. In dieser Dissertation wird eine effiziente Lösungsstrategie für die
Eulergleichungen der Gasdynamik für Mischungen thermisch perfekter Spezies mit
detaillierter Nichtgleichgewichtschemie vorgeschlagen, die das Problem numerisch
steifer Quellterme mittels dynamischer zeitlicher und örtlicher Gitteradaption angeht.
Alle gasdynamisch relevanten Skalen werden hinreichend aufgelöst.

Die blockstrukturierte Gitteradaptionstechnik nach Berger und Collela wird ver-
wendet, um die lokal erforderliche Auflösung anhand hydrodynamischer Verfeine-
rungskriterien bereitzustellen. Diese Adaptionsmethodik ist insbesondere auf zei-
texplizite Finite-Volumen-Verfahren zugeschnitten und verwendet eine Hierarchie
örtlich verfeinerter Untergitter, die in rekursiver Art und Weise mit verfeinerten
Zeitschritten integriert werden. Eine Parallelisierungsstrategie für Maschinen mit
verteiltem Speicher wird entwickelt und umgesetzt. Die Strategie basiert auf einem
rigorosen Gebietszerlegungsansatz, der zu einer Aufteilung der gesamten Hierarchie
führt.

Die Zwischenschrittmethode wird verwendet, um die hydrodynamischen Trans-
portvorgänge von der chemischen Reaktion abzukoppeln. Die Methode erlaubt die
separate numerische Integration der homogenen Eulergleichungen mit zeitexpliziten
Finite-Volumen-Verfahren und die Verwendung einer zeitimpliziten Diskretisierung
für die steifen Reaktionsterme. Für die Eulergleichungen mit komplexer Zustands-
gleichung werden hochauflösende Shock-Capturing-Schemata konstruiert. Im Beson-
deren wird ein hybrides Roe-Löser-basiertes Schema hergeleitet. Das Verfahren
vermeidet unphysikalische Werte aufgrund der Roe-Linearisierung und verwendet
zusätzliche numerische Viskosität zur Stabilisierung der Approximation starker
Schocks, welche Detonationenwellen zwangsläufig vorausgehen. In verschieden Test-
konfigurationen wird die Überlegenheit des hybriden Roe-Verfahren für Detonations-
probleme gegenüber anderen Verfahren aufgezeigt.

Umfangreiche Simulationen instabiler Detonationstrukturen von Wasserstoff-
Sauerstoff-Detonationen, die auf aktuell gebräuchlichen Beowulf-Clustern gerech-
net wurden, demonstrieren die Effizienz des gesamten Ansatzes. Im Besonderen
werden Berechnungen regulärer zellularer Strukturen in zwei und drei Raumrich-
tungen, sowie ihre Veränderung unter veränderlichen Bedingungen, z.B. Machsche
Reflexion und Diffusor, präsentiert. Die erzielten Auflösungen gehen wesentlich über
bisher veröffentlichte Resultate hinaus und lieferen neue Referenzlösungen.
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Chapter 1

Introduction

Reacting flows have been a topic of on-going research since more than hundred years.
The interaction between hydrodynamic flow and chemical kinetics can be extremely
complex and even today many phenomena are not very well understood. One of
these phenomena is the propagation of detonation waves in gaseous media. While
the classical Chapman-Jouguet theory [41, 98] predicts the average propagation ve-
locity almost correctly, no theory exists up to now, which describes the internal
flow structure satisfactory. The famous ZND theory, proposed independently by
Zel’dovich [209], von Neumann [200] and Döring [57], is widely believed to describe
the one-dimensional detonation structure correctly, but already early experiments
[55, 199, 181] uncovered that the reduction to one space dimension is not even justi-
fied in long tubes. It was found that detonation waves usually exhibit instationary
multi-dimensional sub-structures and do not remain planar. But the experimental
analysis of these transient sub-structures is difficult. Numerical simulation of the
governing equations can be an alternative here. Recent high performance computers
allow direct simulations of detonations that provide detailed insight into the flow
field far beyond previous experimental results.

1.1 Detonation Structure

A detonation is characterized by a configuration of a discontinuous hydrodynamic
shock wave followed by a smooth region of decaying combustion. The shock causes
an adiabatic compression, which rises the temperature of the combustible mixture
above the ignition limit. After the ignition, it takes an induction time of a few
microseconds, until the reactants start to react rapidly to the constant equilibrium
state. The chemical reaction results in an energy release that drives the shock wave
forward. In a self-sustaining detonation, shock and reaction zone propagate essen-
tially with an identical wave speed, which is approximately equal to the Chapman-
Jouguet (CJ) velocity. The CJ value is the minimal velocity of a discontinuous
wave separating reactants and equilibrium products and can be calculated from the
Chapman-Jouguet theory in advance. The CJ value is approximately the limit of

1
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convergence in unconfinement. In the CJ point, shock and reaction front would be
in perfect thermo- and hydrodynamic balance. But smallest transverse oscillations
are sufficient to destroy the equilibrium. In the multi-dimensional case, inherently
unstable modes do exist and minor disturbances are enough to trigger the breaking
of the planar structure. These instabilities lead to the creation of instationary shock
waves propagating perpendicular to the detonation front. A complex flow pattern
is formed around each point, where the detonation front is intersected by a trans-
verse shock. In the vicinity of such triple points, the chemical reaction is enhanced
drastically giving rise to an enormous local energy release. For some particular con-
figurations very regular triple point patterns, so-called detonations cells, have been
observed. The accurate representation of triple points is essential for safety analy-
sis, but also in technical applications, where shock-induced combustion leads to the
formation of detonation waves, e.g. in the pulse detonation engine.

1.2 Detonation Simulation

The governing equations of detonation waves in premixed inviscid gases are the
multi-component Euler equations with chemically reactive source terms. These
equations can be written as an inhomogeneous conservation law of hyperbolic type.
The appropriate discretization technique for discontinuous solutions like they typi-
cally occur in detonation simulation is the finite volume (FV) approach. Only FV
methods satisfy the essential property of discrete conservation in the homogeneous
case and are guaranteed to converge toward weak solutions. Only the FV approach
is capable to approximate the propagation velocity of the shock at the head of a
detonation wave correctly. But the reaction in a detonation wave introduces ad-
ditional temporal and spatial scales into the Euler equations. While a detonation
propagates with a supersonic velocity between 1000 m/s and 2000 m/s, the distance
between leading shock and reaction front is typically in the millimetre range. Source
terms that involve significantly shorter scales than the homogeneous equations are
often said to be stiff [92, 134, 15]. They require meshes with an extraordinarily
high resolution. If a mesh is too coarse to represent the influence of the source
term correctly, every reasonable FV scheme will produce a physically meaningful
approximation, but unfortunately it is not the sought weak entropy solution of the
original inhomogeneous equations, but of the same conservation law with a differ-
ent source. Some researchers, e.g. Bao and Jin [15] or Helzel [92], have proposed
underresolved schemes that approximate the correct detonation speed on relatively
coarse meshes, but these approaches use special assumptions and are restricted to
simplified reaction models (compare Sec. 3.1.1).

In particular, the shock of a detonation wave with detailed chemical reaction
can be very sensitive to changes of the reaction behind, and if the mesh does not
resolve all reaction details accurately, the Riemann Problem at the detonation front
is changed remarkably leading to an incorrect detonation speed [51]. We make a
simple discretization test in order to illustrate, how fine computational grids for
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Figure 1.1: Representation of characteristic quantities of the self-sustaining
hydrogen-oxygen detonation of Fig. 3.4 on grids with different mesh widths. The
dots represent the values in the middle of a finite volume. The abscissae display the
distance behind the detonation front in mm.

detonation simulations with detailed non-equilibrium chemistry in fact have to be.
Fig. 1.1 displays the exact solution of a one-dimensional CJ detonation discretized
with different FV grids. The chemical reaction in this example is modeled with the
non-equilibrium reaction mechanism for hydrogen-oxygen combustion tabulated on
page 225. Beside H2, O2 and H2O the mechanism considers the species H, O, OH,
HO2 and H2O2. The inert gas argon is only a diluent. As characteristic length
scale we utilize the induction length lig, the distance between leading shock and
measurable reaction.

The upper row of Fig. 1.1 shows the discretizations of total density ρ and mass
fraction YH2O := ρH2O/ρ, which is the quotient between the partial density of H2O
and ρ, for a mesh width of 1 finite volume per induction length (1 Pts/lig). Both
functions are in principle correctly reproduced, but the maxima in the graphs of
the highly reactive radicals H, O can not be captured even with a twice as fine
resolution (compare left picture in lower row). This requires at least 4 Pts/lig, but
even with such a fine grid the maximum of the intermediate product H2O2 is not
correct. Approximately 5 to 6 Pts/lig are necessary to discretize all quantities of the
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detonation wave in agreement with the exact solution. As numerical methods natu-
rally introduce additional errors, it can be expected that the correct approximation
of this detonation requires a resolution of at least 7 to 8 Pts/lig. If a time-explicit
FV shock-capturing scheme would be used to approximate the described detonation
wave on a grid of 8 Pts/lig, the maximal time step due to numerical stability would
be approximately 0.06µs. This is above a reasonable time step for the evaluation
of the reaction terms. The numerical approximation of the source terms in this
example with a sufficient accuracy (compare Sec. 4.10.2) requires at least at the
reaction front a time step between 0.01 and 0.02µs. In a triple point significantly
smaller values can be expected.

The discretization of typical combustion devices with a length of several me-
tres with such fine uniform grids can easily require more than 107 FV cells for
two-dimensional simulations and more than 109 cells in the three-dimensional case.
As multi-dimensional detonations are intrinsically unstable, numerical simulations
have to be instationary and usually would involve several ten thousand time steps.
Consequently, uniform meshes are far too expensive and multi-dimensional deto-
nation simulations necessarily have to employ sophisticated dynamically adaptive
mesh refinement techniques [79, 78, 59].

1.3 Contents of this Thesis

In this thesis, we describe an efficient solution strategy for the Euler equations for
mixtures of thermally perfect gases with detailed reaction terms that tackles the
problem of source term stiffness by temporal and spatial dynamic mesh adaptation.
Reliable high resolution shock-capturing schemes are applied as an elementary ingre-
dient to reduce the number of FV cells to the minimum. A time-operator splitting
technique [96, 175] with local time step adjustment (sub-cycling) is utilized to ac-
count for temporal scales in the source term that do not influence the hydrodynamic
flow remarkably, but need to be resolved due to the local temporal stiffness. The
operator splitting approach allows the derivation of various time-explicit FV meth-
ods for the homogeneous generalized Euler equations separately and to incorporate
the reaction terms as ordinary differential equations (ODEs) subsequently. As the
numerical integration of ODEs with automatic time step adjustment is a standard
task today [56, 85, 106] our focus lies especially on the shock-capturing methods
for the hydrodynamic flow. Special emphasis is put on the Roe approximate Rie-
mann solver [156, 158] and the prevention of its various inaccuracies and failures. In
particular, a hybrid Roe-solver-based method is constructed that allows the reliable
simulation of detonation waves. Based on different test configurations it is shown,
that this hybrid method is superior to all other schemes considered, especially in
the multi-dimensional case.

The blockstructured adaptive mesh refinement (AMR) algorithm of Berger and
Collela [21] is applied to construct non-uniform meshes dynamically and to achieve
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the required high resolution of the hydrodynamic flow. The adaptation is based
on hydrodynamic refinement criteria, e.g. scaled gradients and a heuristic error
estimation for the entire splitting scheme. The AMR algorithm is tailored for time-
explicit FV methods and utilizes a hierarchy of spatially refined subgrids that are
integrated recursively with reduced hydrodynamic time steps. The AMR approach
requires only logically rectangular data structures and allows various technical opti-
mizations on super-scalar processors. A dynamic parallelization strategy tailored for
distributed memory machines is developed [145]. We describe our own implementa-
tion AMROC [53], which was the basis for the large-scale computations throughout
this thesis.

Instationary multi-dimensional detonation structure computations for hydrogen-
oxygen mixtures diluted with argon demonstrate the efficiency of the entire approach
in practice. In particular, simulations of regular cellular detonation structures in
two and three space dimensions and their development under transient conditions
are presented. The achieved resolutions go far beyond previously published results
[138, 59, 78] and provide new reference solutions.

Detailed Summary of the Chapters

We start with a detailed introduction of the governing equations of detonation cal-
culation in Chap. 2. The appropriate equations are the Euler equations for mixtures
of thermally perfect gases with reaction terms in conservation-law form [73, 204]. In
the first part of the chapter, the most important theoretical facts on conservation
laws are briefly recalled. Emphasis is put on a condensed presentation of the results
of the highly developed analysis of the one-dimensional Riemann Problem for the
homogeneous case [171, 82, 117]. Throughout the rest of the chapter we discuss the
multi-component Euler equations with complex equations of state from a mathe-
matical point of view. We give a comprehensive description of the multi-component
model and discuss the equation of state and its solvability in detail. We prove various
mathematical properties, like hyperbolicity or rotational invariance for the general-
ized equations and obtain various results necessary for the construction of numerical
methods by the way. We analyze the solution of the homogeneous Riemann Problem
for generalized Euler equations and find its structure to be in principle identical to
the standard case [109, 108]. The profound understanding of the one-dimensional
Riemann Problem provides the theoretical basis for the construction of a reliable
approximate Riemann solver as a key ingredient for detonation simulation.

In Chap. 3 we derive exact stationary one-dimensional solutions of the inho-
mogeneous Euler equations under the assumptions of the classical ZND detonation
model [209, 200, 57]. We start with the derivation of the solution of the simplest
model-problem with just one single irreversible reaction between two calorically
perfect gases. The results are then extended to an arbitrary number of thermally
perfect gases with detailed reaction mechanism. The exact one-dimensional solu-
tions provide reference data and will be utilized as reproducible initial conditions in
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the Chaps. 6 and 7. In the last part of the chapter we give an introduction into the
inherently unstable nature of detonation waves in multiple space dimensions. We
explain the hydrodynamic structure of multi-dimensional detonation waves, how it
is known from experiments [176, 178]. As multi-dimensional detonation waves are
intrinsically unstable, this basic flow structure is the core of the physical interpre-
tation of the numerical results in the Chaps. 6 and 7.

The basic numerical methods are developed in Chap. 4. We derive different FV
discretizations for inhomogeneous conservation laws on Cartesian grids and discuss
their applicability to detonation wave simulation. We introduce our basic solution
method, the operator splitting technique or method of fractional steps. Then we de-
rive one-dimensional time-explicit high resolution FV methods for the homogeneous
case. After an introduction to upwinding we present the Flux-Vector Splitting and
the Flux-Difference Splitting approach in general and explain briefly two possible
higher-order extensions: The MUSCL variable extrapolation of Van Leer [191, 195]
and the Wave Propagation Method of LeVeque as a fully multi-dimensional scheme
[119, 107].

The majority of Chap. 4 is concerned with the application of the different
shock-capturing approaches to multi-component Euler equations for thermally per-
fect gases. After a discussion of discrete boundary conditions and the practical
solution of the complex equation of state, the split fluxes of Steger-Warming- and
Van Leer-type are presented [169, 127, 109, 84]. We construct the difficult Roe lin-
earization in detail and present possible entropy corrections [87, 89]. Finally, the
Harten-Lax-Van Leer (HLL) method [91, 62] is introduced. We discuss the appli-
cation of the two higher-order methods to multiple thermally perfect components
and develop a suitable variable reconstruction. Then an overview on the various
problems and failures, which can arise in shock-capturing schemes, is given. Most
of the problems are associated to the Roe method and have to be cured in a reliable
Roe solver for detonation simulation. We demonstrate that artificial oscillations at
strong shock waves [154, 9], that typically would appear at the head of detonation
waves [150, 14], can be moderated (or in case of the carbuncle phenomenon avoided
completely) by utilizing an entropy correction, which adds artificial viscosity and
by modifying the amount of viscosity appropriately [160]. Further on, we describe
how unphysical total and energy densities due to the Roe linearization [62] can be
circumvented by switching to the robust HLL scheme. Finally, we present a flux
modification based upon the properties of the exact solution that ensures the pos-
itivity of the partial densities of a Godunov-type method in the multi-component
case without an additional scheme [108]. All corrections are combined in a complex
hybrid Roe-type method that is shown to be superior for detonation simulations to
all tested upwind methods in Chap. 6. The last part of the chapter discusses briefly
the numerical integration of stiff reaction terms from a practical point of view.

The dynamically adaptive algorithm is developed in Chap. 5. After an overview
on adaptive mesh refinement in general, the blockstructured AMR algorithm of
Berger and Collela is derived [21]. We start with a detailed explanation of the
AMR method on a single-processor machine and extend it to parallel distributed
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machines subsequently. The presentation is topologically oriented and allows the ex-
act derivation of the parallel algorithm from the serial one under the chosen domain
decomposition strategy. In our parallelization approach the entire AMR hierarchy
is separated and higher-level subgrids are associated to the same node as the under-
lying base grid. This strategy reduces the communication overhead and simplifies
the implementation [145].

A topological notation is employed in order to allow a condensed formulation
of the AMR sub-routines in pseudo-code. The exactness of the formulation ensures
that the presentation could be used as a guide-line for practical implementations.
In particular, the parallelization of the flux correction at hanging nodes, which is
indispensable for FV methods, and the setting of internal ghost cell values are pre-
sented in detail. Load-balancing techniques based on generalized space-filling curves
[145, 159], standard refinement criteria [21] and the combination of flagged cells to
rectangular subgrids are briefly described [19]. We explain the object-oriented de-
sign of our own AMR code AMROC [53] and contrast it with other implementations.
Finally, two highly adaptive examples for standard Euler equations are presented.
Intentionally, a Mach reflection and a shock wave diffraction have been chosen to
introduce these hydrodynamic flow structures in the non-reactive case. Both setups
provide basic understanding for the physical interpretation of detonation waves un-
der similar conditions that are studied in the last section of Chap. 7. Benchmark
computations are carried out allowing a rough estimation of the high efficiency of
the AMROC code.

In Chap. 6 all hydrodynamic transport schemes are very thoroughly tested
within the operator splitting for the simplified detonation model of Chap. 3. We
start with the validation of the different first-order upwind schemes within the split-
ting approach in one space dimension. A stable and an unstable test configuration
near the limit of absolute stability are considered. It is demonstrated that artificial
oscillations can corrupt the solution significantly, if accurate Riemann solvers are
employed. The behavior is analogously to that already observed in Chap. 4 at strong
shock waves and it is shown that the problem can be cured within the Roe scheme by
adding numerical viscosity via the entropy fix. We demonstrate the enormous resolu-
tion improvements by second-order reconstruction and by utilizing quasi-stationary
detonation configurations, whenever possible. Two-dimensional cellular structure
simulations show the superiority of the hybrid Roe-type method especially in the
multi-dimensional case. In the last section of the chapter, we employ our most effi-
cient FV scheme to verify the parallel AMR algorithm with large-scale computations
of three-dimensional cellular structure.

We apply the entire framework to simulate two- and three-dimensional unstable
cellular detonation structures with detailed chemistry in Chap. 7. All simulations
have been carried out with dynamically adaptive meshes with two to five refinement
levels on recent parallel machines of moderate size, e.g. clusters of standard personal
computer hardware. The regular cellular structure of a self-sustaining CJ detona-
tion for H2 : O2 : Ar with molar ratios 2 : 1 : 7 at T0 = 298 K and p0 = 6.67 kPa
in two- and three-dimension is simulated. The configuration is identical to the one
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used in the test of Fig. 1.1 and a resolution study (11 to 45 Pts/lig) in the two-
dimensional case verifies the estimation for the minimal necessary resolution. A
reference solution with 45 Pts/lig is presented. This resolution is remarkably finer
than any previously published results [138, 59, 78] and allows the detailed analysis
of the reinitiation process at the end of a detonation cell. In particular, an unreacted
region is formed. Its burning sends out hydrodynamic shock waves that influence
the wave patterns around the triple points almost for 2/3 of the detonation cell.
The given wave analysis is the most detailed one that has been presented so far
[113, 138]. Further on, the CJ detonation is extended to three space dimensions.
To our best knowledge, this computation (17 Pts/lig) is the only successful simula-
tion of three-dimensional cellular detonation structure with detailed chemistry up
to now. Finally, two complex two-dimensional problems are tackled with highly
adaptive setups: the Mach reflection of a CJ detonation wave at a wall and its
diffraction when propagating out of a rectangular tube into an unconfined region.
Except an initial pressure of p0 = 10.0 kPa the configuration in the unreacted gas is
identical to the one previously used. All simulations are sufficiently resolved (20 to
25 Pts/lig) to display the development of the cellular structure under transient condi-
tions. The numerical results are in perfect qualitative agreement with experimental
observations [7, 163] and provide detailed insight into the complex thermo- and
hydrodynamic combustion processes. In particular, the experimentally measured
critical tube width of approximately 10 detonation cells in rectangular channels is
reproduced in the diffraction simulations. Conclusions and an outlook on possible
future work in the last chapter close the presentation.



Chapter 2

Governing Equations

Before we consider the chemically reactive Euler equations for mixtures of thermally
perfect gases in Sec. 2.3, we recall briefly some elementary facts of the theory of
hyperbolic conservation laws that is presented more in detail for instance in the text
books of Godlewski and Raviart [82], Smoller [171], LeVeque [117] and Kröner [105].
Sec. 2.1 introduces generalized weak solutions and the concept of entropy. Sec.
2.2 summarizes the analysis of the one-dimensional Riemann Problem (RP) for the
general homogeneous case. The exact solution of the linear RP in Sec. 2.2.1 is the
basis of the linearized Riemann solver of Roe-type in Sec. 4.6.1.

Sec. 2.3 presents the reactive Euler equations in conservation-law form. In
contrast to typical combustion text books, e.g. Williams [204] or Fickett and Davis
[73], we discuss the equations from a mathematical point of view. We specify the
space of admissible states and formulate typical boundary conditions. Sec. 2.3.2
gives a comprehensive description of the multi-component model. In Sec. 2.3.3 we
introduce the implicit equation of state for mixtures of thermally perfect species
and discuss its mathematical solvability in detail. The frozen speed of sound for
the gas-mixture is derived in Sec. 2.3.4. Utilizing the deduced mixture quantities
we prove the hyperbolicity and the rotational invariance of the generalized Euler
equations in Sec. 2.3.5. The proof of hyperbolicity requires the Jacobians of the
flux functions and the corresponding matrices of right eigenvalues and their inverses.
These matrices, which are required for the construction of most upwind schemes in
Chap. 4, are notated in appendix A.1. In Sec. 2.3.6 we analyze the homogeneous RP
for generalized Euler equations for mixtures of thermally perfect gases1. Although
its solution structure is in principle identical to the standard case of Euler equations
for a single polytropic gas, no complete set of Riemann invariants can be derived
[109, 108].

The source terms of detailed chemical reaction are introduced in Sec. 2.3.7.
The last subsection mentions alternative formulations of the Euler equations and
discusses briefly their equivalence with the chosen conservation-law form.

1The specific heats cpi(T ), cvi(T ) of thermally perfect gases are temperature-dependent.

9
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2.1 Hyperbolic Conservation Laws with

Source Terms

We consider systems of time-dependent nonlinear partial differential equations (PDEs)
of first order that take the following structure:

∂

∂t
q(x, t) +

d∑
n=1

∂

∂xn

fn(q(x, t)) = s(q(x, t)) , x ∈ Rd , t > 0 . (2.1)

Herein, t ∈ R+
0 denotes the time and x = (x1, . . . , xd)

T ∈ Rd denotes a point in
Cartesian coordinates. The vector-valued mapping q = q(x, t) from D := {(x, t) ∈
Rd × R+

0 } into the space of admissible states S ⊂ RM is called vector of state. The
components of the vector of states are physical meaningful quantities, like mass,
momentum or energy, that have to be conserved because of fundamental physical
principles. The space of admissible states for generalized Euler equations will be
discussed in detail in Sec. 2.3.

The vector-valued functions fn(q(x, t)), n = 1, . . . , d and s(q(x, t)) are assumed
to be continuously differentiable, i.e. fn(q), s(q) ∈ C1(S,RM). The functions fn(q)
are called flux functions, s(q) is a source term.

Definition 1 (Hyperbolicity). Let An(q) = ∂fn(q)/∂q denote the Jacobian ma-
trix of flux function fn(q). System (2.1) is called hyperbolic, if the matrix
A(q, ν) = ν1A1(q)+ · · ·+νdAd(q) has M real eigenvalues λ1(q, ν) ≤ ... ≤ λM(q, ν)
and M linear independent right eigenvectors rm(q, ν), m = 1, . . . ,M defined by
A(q, ν) rm(q, ν) = λm(q, ν) rm(q, ν) for all admissible states q ∈ S and
ν = (ν1, . . . , νd) ∈ Rd with |ν1|+ · · ·+ |νd| > 0.

In order to achieve unique solutions the hyperbolic system (2.1) must be augmented
with initial conditions and appropriate boundary conditions, if the solution has to
be restricted to a bounded subset Ω ⊂ Rd. The simplest problem is the Cauchy
Problem, for which (2.1) holds true and initial conditions are specified by

q(x, 0) = q0(x) , x ∈ Rd . (2.2)

From the theory of hyperbolic conservation laws it is well-known that in the general
case of nonlinear flux functions fn(q) classical solutions, i.e. q(x, t) ∈ C1(D,S), of
the Cauchy Problem (2.1), (2.2) exist only for small times, even for continuously
differentiable initial data q0(x) ∈ C1(Rd, S) [130, 105]. It is the inherent behavior of
nonlinear hyperbolic conservation laws that smooth initial data may be steepened
to discontinuities (see for instance [130] or [117] for scalar one-dimensional examples
with s ≡ 0). Beyond the point of “wave breaking” classical solutions do not exist
anymore and a more general formulation with less differentiability is required instead
of (2.1).
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2.1.1 Weak Solutions

The basic idea in order to define generalized weak solutions of (2.1), (2.2) is to
multiply (2.1) by an appropriate test function ϕ = ϕ(x, t) and to integrate the
result over the entire domain D.

Definition 2 (Weak solutions). Let q0 ∈ L∞loc(Rd, S). A function q ∈ L∞loc(D,S)
is called a weak solution of the Cauchy Problem (2.1), (2.2) if q satisfies

∞∫
0

∫
Rd

[
∂ϕ

∂t
· q +

d∑
n=1

∂ϕ

∂xn

· fn(q)− ϕ · s(q)

]
dx dt+

∫
Rd

ϕ(x, 0) · q0(x) dx = 0 (2.3)

for any function ϕ ∈ C1
0(D,S).

In Def. 2 L∞loc denotes the space of locally bounded measurable functions and C1
0 is

the space of continuously differentiable functions with compact support. See [82]
for further explanations. Another integral form of (2.1) that may also be utilized to
define weak solutions is∫

Ω

q(x, t+ ∆t) dx−
∫
Ω

q(x, t) dx

+
d∑

n=1

t+∆t∫
t

∫
∂Ω

fn(q(o, t))σn(o) do dt =

t+∆t∫
t

∫
Ω

s(q(x, t)) dx , (2.4)

cf. [172]. Herein, σn denotes the n-th component of n, the outward unit normal
vector of ∂Ω, the boundary of the problem domain Ω. Eq. (2.4) may be derived
from expression (2.3) by utilizing

ϕ̄(x, t) =

{
1 , (x, t) ∈ Ω× [t, t+ ∆t] ,
0 , otherwise

as test function in (2.3). Formally, Def. 2 rules out ϕ̄ as a valid test function, but
note that ϕ̄ may be approximated arbitrarily well by smooth functions satisfying
ϕ ∈ C1

0(D,S).

2.1.2 Entropy Solutions

The class of weak solutions of (2.1), (2.2) is in general to large to guarantee unique-
ness (see [82] for an example). On the other hand, only one solution can be physically
correct and this particular solution must be the limit lim

ε→0
qε = q almost everywhere

in D of the extended viscous system

∂qε

∂t
+

d∑
n=1

∂fn(qε)

∂xn

− ε
d∑

n=1

∂2qε

∂x2
n

= s(qε) , x ∈ Rd , t > 0 (2.5)
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with Cauchy initial data qε(x, 0) = q0ε(x) for lim
ε→0

q0ε = q0(x). System (2.5) is

parabolic and we assume that a classical unique solution qε exists that is a C2

function of x in Rd and a C1 function of t in R+ for each ε > 0. Note, that for
particular hyperbolic systems viscous extensions might exist which are physically
more meaningful than Eq. (2.5). In particular for gas dynamics elaborated viscous
extensions have been proposed. A brief overview of possible viscous extensions of
the Euler equations oriented along the Navier-Stokes equations and their equivalence
with (2.5) can be found in [82].

The definition of the physically relevant weak solution as the vanishing viscosity
limit is appropriate for theoretical purposes, but it is inadequate for the construction
of numerical methods. In practice, we want schemes that approximate the correct
solution with minimal computational expense and do not reproduce the limiting pro-
cess ε→ 0 numerically. The mathematical concept of entropy has been introduced
to obtain criteria that ensure the approximation of the physically correct solution
without any auxiliary viscous problems.

Definition 3 (Entropy). Assume that S is convex. A twice continously differ-
entiable convex function η ∈ C2(S,R) is called an entropy of (2.1), if there exist
continously differentiable entropy fluxes ψn ∈ C1(S,R) that satisfy

∂η(q)

∂q

T

· ∂fn(q)

∂q
=
∂ψn(q)

∂q

T

, n = 1, . . . , d (2.6)

for all q ∈ S.

Multiplying (2.1) by (∂η(q)/∂q)T and applying (2.6) yields the additional scalar
conservation law

∂η(q)

∂t
+

d∑
n=1

∂ψn(q)

∂xn

=
∂η(q)

∂q

T

· s(q) . (2.7)

From this equation a criterion separating the physically relevant solution from all
weak solutions of (2.1) can be derived:

Theorem 1 (Entropy condition). Assume that (2.1) admits an entropy η(q)
and entropy fluxes ψn(q), n = 1, . . . , d. Let q be the limit of a sequence (qε)ε of
classical solutions of (2.5) almost everywhere in D, i.e. qε → q as ε→ 0 a.e. in D,
where all qε are bounded by a constant C > 0 independent of ε by ‖qε‖L∞(D) ≤ C.
Then q is a weak solution of (2.1), (2.2) and satisfies the entropy condition

∂η(q)

∂t
+

d∑
n=1

∂ψn(q)

∂xn

≤ ∂η(q)

∂q

T

· s(q) (2.8)

in the sense of distributions on Rd × R+.

Proof. [82].

Multiplying Eq. (2.8) by an appropriate test function ϕ and integration over D
yields the supplementary condition (2.9) that admits an appropriate extension of
Def. 2:
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Definition 4 (Entropy solutions). A weak solution q of the Cauchy Problem
(2.1), (2.2) is called an entropy solution, if q satisfies

∞∫
0

∫
Rd

[
∂ϕ

∂t
η(q) +

d∑
n=1

∂ϕ

∂xn

ψn(q)− ϕ
∂η(q)

∂q

T

· s(q)

]
dx dt+

∫
Rd

ϕ(x, 0) η(q0(x)) dx ≥ 0

(2.9)
for all entropy functions η(q) and all scalar test functions ϕ ∈ C1

0(D,R+
0 ), ϕ ≥ 0.

2.1.3 Jump Conditions

The most important subset of entropy solutions of the Cauchy Problem (2.1), (2.2)
are solutions in the sense of distributions that are piecewise continuously differen-
tiable and have discontinuous jumps along a finite number of smooth orientable
surfaces Ξ in the (x, t)-space. If the one-sided limits of q on both sides of Ξ are
defined by q±(x, t) := lim

ε̄→0,ε̄>0
q((x, t)± ε̄ n̄) with n̄ := (σ1, . . . , σd, σt)

T denoting the

outward unit normal to Ξ, the following important theorem can be derived:

Theorem 2 (Piecewise C1 solutions and jump conditions). Let q : D → S
be a piecewise C1 function (in the above sense) and let there exist an entropy η ∈
C2(S,R) and corresponding entropy fluxes ψn ∈ C1(S,R). Then q is an entropy
solution in the sense of distributions, if and only if q is a classical solution of (2.1)
in the domains where q ∈ C1(D,S) that fulfills (2.2) almost everywhere and satisfies
the Rankine-Hugoniot (RH) jump condition

(q+ − q−)σt +
d∑

n=1

(
fn(q+)− fn(q−)

)
σn = 0 (2.10)

and the jump inequality

(η(q+)− η(q−))σt +
d∑

n=1

(
ψn(q+)− ψn(q−)

)
σn ≤ 0 (2.11)

along the surfaces of discontinuity.

Proof. [82].

2.1.4 Rotational Invariance

Some special systems, e.g. the Euler equations in Cartesian coordinates, are in-
variant under rotation in multiple space dimensions. This means that for each unit
normal vector in space n := (σ1, . . . , σd)

T a rotation matrix T = T(σ1, . . . , σd) exists
such that

d∑
n=1

fn(q)σn = T−1f1(Tq) (2.12)
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holds true. If we denote the axis in the direction of (σ1, . . . , σd)
T by x̃ and the

rotated vector of state by q̃ = Tq and assume the source term to be invariant under
rotation, i.e. s(q) ≡ s(q̃) ≡ Ts(q), then it is a straight-forward task to show by
inserting (2.12) into (2.4) that the conservation law in the rotated coordinate system
simplifies to

∂

∂t
q̃(x̃, t) +

∂

∂x̃
f1(q̃(x̃, t)) = s(q̃(x̃, t)) , x̃ ∈ Rd , t > 0 . (2.13)

If we further assume a rotational invariant entropy η(q) ≡ η(Tq), we can easily
transform (2.7) into the rotated coordinate system. By comparing the result to
(2.7) we obtain the relation

d∑
n=1

ψn(q)σn = ψ1(Tq) (2.14)

for the entropy fluxes.

2.2 The Homogeneous Riemann Problem

We consider the Riemann Problem (RP) for Eq. (2.1) with s ≡ 0. A Riemann
Problem is a Cauchy Problem for (2.1) with initial data that is discontinuous along
a d-dimensional hyper plane, i.e.

q̃0(x̃) =

{
q̃

L
, x̃1 < 0

q̃
R
, x̃1 > 0

, (2.15)

where x̃1 denotes the axis in a rotated Cartesian coordinate system that is orthogonal
to the surface of discontinuity. We assume the validity of the rotational invariance
property and restrict our attention to systems of the form

∂

∂t
q̃(x̃, t) +

∂

∂x̃1

f1(q̃(x̃, t)) = 0 , x̃ ∈ Rd , t > 0 . (2.16)

As the solution of (2.16), (2.15) is quasi-one-dimensional and depends only on x̃1

and t, it obviously suffices to study the RP for general one-dimensional hyperbolic
conservation-laws, which we write in short as

∂

∂t
q(x, t) +

∂

∂x
f(q(x, t)) = 0 , x ∈ R, t > 0 . (2.17)

The solution structure of the RP in one space dimension for nonlinear hyperbolic
conservation laws without source terms is very well understood. In the following,
some of the most important results will be reviewed. Detailed analysis can be found
for instance in [171] or in [82].
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Figure 2.1: Solution q(x, t) of the linear Riemann Problem in the x-t plane [117].

2.2.1 Linear Systems

As an introduction we consider the RP for the linear hyperbolic equation

∂

∂t
q(x, t) + A

∂

∂x
q(x, t) = 0 , x ∈ R , t > 0 (2.18)

for systems with q : R × R+ 7→ RM . A is a constant matrix and for simplicity
we assume that A has M distinct real eigenvalues λ1 < · · · < λM with M linear
independent right eigenvectors rm, m = 1, . . . ,M . If the left state q

L
and the right

state q
R

are decomposed in terms of the right eigenvectors by

q
L

=
M∑

m=1

δmrm , q
R

=
M∑

m=1

βmrm ⇒ q
R
− q

L
=

M∑
m=1

(βm − δm)rm =
M∑

m=1

amrm ,

(2.19)
the exact solution of the RP reads

q(x, t) = q
L
+
∑

λm<x/t

amrm = q
R
−
∑

λm≥x/t

amrm =
∑

λm≥x/t

δmrm+
∑

λm<x/t

βmrm . (2.20)

The complete derivation can be found for instance in [117]. The solution structure is
displayed in Fig. 2.1. The initial discontinuity breaks up into M discontinuities that
separate M + 1 regions of constant state. The discontinuities lie on characteristic
lines that are given by the ordinary differential equations

dx

dt
= λm , x(0) = 0 , m = 1, . . . ,M .
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Each characteristic separates two constant states differing exactly by a scalar mul-
tiple of the corresponding right eigenvector rm. We call the change over the mth
characteristic field the m-simple wave. The m-simple wave becomes the weak so-
lution of the entire RP for (2.18), if the two constant values abutting the mth
characteristic are used as initial data. In this case, the solution simply would be

qs(x, t) =

{
q

L
, x < σt ,

q
R
, x > σt ,

(2.21)

with σ = λm. All simple wave solutions (2.21) satisfy the Rankine-Hugoniot condi-
tion (2.10), which we now express in one space dimension by employing the notations
∆q := q

R
− q

L
, ∆f(q) := f(q

R
)− f(q

L
) as

σ∆q = ∆f(q) . (2.22)

2.2.2 Nonlinear Systems

Like in the linear case, weak solutions of the RP for Eq. (2.17) are self-similar, i.e.
a function v exists, such that q(x, t) ≡ v(x/t). But the characteristic lines

dx

dt
= λm(q(x, t)) , x(0) = 0 , m = 1, . . . ,M

now depend on the solution q and simple wave solutions need not be discontinuous.

Definition 5 (Characterization of the characteristic fields). The mth char-
acteristic field is said to be genuinely nonlinear, if the mth eigenvalue λm(q) and its
corresponding right eigenvector rm(q) satisfy

∂λm(q)

∂q

T

· rm(q) 6= 0 ,

and it is said to be linearly degenerate, if they satisfy

∂λm(q)

∂q

T

· rm(q) = 0

for all admissible states q ∈ S.

The only simple wave solution in a linearly degenerate field is a contact discontinuity.
The solution is of the form (2.21) and satisfies (2.22) across the discontinuity with

σ = λm(q
L
) = λm(q

R
) .

A genuinely nonlinear field admits discontinuous shock waves and smooth rarefaction
waves. The simple wave solution of a shock wave is also of the form (2.21) and
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satisfies (2.22) along the discontinuity, but the value σ = λm(qs) now depends on
the solution. The simple wave solution of a rarefaction wave is

qs(x, t) =


q

L
, x < λm(q

L
) t ,

v(x/t) , λm(q
L
) t ≤ x ≤ λm(q

R
) t ,

q
R
, x > λm(q

R
) t ,

(2.23)

with v(λm(q
L
)) = q

L
and v(λm(q

R
)) = q

R
. The decision, which of these two

different weak solutions is the physically correct entropy solution can be taken by
checking whether the shock wave satisfies the jump inequality (2.11). Analogously
to (2.22) Eq. (2.11) reduces in one space dimension to

σ∆η(q) ≥ ∆ψ(q) . (2.24)

A shock wave satisfying (2.24) is called admissible. Unfortunately, Eq. (2.24) is not
applicable in many practical cases, because it requires the explicit knowledge of an
entropy function. A convenient alternative here are the Lax entropy conditions:

Definition 6 (Lax entropy conditions). A discontinuity in the mth character-
istic field satisfies the Lax entropy conditions, if either{

λm(q
R
) < σ < λm+1(qR

)
λm−1(qL

) < σ < λm(q
L
)

, (2.25)

if the mth field is genuinely nonlinear, or

λm(q
L
) = σ = λm(q

R
) (2.26)

if the mth field is linearly degenerate, is satisfied.

For sufficiently small discontinuous jumps ∆q the Lax entropy conditions can be
shown to be equivalent to (2.24). See [82] for the proof. For shock waves Liu’s
entropy condition

λm(q
R
) < σ < λm(q

L
) (2.27)

can be shown to be equivalent to (2.25).

The following theorem describes the structure of entropy solutions of the general
nonlinear RP just as a composition of the three different simple waves:

Theorem 3 (Solution of the RP). For all admissible states q
L
∈ S there exists a

neighborhood ϑ of q
L

in S with the following property: If q
R

belongs to ϑ, the RP for
the nonlinear system (2.17) has an entropy solution that consists of constant states
separated by rarefaction waves, admissible shock waves or contact discontinuities.

Proof. [82].

Important for the practical solution of the RP is the knowledge of equation-specific
functions that are called Riemann invariants.
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Definition 7 (Riemann invariants). A smooth function $ : S → R is called a
m-Riemann invariant, if it satisfies

∂$(q)

∂q

T

· rm(q) = 0 (2.28)

for all admissible states q ∈ S.

A Riemann invariant is constant along the integral curves of rm

dv(ξ)

dξ
= rm(v(ξ)) ,

because the necessary condition

d

dξ
$(v(ξ)) =

∂$(q)

∂q

T

· dv(ξ)
dξ

= 0

follows directly from the definition (2.28). In the solution of the general nonlinear
RP an m-Riemann invariant remains constant across the mth simple wave solution,
because the simple wave solutions are integral curves of the corresponding eigenvec-
tor rm and satisfy qm(x, t) = vm(ξ) with ξ = x/t (see [82] for details).

2.3 Reactive Multi-Component Euler Equations

We now consider the Euler equations for a mixture of K different thermally per-
fect gaseous species with chemically reactive source terms. These equations can be
written as a system of hyperbolic conservation laws of the form of Eq. (2.1).2 For
a detailed derivation of the equations from physical conservation principles we refer
to the book of Williams [204]. We specify the space of physically admissible states
and derive various important mixture properties. The complex equation of state for
thermally perfect gas-mixtures is introduced.

Vector of State

In d space dimensions the vector of state of conserved quantities q = q(x, t) of the
multi-component Euler equations with K species has K + d + 1 components. We
choose the following form for q:

q(x, t) = (ρ1, . . . , ρK ,m1, . . . ,md, Ē)T = (ρ1, . . . , ρK , ρu1, . . . , ρud, ρE)T (2.29)

The partial density of each species is denoted by ρi. The sum of partial densities

ρ =
K∑

i=1

ρi (2.30)

2Other formulations are possible. Note, that conservative and non-conservative formulations
are equivalent only for classical solutions (compare Sec. 2.3.8).
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is called the total density of the mixture. It follows from the physical principle of
mass conservation that ρ is a conserved quantity, too. While some of the partial
densities ρi ∈ R+

0 are allowed to vanish, a first restriction on q(x, t) to be admissible
is ρ ∈ R+. The products of the velocities in the three coordinate directions un ∈ R
and the total density ρ are called the momentum densities mn ∈ R. The total energy
density is denoted by Ē ∈ R+. It may never vanish imposing the further restriction
E ∈ R+ on the total energy per unit mass. The total energy is the sum of internal
and kinetic energy, i.e.

E = e+
1

2

d∑
n=1

u2
n = e+

u2

2
(2.31)

or in terms of the conserved quantities

Ē = ρe+
1

2ρ

d∑
n=1

m2
n = ρe+

m2

2ρ
.

Since Eq. (2.31) has to be valid for all admissible states, it follows immediately that
the internal energy per unit mass e has to be positive and real, too.

Flux Functions

In terms of the conserved quantities ρi, mn = ρun and Ē = ρE the multi-component
Euler equations are a system of PDEs in the form Eq. (2.1). The flux functions are

fn(q) = (ρ1un, . . . , ρKun, ρu1un + δ1np, . . . , ρudun + δdnp, un(ρE + p))T (2.32)

for n = 1, . . . , d. Herein, p denotes the hydrostatic pressure. The function p =
p(q) : S 7→ R+ is called the equation of state. Note, that the Kronecker-Symbol δjn
is defined as δjn = 1 for j = n and δjn = 0 for j 6= n. The basic thermodynamic
relation

ρh = ρe+ p (2.33)

defines the internal enthalpy per unit mass h ∈ R+. By inserting (2.31) into Eq.
(2.33), i.e.

ρE + p = ρe+
m2

2ρ
+ p = ρh+

m2

2ρ
= ρH ,

the total enthalpy per unit mass H ∈ R+ is introduced. The last component of
fn(q) may also be expressed in terms of this quantity as unρH.

2.3.1 Boundary Conditions

The solution of the reactive Euler equations on bounded domains Ω ∈ Rd requires
appropriate boundary conditions on ∂Ω. In practice, four different types of boundary
conditions can occur.
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Symmetry Planes or Impermeable Walls

Many flow problems are symmetric with respect to one or more planes. Along a
symmetry plane the component of the velocity vector normal to the boundary is
required to vanish, i.e.

u · n = 0 . (2.34)

If we use condition (2.34) to simplify the component of the flux vector (f1, . . . , fd)
T

normal to the boundary [172], we obtain for the boundary flux

(f1, . . . , fd)
T · n =

d∑
n=1

fn(q)σn = (0, . . . , 0, p σ1, . . . , p σd, 0)T . (2.35)

Since the Euler equations describe the motion of inviscid fluid flow, the boundary
condition at an impermeable wall is identical to (2.34). For this reason, wall and
symmetry boundaries are often said to be reflective in the context of Euler equations.

Inlet and Outlet

Finite computational domains require in- and outflow boundaries. Unfortunately,
their accurate mathematical treatment is quite difficult. Up to now, it is unclear in
general, which in- and outflow boundary conditions lead to well-posed problems for
Euler equations [172].

In practice, Dirichlet boundary conditions are usually applied at an inlet, while
the von Neumann boundary condition

∂q

∂n
= 0 (2.36)

should be satisfied at an outlet. Outflow boundaries are also called transparent or
transmissive.

2.3.2 Mixture Properties

We assume that the multi-component gaseous flow is in thermal equilibrium, which
means that the same absolute temperature T ∈ R+ can be used for all K species.
Each species is treated as an ideal gases and for each partial pressure pi ∈ R+

0 the
ideal gas law

pi = ρi
R
Wi

T = ρiRi T (2.37)

applies. Note, that the universal gas constant is denoted byR, whileRi andWi ∈ R+

are the specific gas constant and the specific molecular weight of a single species.
According to Dalton’s law the mixture itself has the physical properties of an ideal
gas and the total hydrostatic pressure p is given by

p =
K∑

i=1

pi . (2.38)
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Every physical quantity that can be evaluated for a single species consequently has
a multi-component analogue. In the following, we introduce the appropriate alge-
braic model that allows the computation of all mixture properties without physical
contradictions. Similar comprehensive descriptions have been given for example by
Williams [204] and by Fedkiw et al. [71].

Mass and Mole Fractions

The ratio of the partial densities with respect to the density of the mixture

Yi :=
ρi

ρ
(2.39)

are the mass fractions. For the mass fractions the equation
∑K

i=1 Yi = 1 holds true.
Further important quantities are the species molar concentrations per unit volume
Ci. They are evaluated directly from the partial densities as

Ci =
ρi

Wi

= ρ
Yi

Wi

(2.40)

and are often utilized to evaluate chemical production rates. The concentrations are
used to define mole fractions Xi as

Xi :=
Ci∑K

j=1Cj

. (2.41)

For the sum of the mole fractions
∑K

i=1Xi = 1 holds true. With definition (2.41)
the mean molecular weight for the mixture W is easily found to be

W =
K∑

i=1

Xi Wi . (2.42)

ReplacingXi in (2.42) with (2.41) and inserting (2.40) leads to the further expression

W =

(
K∑

i=1

Yi Wi

)−1

. (2.43)

If we insert expression (2.40) into (2.41) and apply relation (2.43), we obtain the
elementary relation

Xi = Yi
W

Wi

. (2.44)

Enthalpy and Internal Energy

Each gaseous species is assumed to be a thermally perfect gas. In this case, the
specific heats at constant pressure and volume, cpi = cpi(T ) and cvi = cvi(T ), are
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functions of the temperature only. The enthalpies and internal energies per unit
mass are written as

hi(T ) = h0
i +

∫ T

T 0

cpi(s)ds , ei(T ) = h0
i +

∫ T

T 0

cvi(s)ds (2.45)

with h0
i called the heat of formation at the reference temperature T 0. The functions

cpi(T ), cvi(T ) are usually approximated by polynomials of degree 4 of the form

cpi(T ) =
R
Wi

(
a1i + a2iT + a3iT

2 + a4iT
3 + a5iT

4
)

(2.46)

that are valid within a restricted temperature range, e.g. from 300 K to 5000 K. The
constants aji and h0

i can be taken from various thermodynamic data bases [183, 103].
For specific enthalpy and internal energy of the mixture the relations

h(Y1, . . . , YK , T ) =
K∑

i=1

Yi hi(T ) , e(Y1, . . . , YK , T ) =
K∑

i=1

Yi ei(T ) (2.47)

hold true. Employing (2.45) and (2.47) the specific heats for the mixture are found
to be

cp(Y1, . . . , YK , T ) =
∂h

∂T
=

K∑
i=1

Yi cpi(T ) , cv(Y1, . . . , YK , T ) =
∂e

∂T
=

K∑
i=1

Yi cvi(T ) .

(2.48)
Since e and h have to be positive and non-zero, the inequalities ei(T ) > 0 and
hi(T ) > 0 always have to be satisfied.

Specific Gas Constant and Adiabatic Exponent

With the specific heats for the mixture (2.48) the ideal-gas relations

Ri =
R
Wi

= cpi(T )− cvi(T ) , γi(T ) =
cpi(T )

cvi(T )
(2.49)

that apply to the specific gas constant Ri and the adiabatic exponent γi(T ) of a
single species, carry over directly to the corresponding properties for the mixture as

R(Y1, . . . , YK) =
R

W (Y1, . . . , YK)
= cp(Y1, . . . , YK , T )− cv(Y1, . . . , YK , T ) (2.50)

and
γ(Y1, . . . , YK , T ) =

cp(Y1, . . . , YK , T )

cv(Y1, . . . , YK , T )
. (2.51)

Note, that the inequality cpi > cvi > 0, which results for ideal gases from thermo-
dynamical stability considerations, also applies to the mixture as cp > cv > 0. Like
for each species, the relations R > 0 and γ > 1 are satisfied for all admissible states
of the mixture. A useful relation for the adiabatic exponents is

γ − 1 =

(
K∑

i=1

Xi

γi − 1

)−1

. (2.52)
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2.3.3 Equation of State

We assume the existence of a C1 mapping ψ : S 7→ R, such that the relation ψ(q) =
T holds true for all admissible states q. Such a mapping allows the evaluation of the
unknown temperature T from the conserved quantities, and the total hydrodynamic
pressure p = ṕ(ρ1, . . . , ρK , T ) ∈ R+ could be evaluated easily from (2.38) as sum of
all partial pressures pi = pi(ρi, T ) ∈ R+

0 given by Eq. (2.37), i.e.

p = ṕ(ρ1, . . . , ρK , T ) =
K∑

i=1

pi(ρi, T ) =
K∑

i=1

ρiRi T = RT
K∑

i=1

ρi

Wi

= ρ
R
W
T = ρRT .

(2.53)
Relation (2.53) is called thermal equation of state. Obviously, it is the proposed
ideal-gas law for the mixture. To make use of (2.53), the existence of the mapping
ψ has to be proven.

Evaluation of the Temperature

Inserting the total specific enthalpy from (2.47) into the basic thermodynamic rela-
tion p = ρh− ρe gives the following equation for the hydrostatic pressure:

p = p̌(ρ1, . . . , ρK , e, T ) =
K∑

i=1

ρi hi(T )− ρe (2.54)

We insert Eq. (2.31) into Eq. (2.54) and express it in terms of the conserved
variables as

p = p̌(ρ1, . . . , ρK ,m1, . . . ,md, Ē, T ) =
K∑

i=1

ρi hi(T )− Ē +
m2

2ρ
. (2.55)

By setting (2.53) equal to (2.55) the implicit equation

ϕ(q, T ) :=
K∑

i=1

ρi hi(T )− Ē +
m2

2ρ
−RT

K∑
i=1

ρi

Wi

= 0 . (2.56)

is derived. It allows the computation of the temperature T from the vector of
conserved quantities q.

Proposition 1 (Solvability of the implicit temperature-equation). A map-
ping ψ ∈ C1(S,R) exists, such that ψ(q) = T solves the Eq. ϕ(q, T ) = 0 on S × R
with ϕ : S × R 7→ R defined in Eq. (2.56).

Proof. The proof of the proposition is a direct application of the inverse mapping
theorem (see for instance [60]). Obviously ϕ : S 7→ R is a C1 mapping. The
derivative of ϕ(q, T ) with respect to T reads

ϕ′(q, T ) =
∂ϕ(q, T )

∂T
=

K∑
i=1

ρi cpi−R
K∑

i=1

ρi

Wi

= ρ
K∑

i=1

Yi (cpi −Ri) = ρ
K∑

i=1

Yi

(
Ri

γi − 1

)
(2.57)
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Replacing Yi with Xi according to (2.44) and applying relation (2.52) simplifies the
final expression of (2.57) to

ϕ′(q, T ) =
ρR

γ − 1
. (2.58)

As seen in the preceding section, the adiabatic exponent of the mixture γ is always
greater than 1 and therefore ϕ′(q, T ) > 0 always holds true. Hence, ϕ′(q, T ) is
non-singular for all admissible states and the inverse mapping theorem ensures the
proposed existence of the C1 mapping ψ : S 7→ R that solves ψ(q) = T . �

Proposition 1 allows us to drop T = ψ(ρ1, . . . , ρK ,m1, . . . ,md, Ē) from the list of
arguments of (2.55). Nevertheless, the computation of T utilizing the implicit equa-
tion (2.56) is unavoidable in our model, whenever the hydrostatic pressure p is not
known. Prop. 1 only states the existence of the mapping ψ(q) = T , but due to
the temperature-dependency of the specific heats cpi(T ), cvi(T ) this mapping is not
known explicitly in general. Only in the special case of calorically perfect gases, for
which cpi, cvi are constant, the mapping ψ(q) = T can be found and the explicit
equation of state

p = (γ(Y1, . . . , YK)− 1)

(
Ē − m2

2ρ
−

K∑
i=1

ρih
0
i

)
(2.59)

can be derived. A calorically perfect gas with zero heat of formation h0
i is often said

to be polytropic. For a single polytropic gas Eq. (2.59) simplifies to the well-known
equation of state p = (γ − 1)(Ē −m2/(2ρ)). This is the standard case, which is
discussed in detail for the Euler equations in multiple text books (see for instance
[171, 82, 187]).

Derivatives of the Hydrostatic Pressure

The partial derivatives of the hydrostatic pressure p with respect to the conserved
variables ρ1, . . . , ρK ,m1, . . . ,md, Ē are necessary for the derivation of the speed
of sound and for computation of the Jacobians of the flux functions. The par-
tial derivative of p with respect to Yi has to be known to evaluate the thermicity
in the primitive variable formulation of Sec. 2.3.8. Since the temperature T =
T (ρ1, . . . , ρK ,m1, . . . ,md, Ē) itself is a function of the conserved quantities, the ther-
mal equation of state (2.53) and Eq. (2.55) have to be utilized together to eliminate
unwanted partial derivatives of T . The partial derivatives of p = ṕ(ρ1, . . . , ρK , T )
and p = p̌(ρ1, . . . , ρK ,m1, . . . ,md, Ē) are

∂ṕ

∂ρi

= Ri T + ρR
∂T

∂ρi

,
∂p̌

∂ρi

= hi + ρ cp
∂T

∂ρi

− u2

2
,

∂ṕ

∂mn

= ρR
∂T

∂mn

,
∂p̌

∂mn

=
mn

ρ
+ ρ cp

∂T

∂mn

,

∂ṕ

∂Ē
= ρR

∂T

∂Ē
,

∂p̌

∂Ē
=

cp
R

∂T

∂Ē
− 1 ,
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∂ṕ

∂Yi

= ρRi T + ρR
∂T

∂Yi

,
∂p̌

∂Yi

= ρhi + ρ cp
∂T

∂Yi

.

Combination of these relations allows the elimination of the partial derivatives of T .
Useful partial derivatives of p with respect to the conserved quantities ρ1, . . . , ρK ,
m1, . . . ,md, Ē and with respect to Yi are found to be

∂p

∂ρi

=
R

R− cp

(
hi −

u2

2

)
− cp
R− cp

Ri T = γ̄

(
u2

2
− hi

)
+ γ Ri T =: φi , (2.60)

∂p

∂mn

= −γ̄mn

ρ
= −γ̄un ,

∂p

∂Ē
= γ − 1 =: γ̄ ,

∂p

∂Yi

= γρR

(
WT

Wi

− hi

cp

)
. (2.61)

Derivatives of the Temperature

If we replace the partial derivatives of ṕ with respect to the conserved quantities by
the expressions of (2.60) and (2.61), we derive the following partial derivatives of
the temperature T :

∂T

∂ρi

=
φi −RiT

ρR
,

∂T

∂mn

= − γ̄un

ρR
,

∂T

∂Ē
=

γ̄

ρR
. (2.62)

2.3.4 Speed of Sound

The appropriate speed of sound for the described model is the frozen speed of sound.
It is derived by assuming a fixed composition with Yi = const. In this case, the
specific internal energy is written as

e = e(ρ1, . . . , ρK , p) = e(ρ, p)Y1,...,YK

and the equations of state (2.53) and (2.54) take the form

p = p̌(ρ1, . . . , ρK , e) = p̌(ρ, e)Y1,...,YK
, p = ṕ(ρ1, . . . , ρK , T ) = ṕ(ρ, T )Y1,...,YK

.

Application of First and Second Law of Thermodynamics to the frozen mixture gives
the relation

T ds = de+ p d

(
1

ρ

)
(2.63)

that introduces the new variable s ∈ R+, the entropy. The internal energy may be
expressed in terms of (2.63) by

e = e(ρ, s)Y1,...,YK
,

and the caloric equation of state may written as

p = p(ρ, s)Y1,...,YK
. (2.64)
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From (2.64) the differential dp for the frozen mixture is evaluated as

dp =

(
∂p

∂ρ

)
s,Y1,...,YK

dρ+

(
∂p

∂s

)
ρ,Y1,...,YK

ds . (2.65)

The speed of sound c now is introduced by assuming unconstrained thermodynamic
equilibrium, i.e. by setting ds = 0 in (2.65), and by defining

c =

√(
∂p

∂ρ

)
s,Y1,...,YK

. (2.66)

On the other hand, dp may also be derived from (2.55) as

dp =
K∑

i=1

∂p̌

∂ρi

dρi +
d∑

n=1

∂p̌

∂mn

dmn +
∂p̌

∂Ē
dĒ . (2.67)

By differentiation of (2.31) it is found that the differential dĒ can be expressed as

dĒ = E dρ+ ρ de .

Inserting (2.63) into this expression and setting ds = 0 yields the simple relation

dĒ =

(
E +

p

ρ

)
dρ = H dρ .

For the case of constant entropy expression (2.67) therefore simplifies to

dp =
K∑

i=1

∂p̌

∂ρi

dρi +
d∑

n=1

∂p̌

∂mn

dmn +
∂p̌

∂Ē
H dρ (2.68)

and the frozen speed of sound may be evaluated by applying Eq. (2.65) with ds = 0
and by inserting the already derived relations (2.61) as

c2 =

(
∂p

∂ρ

)
s,Y1,...,YK

=
K∑

i=1

Yi φi − γ̄u2 + γ̄H . (2.69)

Replacing φi with the relation (2.60) simplifies Eq. (2.69) to

c2 = γ̄

[
H − u2 +

K∑
i=1

Yi

(
u2

2
− hi +

γ Ri T

γ̄

)]
= γ

K∑
i=1

YiRi T = γ
p

ρ
, (2.70)

which is the same simple expression as in the standard case of a single polytropic
gas.
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Derivatives of the Speed of Sound

The partial derivatives of the frozen speed of sound c with respect to the conserved
variables ρ1, . . . , ρK ,m1, . . . ,md, Ē are mandatory to determine the type of the char-
acteristic fields in Prop. 5. We express c as

c = (γRT )1/2 =

(
γ T

K∑
i=1

ρi

ρ
Ri

)1/2

and obtain for instance for the partial derivative with respect to ρi

∂c

∂ρi

=
1

2c

(
RT

∂γ

∂T

∂T

∂ρi

+ γ
∂(RT )

∂ρi

)
,

because the temperature T = T (ρ1, . . . , ρK ,m1, . . . ,md, Ē) itself is a function of the
conserved quantities. Utilizing the partial derivatives of the temperature (2.62) we
find

∂(RT )

∂ρi

=
∂

∂ρi

(T
K∑

i=1

ρi

ρ
Ri) =

φi −RT

ρ
,

∂(RT )

∂mn

= − γ̄un

ρ
,

∂(RT )

∂Ē
=
γ̄

ρ
.

If we use these expressions and (2.62) together, we obtain as partial derivatives of c

∂c

∂ρi

= %φi −
T

2cρ

(
RiT

∂γ

∂T
+ γR

)
,

∂c

∂mn

= −%γ̄un ,
∂c

∂Ē
= %γ̄ , (2.71)

where % is defined by

% :=
1

2cρ

(
γ + T

∂γ

∂T

)
. (2.72)

2.3.5 Hyperbolicity

We prove the hyperbolicity of the multi-component Euler equations in two and
three space dimensions by employing the rotational invariance property (2.12). The
validity of property (2.12) is also important from a practical point of view, because
its application allows the direct extension of all finite volume discretization, that are
presented in this thesis on Cartesian structured grids, to unstructured triangulations.

Proposition 2 (Rotational invariance). The three-dimensional partial differen-
tial equation (2.1) with vector of state (2.29) and flux functions (2.32) is rotationally
invariant, that is it satisfies

cos θy cos θz f1(q) + cos θy sin θz f2(q) + sin θy f3(q) = T−1 f1(T q)
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for all angles θy, θz and all admissible states q ∈ S. The rotational matrix T =
T(θy, θz) is

T =



1 0 . . . 0

0
. . .

...
1

cos θy cos θz cos θy sin θz sin θy 0
... − sin θz cos θz 0 0

− sin θy cos θz − sin θy sin θz cos θy 0
0 . . . 0 0 0 1


.

Proof. The proof of property (2.12) for the Euler equations for mixtures of thermally
perfect gases is analogous to the standard case of a single polytropic gas. Hence, we
omit the tedious algebraic calculations and refer to the book of Toro [187] instead,
where the detailed proof for the standard case can be found. Essential for the proof
are the rotational invariance of the temperature T calculated from Eq. (2.56) and
of the hydrostatic pressure p evaluated by Eq. (2.37). �

Proposition 3 (Rotational invariance). The two-dimensional partial differen-
tial equation (2.1) with vector of state (2.29) and flux functions (2.32) is rotationally
invariant, that is it satisfies

cos θ f1(q) + sin θ f2(q) = T−1 f1(T q)

for all angles θ and all admissible states q ∈ S. The rotational matrix T = T(θ) is

T =



1 0 . . . 0

0
. . .

...
1

cos θ sin θ 0
... − sin θ cos θ 0
0 . . . 0 0 1


.

Proof. With θy ≡ 0, θz ≡ θ the proof follows immediately from the proof of
Prop. 2. �

Proposition 4 (Hyperbolicity). The partial differential equation (2.1) with vec-
tor of state (2.29) and flux functions (2.32) is hyperbolic (see Def. 1).

Proof. For d = 1 the proposition is identical to Prop. 10. In the multi-dimensional
case we apply the Props. 2 and 3. We only consider the three-dimensional case
in detail and notice that the formulas below carry over immediately to the two-
dimensional case for θy ≡ 0, θz ≡ θ. In polar coordinates the three-dimensional
vector of coefficients reads

(ν1, ν2, ν3)
T = (r cos θy cos θz, r cos θy sin θz, r sin θy)T
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with r = (ν2
1 + ν2

2 + ν2
3)

1/2. We express the vector of coefficients in polar coordinates
and obtain by applying Prop. 2

A =
∂

∂q

(
3∑

n=1

νn fn

)
= r

∂

∂q
(cos θy cos θz f1 + cos θy sin θz f2 + sin θy f3) = r

∂

∂q

(
T−1 f1(Tq)

)
.

We differentiate the result by q and apply Prop. 10, where it has been proved that
A1(q) is diagonalizable for all admissible states. We obtain

rT−1 ∂

∂q
(f1(Tq)) = rT−1 A1(Tq)T = rT−1 R1(Tq) Λ1(Tq) R−1

1 (Tq) T

= T−1 R1(Tq) rΛ1(Tq)
(
T−1 R1(Tq)

)−1
.

Hence, A is diagonalizable for all admissible states. The diagonal matrix of eigen-
values is rΛ1(Tq), the matrix of right eigenvectors reads T−1 R1(Tq). �

2.3.6 The Non-reactive Riemann Problem

In this section, we discuss the solution structure of the RP (2.15) for Eq. (2.1) with
vector of state (2.29) and flux functions (2.32) for the important case s ≡ 0. As
Props. 2 and 3 state the validity of the rotational invariance property, the solution
is quasi-one-dimensional and we can restrict our attention to the one-dimensional
equation (2.17) with f ≡ f1. For this particular case, the solution structure of the
RP has already been discussed in Sec. 2.2.

Proposition 5 (Types of characteristic fields). The characteristic fields of
the partial differential equation (2.17) with vector of state (2.29) and flux function
f ≡ f1 according to (2.32) are linearly degenerate for m = 2, . . . , K + d, while they
are genuinely nonlinear for m = 1 and m = K + d+ 1, iff the condition

γ(γ + 1)

(1− γ)T
6= ∂γ

∂T
(2.73)

is satisfied for all admissible states q ∈ S.

Proof. The eigenvalues of the Jacobian of f1 follow from Prop. 9 as λ1 = u1 − c,
λK+d+1 = u1 + c and λm = u1 for m = 2, . . . , K + d. Their gradients with respect
to q = (ρ1, ..., ρK ,m1, ...,md, Ē)T are

∂λ2,...,K+d(q)

∂q

T

=
∂

∂q

(
m1

ρ

)T

=

(
−u1

ρ
, . . . ,−u1

ρ
,
1

ρ
, 0, . . . , 0

)T

(2.74)
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and

∂λ1/K+d+1(q)

∂q

T

=
∂

∂q

(
m1

ρ
∓ c

)T

=

(
−u1

ρ
∓ ∂c

∂ρ1

, . . . ,−u1

ρ
∓ ∂c

∂ρK

,
1

ρ
∓ ∂c

∂m1

, . . . ,∓ ∂c

∂md

,∓ ∂c

∂Ē

)T

. (2.75)

The matrix of right eigenvectors R1(q) = (r1| . . . |rK+d+1) follows from Prop. 10.
For m = 2 . . . , K + d we get

∂λm

∂q

T

· rm = 0 , (2.76)

which proves that the fields for m = 2, . . . , K + d are linearly degenerate. For
m = 1, K + d + 1 we have to insert the partial derivatives of the frozen speed of
sound from (2.71) into the gradient (2.75) and obtain

∂λ1/K+d+1

∂q

T

·r1/K+d+1 = ∓%

[
K∑

i=1

Yiφi − γ̄u2 + γ̄H

]
∓ c
ρ
±

K∑
i=1

Yi

(
T

2ρc
RiT

∂γ

∂T
+ γR

)
.

By inserting the relation for the frozen speed of sound (2.69) and by applying R =∑
YiRi we derive with % defined in (2.72) from the last expression

∂λ1/K+d+1

∂q

T

· r1/K+d+1 = ∓(%c2 +
c

ρ
− %RT ) = ∓

[
(γ + 1)c

2ρ
− c(1− γ)T

2γρ

∂γ

∂T

]
= ∓ c

2γρ

[
γ(γ + 1)− (1− γ)T

∂γ

∂T

]
.

From the final parenthesis it is easy to see, that the fields with m = 1, K + d + 1
are genuinely nonlinear if and only if (2.73) is satisfied for all q ∈ S. �

In the following, we assume that the inequality (2.73) is satisfied for all q ∈ S.
Utilizing the results of Sec. 2.2 and especially Theorem 3, we know from Prop. 5
that the solution structure of the RP for the multi-component Euler equations is in
principle identical to the standard case of a single polytropic gas, which is discussed
in detail for instance in the books of Smoller [171], Godelewski and Raviart [82] and
Toro [187]. The first and last characteristic fields with eigenvalues u1− c and u1 + c
admit admissible shocks and rarefaction waves, while all other characteristic fields
sum up to a single contact discontinuity associated to the eigenvalue u1.

Proposition 6 (Riemann invariants). The mass fractions Yi, i = 1, . . . , K are
1− and K + d+1-Riemann invariants of equation (2.17) with vector of state (2.29)
and flux function (2.32) f ≡ f1. The velocity u1 and the hydrodynamic pressure p
are Riemann invariants of the characteristic fields 2, . . . , K + d.
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Figure 2.2: Solution q(x, t) of the Riemann Problem for the quasi-one-dimensional
multi-component Euler equations in the x-t plane [109, 108].

Proof. To prove the first part of the proposition, we have to verify that the func-
tions Yi(q) = ρi/ρ, i = 1, . . . , K satisfy condition (2.28) with r1(q) and rK+d+1(q)
according to Prop. 10 for all q ∈ S. With the gradient

∂

∂q

(
ρi

ρ

)T

=

(
−Yi

ρ
, . . . ,−Yi

ρ
,
1

ρ
− Yi

ρ
,−Yi

ρ
, . . . ,−Yi

ρ
, 0, 0, 0, 0

)T

,

which has
1

ρ
− Yi

ρ
at the ith column, we immediately get the desired result for the

mass fractions: ∂

∂q

(
ρi

ρ

)T

· r1/K+d+1 = −Yi

ρ
+
Yi

ρ
= 0

The proof, that u1(q) = m1/ρ is a Riemann invariant of the linearly degenerate
fields, is trivial, because condition (2.28) is exactly Eq. (2.76) for the gradient
(2.74). Inserting the partial derivatives of the pressure (2.60), (2.61) the gradient of
p(q) is

∂p(q)

∂q

T

= (φ1, . . . , φK ,−γ̄u1, · · · − γ̄ud, γ̄)
T

and we obtain the required results

∂p(q)

∂q

T

· rm =

{
φm − γ̄u2 + γ̄ (u2 − φm/γ̄) = 0 for m = 2, . . . , K + 1 ,
0 for K + 2 ≤ m ≤ K + d . �

Like in the standard case of a single polytropic gas (compare [171, 82, 187]), the
pressure p is constant over the contact discontinuity. Further on, Prop. 6 proves
that the mass fractions Yi remain constant over admissible shocks and rarefaction
waves. Fig. 2.2 displays the self-similar solution structure of the RP q(x, t) = v(ξ) =
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(ρ1(ξ), . . . , ρK(ξ),m1(ξ), . . . ,md(ξ), Ē(ξ))T with ξ = x/t, how it is now known from
Props. 5 and 6. It is obvious, that v(ξ) satisfies the relation

Yi(v(0)) =

{
Yi,L , u?

1 > 0 ,
Yi,R , u?

1 < 0 ,

which can be utilized to evaluate the exact fluxes of all partial densities ρi, i =
1, . . . , K as

fi(v(0)) = m1(0)×
{
Yi,L , u?

1 > 0 ,
Yi,R , u?

1 < 0 .

Larrouturou proves in [108] that the last expression is equivalent to

fi(v(0)) = fρ(v(0))×
{
Yi,L , fρ(v(0)) > 0 ,
Yi,R , fρ(v(0)) < 0

(2.77)

with fρ(v(ξ)) = m1(ξ) denoting the exact flux of the total density ρ.

2.3.7 Reactive Source Terms

We write the chemical production of a single species as product of its chemical
production rate in molar concentration per unit volume ω̇i = ω̇i(q) ∈ C1(S,R) and
its constant molecular weight Wi. External body forces are not considered and the
source term s(q) simply reads

s(q) = (W1 ω̇1, . . . ,WK ω̇K , 0, . . . , 0, 0)T . (2.78)

As the total density ρ =
∑K

i=1 ρi has to be conserved, changes in the partial densities
due to chemical reaction have to cancel, i.e.

K∑
i=1

Wi ω̇i = 0 . (2.79)

Reaction Mechanisms

The chemical production rates ω̇i(ρ1, . . . , ρK , T ) are derived from a reaction mecha-
nism that consists of J chemical reactions

K∑
i=1

νf
jiSi 


K∑
i=1

νr
jiSi , j = 1, . . . , J , (2.80)

where νf
ji and νr

ji are the stoichiometric coefficients of species Si appearing as a
reactant and as a product. Note, that especially for a large number of species the
majority of the coefficients νf

ji, ν
r
ji is usually zero in most reactions. The entire molar

production rate of species Si per unit volume is then given by

ω̇i(C1, . . . , CK , T ) =
J∑

j=1

(νr
ji − νf

ji)

[
kf

j

K∏
l=1

C
νf

jl

l − kr
j

K∏
l=1

C
νr

jl

l

]
, i = 1, . . . , K ,

(2.81)
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with kf
j (T ) and kr

j (T ) denoting the forward and backward reaction rate of each
chemical reaction. The reaction rates are calculated by the Arrhenius law

k
f/r
j (T ) = A

f/r
j T β

f/r
j exp(−Ef/r

j /RT ) . (2.82)

The parameters of some backward reaction rates might be derived by assuming
the corresponding chemical reaction to be in chemical equilibrium.3 But especially
simulations of detonation phenomena usually require mechanisms that utilize non-
equilibrium backward reaction rates at least for some of the reactions.

A chemical kinetics package (e.g. Chemkin [102] or LARKIN [13]) is usually
utilized to evaluate (2.81), (2.82) according to the particular reaction mechanism
and given thermodynamic data.

2.3.8 Alternative Formulations

Primitive Variable Formulation

In primitive variables the reactive multi-component Euler equations with chemical
reaction read

∂ρ

∂t
+

d∑
n=1

un
∂ρ

∂xn

+ ρ
d∑

n=1

∂un

∂xn

= 0 , (2.83)

∂um

∂t
+

d∑
n=1

un
∂um

∂xn

+
1

ρ

∂p

∂xm

= 0 , m = 1, . . . , d , (2.84)

∂p

∂t
+

d∑
n=1

un
∂p

∂xn

+ ρc2
d∑

n=1

∂un

∂xn

= ρc2ς̇ , (2.85)

∂Yi

∂t
+

d∑
n=1

un
∂Yi

∂xn

=
Wi ω̇i

ρ
, i = 1, . . . , K − 1 . (2.86)

The difference to the standard case without reaction [187] is the occurrence of the
term on the right side of the pressure equation (2.85) and the K − 1 quasi-linear
equations for Yi that follow directly from (2.90). The term ρc2ς̇ models the pressure
change due to chemical reaction under adiabatic conditions. A detailed derivation
of Eq. (2.85) can be found in the book of Fickett and Davis [73]. Herein, ς̇ denotes
the thermicity, which is defined by

ς̇ =
K∑

i=1

ς
i

Wi ω̇i

ρ
with ς

i
=

1

ρc2

(
∂p

∂Yi

)
e,ρ,Y1,...,Yi−1,Yi+1,...,YK

. (2.87)

3In chemical equilibrium the relation kr
j (T ) = kf

j (T )/Kc
j (T ) holds true with Kc

j (T ) denoting
the equilibrium constant. See [204] for further details.
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If we insert c2 = γRT and replace ∂p/∂Yi by the expression given in (2.61), we can
evaluate ς

i
as

ς
i
=
W

Wi

− hi

cpT
=

1

γ

(
W

Wi

− ei

cvT

)
. (2.88)

The Eqs. (2.83) to (2.86) and the conservative Euler equations introduced at the
beginning of Sec. 2.3 are equivalent for classical solutions only. They are not
equivalent for non-classical weak solutions like they have been introduced in Sec. 2.1,
because weak solutions of (2.83) to (2.86) can not be found simply by integration. In
particular, the Eqs. (2.83) to (2.86) are not conservative for vanishing source terms
and numerical methods utilizing (2.83) to (2.86) do not satisfy the Lax-Wendroff
theorem (see Sec. 4.1.2). Schemes built upon (2.83) to (2.86) do not approximate
weak solution of the Euler equations correctly, but they can be an alternative for
the calculation of classical solutions [187].

Overall Continuity Equation

The K species equations

∂ρi

∂t
+

d∑
n=1

∂

∂xn

(Yi ρun) = Wi ω̇i , i = 1, . . . , K , (2.89)

can be replaced by an overall continuity equation and K − 1 species equations

∂ρ

∂t
+

d∑
n=1

∂

∂xn

(ρun) = 0 ,
∂ρi

∂t
+

d∑
n=1

∂

∂xn

(Yi ρun) = Wi ω̇i , i = 1, . . . , K − 1 .

(2.90)
Both formulations are equivalent from the point of view of the exact solution
and – beside round-off errors – for the corresponding numerical approximation, be-
cause (2.90) is derived from (2.89) by simple linear combination and by applying
(2.79).



Chapter 3

Detonation Theory

In this chapter we recall briefly the theory of detonations as it can be found for
instance in the text books of Fickett and Davis [73] and Williams [204]. In Sec. 3.1
we introduce the classical one-dimensional detonation model, which has been pro-
posed independently by Zel’dovich [209], von Neumann [200] and Döring [57] (ZND).
We focus mainly on the derivation of the exact solution, because its knowledge is
essential in order to obtain reliable and reproducible initial data and to quantify
the deviation of numerical approximations exactly in terms of error norms (compare
Chap. 6). In Sec. 3.1 we consider the frequently used model of a single irreversible
reaction between two calorically perfect gases [92, 26, 162]. The results are extended
to an arbitrary number of thermally perfect species with detailed chemical reaction
in Sec. 3.1.2. In the Secs. 3.2 and 3.3 we give an introduction into the oscillatory
behavior of self-sustaining detonation waves. Emphasis is put on the description
of the hydrodynamic flow pattern in multiple space dimensions. The basic wave
pattern has been verified by numerous experiments [176, 178] and is the core of the
physical interpretation of the numerical results in the Chaps. 6 and 7.

3.1 Planar Detonation Structure

For the one-dimensional reactive multi-component Euler equations with overall con-
tinuity equation as presented in Sec. 2.3.8 we introduce the classical ZND detonation
model. The basic assumption of this model is that a detonation wave consists of a
leading hydrodynamic shock followed by a region of decaying continuous reaction
(compare Fig. 3.4). The shock causes an enormous pressure increase rising the
temperature above the ignition limit. After a characteristic ignition delay time a
shock-induced high-speed combustion toward the chemical equilibrium state occurs.
Since the detonation propagates forward with a supersonic velocity, the leading
shock front and the beginning of the combustion zone appear to be spatially sepa-
rated by the induction distance. The chemical reaction throughout the combustion
zone is continuous and is similar to the reaction in low-speed, subsonic deflagrations
(see [204] for a detailed explanation).

35
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We start our considerations with the simple chemical model of a single irreversible
reaction that has been discussed frequently in the literature. Detailed derivations of
the exact solution in this simplified case are given for instance by Fickett and Davis
[73] and by Williams [204]. Condensed presentations can be found for instance in
[92, 26, 162].

3.1.1 Simplified Reaction Model

We assume that the reaction mechanism consists just of one exothermic reaction
A −→ B with an energy release h0

A − h0
B =: ∆h0 > 0 and a forward reaction rate

kf (T ) = k exp(−EA/RT ). The mass production rates WAω̇A, WB ω̇B therefore read

WAω̇A = −kρA exp(−EA/RT ) , WB ω̇B = −WAω̇A .

Further, we assume that the species A and B are calorically perfect gases with
γ = γA = γB. In this case, the hydrodynamic pressure is evaluated from Eq. (2.59)
and with Z denoting the mass fraction of B we obtain the expression

p = (γ − 1)(ρe− ρ(1− Z)h0
A − ρZh0

B) .

Under the additional assumption h0
B = 0 we set q0 := ∆h0 = h0

A and derive the
equation of state for the simplified ZND-model

p = (γ − 1)(ρe− ρ(1− Z) q0) , (3.1)

from which we derive the expression

e =
p

ρ(γ − 1)
+ (1− Z) q0 (3.2)

for the internal energy e. Together with (3.1) the governing equations of the sim-
plified ZND-model are

∂ρ

∂t
+

∂

∂x
(ρu) = 0 , (3.3)

∂

∂t
(ρu) +

∂

∂x
(ρu2 + p) = 0 , (3.4)

∂

∂t
(ρE) +

∂

∂x
(u(ρE + p)) = 0 , (3.5)

∂

∂t
(ρZ) +

∂

∂x
(ρZu) = kρ(1− Z) exp(−E?

A ρ/p) (3.6)

with −E?
A = EA/WA. 1

1An equivalent model can be derived by assuming h0
A = 0 and setting q0 := ∆h0 = −h0

B . In this
case, the equation of state takes the modified form p = (γ − 1)(ρe? + ρZq0), while the Eqs. (3.3)-
(3.6) remain unchanged. Only E in (3.5) has to replaced by E? = e? +u2/2. All flow variables are
identical in both models, only the specific internal and total energy differ by an additive constant
q0, i.e. e? = e − q0 and E? = E − q0. The following formulas are valid for both models, because
the only step where the equation of state is inserted, from Eq. (3.15) to (3.16), is identical in both
cases (compare [73]).
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We now consider the special situation of a stationary reaction front propagating with
constant speed d? into a region of unburned gas with values ρ0, p0, u0 = 0, Z0 = 0.
Under this assumption all derivatives with respect to t in the Eqs. (3.3) to (3.6)
drop out and under the Galilean transformation x̀ = t d?−x these equations become

∂

∂x̀
(ρù) = 0 , (3.7)

∂

∂x̀
(ρù2 + p) = 0 , (3.8)

∂

∂x̀
(ù(ρE + p)) = 0 , (3.9)

∂

∂x̀
(ρZù) = kρ(1− Z) exp(−E?

A ρ/p) (3.10)

with velocity ù = d?−u. If we integrate the Eqs. (3.7) to (3.9) between an arbitrary
point x̀0 < 0 in the unburned gas region and an arbitrary point x̀ ≥ 0, we obtain

ρ(x̀) ù(x̀) = ρ0d
? , (3.11)

ρ(x̀) ù(x̀)2 + p(x̀) = ρ0(d
?)2 + p0 , (3.12)

ù(x̀) (ρ(x̀)E(x̀) + p(x̀)) = d?(ρ0E0 + p0) . (3.13)

To simplify the notations we omit the dependency on x̀ in the following formulas.
Utilizing (3.11) and the specific volume v := 1/ρ, v0 := 1/ρ0, Eq. (3.12) can be
transformed into the equation of the Rayleigh line

p− p0

v0 − v
−
(
d?

v0

)2

= 0 . (3.14)

A similar calculation and the exchange of E with e+ ù2/2 and E0 with e0 + (d?)2/2
transforms Eq. (3.13) into

e0 − e+
1

2
(p+ p0)(v0 − v) = 0 . (3.15)

The explicit equation of state (3.1) allows the elimination of e, e0 from the last
relation and we obtain the expression

p0v0 − pv

γ − 1
+ Zq0 +

1

2
(p+ p0)(v0 − v) = 0 , (3.16)

which can be transformed with Eq. (3.14) into the equation of the Hugoniot curve
for the ZND model(

p

p0

+ µ2

)(
v

v0

− µ2

)
= 1− µ4 + 2µ2 Zq0

p0v0

, (3.17)

where µ := (γ − 1)/(γ + 1).



38 CHAPTER 3. DETONATION THEORY

Normalization

The PDEs (3.3) to (3.5) and the equation of state (3.1) are invariant under the
normalization

P =
p

p0

, V =
v

v0

, ρ̄ =
ρ

ρ0

, U, Ù ,D =
u, ù, d?

√
p0v0

, (3.18)

E, ē =
E, e

p0v0

, Q0 =
q0
p0v0

, E?
0 =

E?
A

p0v0

.

However, a further factor (
√
p0v0)

−1 appears on the right side of Eq. (3.6). Under
the normalization (3.18) Eq. (3.6) becomes

∂

∂t
(ρ̄Z) +

∂

∂x
(ρ̄ZU) = K̄ρ̄(1− Z) exp

(
−E?

0

PV

)
with K̄ :=

k
√
p0v0

,

and we derive for our steady situation of interest the differential equation

∂Z

∂x̀
= K̄

(1− Z)

Ù
exp

(
−E?

0

PV

)
= K̄

(1− Z)

DV
exp

(
−E?

0

PV

)
=: K̄r(Z) . (3.19)

Finally, we normalize the length scale by

X̀ =
x̀

L
1/2
/K̄

with L
1/2

:=

1/2∫
0

dZ

r(Z)
, (3.20)

since the frequency factor K̄ can be eliminated under this specific choice and the
rate equation of the reaction (3.19) simplifies to

∂Z

∂X̀
= L

1/2
r(Z(X̀)) , X̀ > 0 , Z(0) = 0 (3.21)

with Z(1) = 1/2. The speed of sound in the unburned gas is c0 =
√
γp0v0. In dimen-

sionless variables according to (3.18) it reads C0 =
√
γ.2 In normalized quantities

according to (3.18), (3.20) relation (3.11) becomes

Ù = D − U = DV (3.22)

and the relations (3.14), (3.17) read

P − 1

1− V
−D2 = 0 , (3.23)

(P + µ2)(V − µ2) = 1− µ4 + 2µ2ZQ0 . (3.24)

Stationary solutions of (3.7)-(3.10) have to satisfy both relations (3.23) and (3.24)
for X̀ ≥ 0 and all values 0 ≤ Z(X̀) ≤ 1.

2We have chosen this particular normalization for all computations, because it is most frequently
used in the literature [204, 35, 34, 144]. But note, that some authors, e.g. Fickett and Davis [73], use
c0 to normalize all velocities (C0 = 1) and therefore obtain slightly different expressions throughout
the following analysis.
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Figure 3.1: Typical Hugoniot curves of a detonation and a deflagration intersected
by Rayleigh lines.

Equilibrium State and Chapman-Jouguet Point

We start our analysis of possible solutions of (3.23) and (3.24) with a discussion of
the simplified situation in the final equilibrium state with Z = 1. In Fig. 3.1 both
relations are visualized in a (P, V )-diagram for this particular case. Two different
situations have to be considered (see also the detailed descriptions in [45] and [204]):
If Rayleigh line and Hugoniot curve intersect in the upper branch for P > 1, V < 1,
the reaction front is called a detonation; if they intersect in the lower branch with
P < 1, V > 1, the reaction is a deflagration. A deflagration is characterized by
a decrease of pressure, while only a detonation leads to a pressure increase in the
equilibrium state. Hence, only intersections between Rayleigh line and Hugoniot
curve in the upper branch are consistent with our basic assumptions.

For a fixed Hugoniot curve (3.24) with Z = 1 the parameter D determines the
number of intersection points with (3.23). For D > D

CJ
we have two intersections.

The upper point A is associated to a strong detonation wave, the lower point C
corresponds to a weak detonation. Weak detonations are usually not observed in
practice. For D = D

CJ
Rayleigh line and Hugoniot curve are tangential in the single

point B with values (P
CJ
, V

CJ
), which is called Chapman-Jouguet (CJ) point, and for

D < D
CJ

there is no intersection. In the CJ point both derivatives dP/dV derived
from (3.23) and (3.24) have to be equal and after some algebraic manipulations we
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Figure 3.2: Hugoniot curves and Rayleigh lines for γ = 1.2, Q0 = 50, E?
0 = 50 in

the detonation branch.

find

V
CJ

=
γ(1 +D2

CJ
)

(γ + 1)D2
CJ

, P
CJ

=
1 +D2

CJ

γ + 1
. (3.25)

In order to compute D
CJ

these values are inserted into (3.24) for Z = 1:

D
CJ

+
γ

D
CJ

=
√

4γ + 2(γ2 − 1)Q0

The last relation leads to a quadratic equation with the solutions

D
CJ

=

√
(γ2 − 1)Q0

2
+ γ ±

√
(γ2 − 1)Q0

2
.

The plus sign corresponds to the sought upper CJ point B, while the minus denotes
the lower CJ point D in the deflagration branch. It follows immediately from the
relations of (3.25) that in both CJ points the equations

Ù
CJ

= D
CJ
V

CJ
=
γ(1 +D

CJ
)

(γ + 1)D
CJ

=
√
γP

CJ
V

CJ
= C

CJ

hold true. Hence, the Mach number in the CJ point M̀
CJ

= Ù
CJ
/C

CJ
calculated in

the frame of reference attached to the reaction front is equal to 1. The relation of
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Figure 3.3: Stationary ZND solutions for γ = 1.2, Q0 = 50, E?
0 = 50. At the x-axis

the normalized distance behind detonation front X̀ is displayed. Top: f = 1.0,
bottom: f = 1.8

a given detonation velocity D, d? to the corresponding CJ value D
CJ
, d

CJ
is usually

expressed in terms of the overdrive parameter

f :=

(
D

D
CJ

)2

=

(
d?

d
CJ

)2

. (3.26)

It is important to note, that the CJ point (P
CJ
, V

CJ
) denotes a particular equilibrium

state with Z = 1. Fig. 3.2 clearly illustrates that even the Rayleigh line of a CJ
detonation (f = 1.0) is intersected twice by all Hugoniot curves with 0 ≤ Z < 1. In
case of an overdriven detonation (f = 1.8) also the final Hugoniot curve for Z = 1
has two intersections with the corresponding Rayleigh line.

General Solution

For arbitrary D ≥ D
CJ

and arbitrary Z with 0 ≤ Z ≤ 1 a tedious algebraic
computation is necessary to evaluate the common points of Rayleigh line (3.14)
and Hugoniot curve (3.17). The strong detonation solution is

VS = V ?(1− γ−1ξ) , PS = P ?(1 + ξ) (3.27)
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with

V ? =
γ(1 +D2)

(γ + 1)D2
, P ? =

1 +D2

γ + 1
, ξ =

D2 − γ

1 +D2

√
1− Z

τ
, τ =

(D2 − γ)2

2(γ2 − 1)Q0D2
,

(3.28)
and the weak detonation solution reads

VW = V ?(1 + γ−1ξ) , PW = P ?(1− ξ) .

Together with the ODE (3.21) with r(Z) defined in (3.19) and the normalization
parameter L

1/2
given in (3.20) and relation (3.22) the equations of (3.27), (3.28)

specify the complete solution of a stationary strong detonation wave propagating
with constant speed D ≥ D

CJ
. The solution of the ODE (3.21) and the parameter

L
1/2

can only be calculated numerically. Note, that for V, P in (3.19) the values of
the strong detonation solution VS, PS from (3.27), (3.28) have to used. Two solutions
that have been computed with a standard explicit fourth-order Runge-Kutta method
(compare Sec. 4.10.1) with different overdrive parameters f are displayed in Fig.
3.3. Unlike to detonations utilizing detailed non-equilibrium chemistry (compare
Fig. 3.4) no clearly defined induction distance lig is visible in the graphs of Fig.
3.3. Hence, lig is no appropriate characteristic length scale for detonations with
simplified chemistry and we utilize the normalization length L

1/2
in the following for

this model instead.

3.1.2 Detailed Chemical Reaction

We extend the results of the previous section to the general case of thermally per-
fect gas-mixtures with detailed chemical reaction. Like in the simplified model of
Sec. 3.1.1 we follow Zel’dovich’s, von Neumann’s and Döring’s basic assumption
and propose that the detonation consists of a planar shock followed by a region of
decaying continuous combustion.

Once again, we consider a stationary reaction front under Galilean transforma-
tion with unburned gas values ρ0, p0, T0, u0 = 0 and initial mass fractions Y 0

1 , . . . , Y
0
K .

Analogously to Eqs. (3.7) to (3.10) we obtain

∂

∂x̀
(ρù) = 0 , (3.29)

∂

∂x̀
(ρù2 + p) = 0 , (3.30)

∂

∂x̀
(ùρH) = 0 , (3.31)

∂

∂x̀
(ρYiù) = Wiω̇i

(
ρ Y1

W1
, . . . , ρ YK

WK
, T
)
, i = 1, . . . , K − 1 , (3.32)

where we have replaced E + p/ρ by the total enthalpy H. Integration between a
point x̀0 < 0 and a point x̀ ≥ 0 gives Eq. (3.11) and after some manipulations we
again deduce the equation for the Rayleigh line (3.14). From Eq. (3.31) we obtain

ρHù = ρ0H0d
? .
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By inserting H = h(Y1, . . . , YK , T ) + ù2/2 and H0 := h(Y 0
1 , . . . , Y

0
K , T0) + (d?)2/2 we

derive the relation for the Hugoniot curve in the general case

h(Y1, . . . , YK , T ) +
ù2

2
− h(Y 0

1 , . . . , Y
0
K , T0)−

(d?)2

2
= 0 . (3.33)

With the new parameter ζ := ρ0/ρ = v/v0 we derive from Eqs. (3.11) and (3.14)
the explicit relations

ù(ζ) = d? − u(ζ) = ζd? , (3.34)

p(ζ) = p0 + ρ0(d
?)2(1− ζ) (3.35)

and from (3.33) the implicit equation

h(Y1, . . . , YK , T (ζ))− h(Y 0
1 , . . . , Y

0
K , T0) +

(d?)2

2
(ζ2 − 1) = 0 . (3.36)

Eq. (3.36) has only ζ as an unknown, because the temperature in the burned
region T (ζ) can be evaluated from the ideal gas law (2.53) by employing (3.35) and
ρ(ζ) = ρ0/ζ by

T (ζ) =
Wp(ζ)

Rρ(ζ)
=
W (p0 + ρ0(d

?)2(1− ζ))ζ

Rρ0

=
W

R

[(
T0
R
W0

+ (d?)2

)
ζ − (d?ζ)2

]
(3.37)

where p0 = ρ0T0R/W0 and W = (
∑
Yi/Wi)

−1, W0 = (
∑
Y 0

i Wi)
−1.

A comparison of the obtained relations with those of the previous section shows
that the parameter ζ is identical to the normalized specific volume V . Detonation
solutions of (3.35), (3.36) are therefore possible only for 0 < ζ < 1. From the
preceding section we know, that there will be no such solution for d? < d

CJ
, one

solution for d? = d
CJ

and two solutions for d? > d
CJ

. Again, we are interested in
strong detonations only and select the smallest value of ζ as the valid solution of
(3.36). A robust numerical method to solve (3.36)+(3.37) for d? ≥ d

CJ
can easily be

implemented by first searching a solution ζ1 in ]0, 1[ and by searching for a possible
smaller solution in the range ]0, ζ1 [ afterward. Supplemented with the ODE

∂Yi

∂x̀
=
Wiω̇i

(
ρ Y1

W1
, . . . , ρ YK

WK
, T (ζ)

)
ρ(ζ) ù(ζ)

, x̀ > 0 , Yi(0) = Y 0
i , i = 1, . . . , K − 1 ,

(3.38)
the relations (3.34) to (3.37) allow the numerical computation of stationary deto-
nations waves. The difference to the solution of the simplified ZND model is that
the evaluation of the right side of (3.38) always requires the computation of the
parameter ζ from (3.36)+(3.37). An example which has been calculated by utilizing
the semi-implicit GRK4A method of Kaps and Rentrop [100] (compare Sec. 4.10.1)
to integrate (3.38) and by applying an efficient root-finding algorithm to solve (3.36)
that uses a combination of bisection and the secant rule [54] is shown in Fig. 3.4.
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Figure 3.4: Detonation structure of a CJ detonation (d
CJ

≈ 1627 m/s) of
H2 : O2 : Ar with molar ratios 2 : 1 : 7 at T0 = 298 K and p0 = 6.67 kPa. The
abscissae display x̀ [cm], the distance behind the detonation front.
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Direct Integration in Primitive Variables

Instead of calculating intersections of Rayleigh line and Hugoniot curve in order
to find ρ, p, ù, it is also possible to solve the full system of stationary transport
equations simultaneously. This approach is described especially by Fickett and Davis
[73] and by Shepherd [167]. We apply the primitive variable formulation (2.83) to
(2.86) for d = 1. For the stationary situation of interest we obtain under Galilean
transformation

ù
∂ρ

∂x̀
+ ρ

∂ù

∂x̀
= 0 , ù

∂ù

∂x̀
+

1

ρ

∂p

∂x̀
= 0 , ù

∂p

∂x̀
+ ρc2

∂ù

∂x̀
= ρc2ς̇ , (3.39)

ù
∂Yi

∂x̀
=
Wi ω̇i

ρ
, i = 1, .. , K − 1 ,

from which we easily derive the system of ODEs

∂ρ

∂x̀
= −ρς̇

ξù
,

∂p

∂x̀
= −ρùς̇

ξ
,

∂ù

∂x̀
=
ς̇

ξ
,

∂Yi

∂x̀
=
Wi ω̇i

ρù
, i = 1, . . . , K − 1 (3.40)

with

ξ = 1−M2 , M =
ù

c
, c =

√
γ
p

ρ
, T =

pW

ρR
, W =

(∑ Yi

Wi

)−1

,

which is valid for x̀ > 0. Initial conditions for (3.40) at x̀ = 0 are ρ(0) = ρ
vN

,
ù(0) = ù

vN
, p(0) = p

vN
and Yi(0) = Y 0

i for i = 1, . . . , K − 1. Herein, ρ
vN

, ù
vN

and p
vN

denote the values at the head of the detonation front. The left limit of
the leading discontinuity is called the von Neumann point and its values can be
determined by applying the Rankine-Hugoniot jump conditions of Theorem 2 in
the one-dimensional form (2.22) at x̀ = 0. As the RH jump conditions are only
applicable to PDEs in conservation-law form (2.1) we have to use the Eqs. (3.3) to
(3.5) instead of the primitive formulation (2.83) to (2.85) for this. Under Galilean
transformation the discontinuity is at rest (σ = 0 in Eq. (2.22)) and by using
H = E + p/ρ we obtain

∆(ρù) = 0 , ∆(ρù2 + p) , ∆(ρùH) = 0 .

If the values in the unburned gas and at the vN point are inserted, we derive

ρ
vN
ù

vN
= ρ0d

? , ρ
vN
ù2

vN
+ p

vN
= ρ0 (d?)2

0 + p0 , ρ
vN
H

vN
ù

vN
= ρ0H0d

? .

Simple algebraic manipulations show, that the last equations are identical to (3.34)
to (3.36) with ζ

vN
:= ρ0/ρvN

. We solve (3.36) numerically to find ζ
vN

as discussed
before and calculate the values at the vN point by ρ

vN
= ρ0/ζvN

, ù
vN

= ζ
vN
d? and

p
vN

= p(ζ
vN

) from (3.35). Beside numerical round-off errors the direct integration
method gives the same result as the algebraic method described in the preceding
section.
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Equilibrium State and Chapman-Jouguet Point

Like in the simplified ZND model of Sec. 3.1.1 the Mach number M̀
CJ

= ù
CJ
/c

CJ

of the particular equilibrium state called the Chapman-Jouguet point with values
ρ

CJ
, p

CJ
, ù

CJ
, Y

CJ

i can be shown to be equal to 1. A proof of this fact can be found
in the book Williams [204]. Integration of (3.30) between a point x̀0 < 0 and x̀ = ∞
gives

ρ
CJ
ù2

CJ
+ p

CJ
= ρ0d

2
CJ

+ p0 .

Using ù
CJ

= c
CJ

=
√
γ

CJ
p

CJ
/ρ

CJ
we obtain from this expression

(γ
CJ

+ 1)p
CJ
− p0 − ρ0d

2
CJ

= 0 .

The last equation is only satisfied in the CJ point and can be employed to derive
an estimate for the unknown detonation velocity d

CJ
. All estimations of d

CJ
in this

thesis were calculated under the simplifying assumption of chemical equilibrium (see
Sec. 2.3.7) with the program Gaseq of Morley [131].

Induction Length

Unlike the examples with simplified chemistry shown in Fig. 3.3 the CJ detonation
with detailed chemistry in Fig. 3.4 has a clearly defined induction distance lig,
where the hydrodynamic flow values of the von Neumann point are nearly preserved
(compare Chap. 1). The induction distance lig is an appropriate characteristic
length scale for detonations with detailed chemical reaction. It can be estimated to
good accuracy by the simple expression

lig ≈ tigùvN
.

Herein, tig denotes the induction time between ignition and measurable chemical re-
action. It depends especially on the induction temperature T

vN
at the von Neumann

point and can be calculated by purely chemical kinetics computations in advance.
For the CJ detonation of Fig. 3.4 we have tig ≈ 3.55µs3 and with ù

vN
≈ 395.5 m/s

follows an approximate induction length of lig ≈ 1.404 mm.

3.2 Instabilities in Detonation Waves

The classical ZND theory postulates that detonations are quasi-one-dimensional
steady combustion waves. But already early experiments by Denisov and Troshin
[55], Voisekhovsky et al. [199] and later by Strehlow [181] and his coworkers have
shown that self-sustaining detonation waves in fact exhibit instationary multi-di-
mensional sub-structures and do not remain planar. For instance, it is a common
belief that Chapman-Jouguet detonations (f = 1.0) never remain planar, because

3For all measurements of induction times throughout this thesis the criterion T > T
vN

+ 20 K
has been applied.
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up to now, all such detonations in real combustible gas mixtures have been found
to be unstable to certain non-planar disturbances [204]. In particular, the one-
dimensional ZND solutions of the previous section and of Sec. 3.1.2 are instable even
to planar disturbances by themselves. Usually the corresponding unstable modes are
suppressed by stronger modes in the transverse directions, but galloping detonations
with a dominant longitudinal oscillation also have been observed occasionally.

The hydrodynamic stability analysis for the ZND model with simplified reaction
was pioneered by Erpenbeck [64, 65, 66, 68]. A review can be found in [67]. Fickett
and Davis [73] also describe Erpenbeck’s method in detail. In the linearized theory,
the time-dependent equations of motions are linearized around the steady solution
and it is analyzed, if arbitrary perturbations around the steady state will grow or
decay. Following Erpenbeck [65], Bourlioux, Majda and Roytburd gave in [35] a
detailed stability analysis in one space dimension for the frequently studied case
γ = 1.2, E?

0 = 50, Q0 = 50 utilizing a numerical method by Lee and Stewart
[111]. They found that the one-dimensional ZND detonation is stable for f > f?

0 =
1.73. Further on, they found one unstable mode for f ?

1 = 1.57 < f ≤ f ?
0 , two

unstable modes for f ?
2 = 1.39 < f ≤ f ?

1 and three unstable modes for at least
1.3 < f ≤ f ?

2 . For f = 1.2 they discovered five unstable modes. In [34] Bourlioux
and Majda extended the same linear stability method to two dimensions and were
able to estimate the degree of instability with respect to the wavelength of transverse
oscillations. Some more recent contributions to the topic of multi-dimensional linear
stability analysis are [174, 173] and [168].

Linearized theories have the disadvantage that they do not provide much infor-
mation about the flow pattern. In order to gain detailed insight into the hydrody-
namic flow approximate nonlinear theories have been developed. Their idea is to
replace the unstable steady solution by an oscillatory solution. Erpenbeck presented
a method based on a Fourier series expansion, which is developed up to terms of sec-
ond order, applicable to systems near the stability limit with only a single frequency
of oscillation [66, 68]. A theory based on geometric acoustics has been developed by
Strehlow and his coworkers [17, 16, 180, 179]. Tong and Abouseif derived a third
method that does not consider the Arrhenius reaction rate exp(−E?

0/T ), but the
square wave model which follows from the Arrhenius law for E?

0 −→ ∞ [4, 5]. The
same model is studied by linear stability analysis by Buckmaster and his collabora-
tors [39, 40, 37, 38].

All theoretical approaches clearly indicate that most ZND profiles are unstable
to transverse oscillations [68] unless the heat release Q0 and/or activation energy
E?

0 are very small or the overdrive factor f is very large [34].

3.3 Transverse Detonation Structure

Systematic experiments to enlighten the multi-dimensional sub-structure of deto-
nation waves were carried out for the first time by Strehlow and his coworkers
[176, 182, 177, 178]. In contrast to previous experiments [55, 199] they utilized tubes
with a rectangular cross-section to avoid the spinning of the detonation around the
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Figure 3.5: Regular smoke tracks for a H2 : O2 : Ar detonation with molar ratios
2 : 1 : 7 at T0 = 298 K and p0 = 6.67 kPa [176].

middle-axis. They coated the walls with soot and noticed that some particular det-
onation configurations left very regular patterns behind (see Fig. 3.5). For the first
time, schlieren photographs were taken showing that transverse instabilities initiate
instationary pressure waves perpendicular to the detonation front. A triple point is
created where a transverse pressure wave hits the leading shock front. A shear layer
(slip line) originates in each triple point and removes the soot from the walls. The
observed “fish-scale” patterns (see left picture of Fig. 3.6) were the trajectories of
these triple points. A closed cell between two trajectories is called a detonation cell.

The length L and the width λ of the detonation cells are important characteristic
parameters for a detonation configuration. These parameters are determined by the
ratio of the average propagation velocities of detonation front and transverse waves.
Although the planar detonation is perturbed, it has been observed that the average
velocity of a multi-dimensional Chapman-Jouguet detonation is still approximately
d

CJ
. On the other hand, the average propagation velocity of the transverse waves

is only slightly above the speed of sound in the final equilibrium state c
CJ

. The
fixed ratio c

CJ
/d

CJ
≈ 0.5 is common for CJ detonations, which explains that CJ

detonations with regular detonation cells all exhibit a nearly constant ratio λ/L ≈
0.6 [112, 197].

Shchelkin and Troshin [165] proposed a direct proportionality between λ and a
characteristic length scale of the stationary one-dimensional ZND structure, e.g. lig.
The linear equation

λ = C
R
lig (3.41)

with a reaction-dependent constant C
R

does not consider any non-linearities and is
only a rough estimation. Nevertheless, it predicts at least the order of the cell size
correctly [166].

The left picture of Fig. 3.6 displays the hydrodynamic flow pattern of a deto-
nation with regular cellular structure, how it is known since the early 1970th. The
right picture shows the wave configuration in a triple point in detail. This particu-
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Figure 3.6: Left: regular detonation structure at three different time steps on triple
point trajectories, right: enlargement of a periodical triple point configuration. E:
reflected shock, F: slip line, G: diffusive extension of slip line with flow vertex.

lar situation is reproduced periodically in space and in time. It consists of a Mach
reflection similar to the one observed in the non-reactive computation in Sec. 5.6.1.
The undisturbed detonation front is the incident shock, while the transverse wave
takes the role of the reflected shock. The triple point is driven forward by a strong
shock wave, called Mach stem. Mach stem and reflected shock enclose the slip line,
the contact discontinuity, which writes the soot tracks. Between these four discon-
tinuities only those configurations are admissible that satisfy the Rankine-Hugoniot
jump condition (2.10) at all four discontinuities. In a frame of reference attached
to the triple point the coupled shock relations can be analyzed effectively (see for
instance [204], [165] or [73]).

In self-sustaining detonations the Mach stem is always much stronger than the
incident shock. While pressure and temperature behind the incident shock are below
the von Neumann values of a plane ZND detonation, these quantities are drastically
increased by the Mach stem. Consequently, the induction length separating shock
and reaction zone is significantly shorter here than lig, while it is above lig behind the
incident shock. The shock front inside the detonation cell travels as two Mach stems
from point A to the line BC. In the point B and C the triple point configuration is
inverted nearly instantaneously and the front in the cell becomes an incident shock.
The change along the symmetry axis from A to D is smooth. From the beginning of
the detonation cell at A to its end at D the pressure and therefore the temperature
decrease continuously. At the end of the detonation cell the distance between the
head of the reaction zone and the incident shock is maximal. The two triple points
merge into one point exactly in position D. The incident shock vanishes completely
and the stable situation displayed in the right picture of Fig. 3.6 does not exists
anymore. The slip line, which was necessary for a stable triple point configuration
between Mach stem and incident shock, is torn off the detonation front and remains
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behind. Two new triple points with two new slip lines develop immediately after D.
Linear stability analysis of the growth rate of transverse oscillations for the sim-

plified two-dimensional ZND model [34] shows that the cell spacing λ corresponds
to the most unstable wavelength in the transverse direction. But it can not be ex-
pected that this spacing is reproduced exactly in combustion channels with finite
width w′. In a finite channel only periodic regular cells satisfying the equation

w′ = j
λ

2
, j ∈ N

can be produced. Especially a very thin channel can enforce a strong adaptation of
the detonation to the geometry leading to measurements that do not represent the
most unstable mode. But if the channel is wider or carefully chosen (in numerical
simulations), we can expect to observe a cell size that is at least relatively near
to the size that would occur in free space. The results of Bourlioux and Majda
in [34] clearly show that the length with maximal instability is only the global
maximum of a continuous function. In fact, this particular value is surrounded by
wavelengths that are only slightly more stable. Hence, the detonation usually has
some freedom in “choosing” an appropriate cell size and we can expect that at least
the qualitative behavior is reproduced correctly. Nevertheless, minor inaccuracies
in cell size measurements, that are regarded as natural in experiments, are also
unavoidable in numerical simulations.



Chapter 4

Numerical Methods

In this chapter we derive methods for the numerical solution of the reactive Euler
equations of Sec. 2.3. Our basic discretization is the finite volume (FV) approach,
which is derived in detail on two-dimensional Cartesian grids in Sec. 4.1. In our
presentation we focus especially on the numerical incorporation of the source term.
In Sec. 4.1.3 we introduce the solution technique which is most appropriate for
transient detonation waves: the operator splitting technique or method of fractional
steps [96]. It allows a decoupled numerical integration of the homogeneous transport
equations and the chemically reactive source term.

In Sec. 4.2 we describe the standard approaches in constructing first-order up-
wind schemes for the homogeneous equations. The MUSCL variable extrapolation
technique [191, 195] and the Wave Propagation Method [119, 107] are introduced
in Sec. 4.3 as two possible higher-order extensions. In the Secs. 4.4 to 4.7 we
employ these methods to construct high resolution upwind schemes for mixtures
of thermally perfect gases. After the notation of discrete boundary conditions and
the description of an efficient iterative method for the evaluation of the complex
equation of state in Sec. 4.4, we present in Sec. 4.5 the Flux-Vector Splittings of
Steger-Warming and Van Leer-type [169, 127, 109, 84]. The approximative Riemann
solvers of Roe and Harten-Lax-Van Leer (HLL) are derived in Sec. 4.6. Sec. 4.7
discusses the applicability of the two higher-order methods to mixtures of thermally
perfect gases. Only the MUSCL variable extrapolation is reliable and we describe a
robust reconstruction strategy.

The Secs. 4.8 and 4.9 summarize different known weaknesses of shock-capturing
upwind schemes. While Sec. 4.8 recalls problems that are present already in
the single-component case, Sec. 4.9 uncovers deficiencies associated to the multi-
component model. The Roe scheme is the only FV method that suffers from all men-
tioned problems. We demonstrate that artificial oscillations at strong shock waves
[154, 9], which typically would appear at the head of detonation waves [150, 14],
can be moderated or even avoided completely within the Roe scheme by adding nu-
merical viscosity to the flux approximation via the entropy correction [160]. Further
on, we describe how unphysical total and energy densities due to the Roe lineariza-
tion [62] can be circumvented by switching to the robust HLL scheme. Finally, we
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present a modification the Roe flux that ensures the positivity of the mass fractions
for all species [108]. All corrections are combined in Sec. 4.6.3 in a robust and
reliable Roe-type method. In Chap. 6 we demonstrate that this corrected Roe-HLL
scheme is superior for detonation simulations to all other tested upwind schemes. It
has been employed for all computations with detailed chemistry in Chap. 7.

In the last section of this chapter we describe briefly the numerical integration
of stiff reaction terms in the operator splitting approach and the practical choice of
typical parameters of black-box integration routines.

4.1 Finite Volume Methods

Various publications on the construction of finite volume schemes for hyperbolic
conservation laws are available today. Useful text books have been presented for
instance by Godlewski and Raviart [82], LeVeque [117], Toro [187], Kröner [105]
and Hirsch [94].

4.1.1 Generalities

Let us consider a Cauchy Problem in d space dimensions for the hyperbolic conser-
vation law (2.1) with s ≡ 0. Without loss of generality we set d = 2 in the following
to simplify the notations. We assume that the Cauchy problem has an entropy so-
lution q(x, t) (compare Sec. 2.1). The computational domain D is discretized with
a rectangular grid with mesh widths ∆x1,∆x2 in each coordinate direction and a
time step ∆t. The discrete mesh points are defined by

(xj
1, x

k
2) :=

((
j + 1

2

)
∆x1,

(
k + 1

2

)
∆x2

)
, j, k ∈ Z . (4.1)

Further on, it is useful to define

x
j−1/2
1 := xj

1 −
∆x1

2
, j ∈ Z and x

k−1/2
2 := xk

2 −
∆x2

2
, k ∈ Z . (4.2)

Discrete time values are defined by tl := l∆t , l ∈ N0. We denote the value in
the discrete point (xj

1, x
k
2, tl) by Ql

jk and define a piece-wise constant approximation
Q(x, t) to the exact solution q(x, t) by

Q(x, t) = Ql
jk for (x1, x2, t) ∈ [x

j−1/2
1 , x

j+1/2
1 [× [x

k−1/2
2 , x

k+1/2
2 [× [tl, tl+1[ .

The solution is approximated by an explicit (2s+ 1)2-point difference scheme of the
form

Ql+1
jk = H(∆t)(Ql

j−s,k−s, . . . ,Q
l
j+s,k+s) . (4.3)

Definition 8 (Stability). Scheme (4.3) is said to be stable, if for each time τ there
is a constant CS and a value l0 ∈ N such that ‖H(∆t)(Ql)‖ ≤ CS for all l∆t ≤ τ ,
l < l0.
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Definition 9 (Consistency). Scheme (4.3) is said to be consistent, if the local
truncation error

L(∆t)(x, t) :=
1

∆t

[
q(x, t+ ∆t)−H(∆t)(q(·, t))

]
satisfies ‖L(∆t)(·, t)‖ → 0 as ∆t→ 0.

Definition 10 (Convergence). Scheme (4.3) is said to be convergent, if the global
error E (∆t)(x, t) := Q(x, t) − q(x, t) satisfies ‖E (∆t)(·, t)‖ → 0 as ∆t → 0 for all
admissible initial data q0(x).

Consistency and stability are necessary conditions for convergence of a finite volume
method. But only in the linear case (compare Sec. 4.2.1) the Lax Equivalence
Theorem states that these conditions are also sufficient [117].

Definition 11 (Order of accuracy). Scheme (4.3) is said to be accurate of order
o, if for all sufficiently smooth initial data q0(x), there is a constant CL, such that
the local truncation error satisfies ‖L(∆t)(·, t)‖ ≤ CL∆to for all ∆t < ∆t0 , t ≤ τ .

For smooth solutions it can be proven that global and local truncation error are of
the same order provided the method is stable [117]. Detailed descriptions of these
classical notions can be found in the books of Kröner [105], Godlewski and Raviart
[81] and LeVeque [117].

Definition 12 (Conservative form). Scheme (4.3) is called conservative, if it
can be written in the form

Ql+1
jk = Ql

jk −
∆t

∆x1

(
F1

j+ 1
2
,k
− F1

j− 1
2
,k

)
− ∆t

∆x2

(
F2

j,k+ 1
2
− F2

j,k− 1
2

)
(4.4)

with

F1
j+ 1

2
,k

= F1(Ql
j−s+1,k−s, . . . ,Q

l
j+s,k+s) , F1

j− 1
2
,k

= F1(Ql
j−s,k−s, . . . ,Q

l
j+s−1,k+s) ,

F2
j,k+ 1

2
= F2(Ql

j−s,k−s+1, . . . ,Q
l
j+s,k+s) , F2

j,k− 1
2

= F2(Ql
j−s,k−s, . . . ,Q

l
j+s,k+s−1) .

The functions Fn are called numerical fluxes. In the following, we write F
1,±1/2
jk for

F1
j± 1

2
,k

and F
2,±1/2
jk for F2

j,k± 1
2

. A conservative scheme satisfies the discrete conserva-

tion property ∑
j,k∈Z

Ql+1
jk =

∑
j,k∈Z

Ql
jk . (4.5)

Definition 13 (Consistency of a conservative method). Scheme (4.4) is said
to be consistent with (2.1), if the numerical fluxes satisfy Fn(q, . . . ,q) = fn(q) for
all q ∈ S.

The Definitions 8 to 11 require an appropriate norm ‖.‖. The natural norm for
conservative finite volume methods is the L1-norm [117], which takes in our two-
dimensional case the form

‖v(·, t)‖1 =

∞∫
−∞

∞∫
−∞

|v(x1, x2, t)| dx1dx2 . (4.6)
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4.1.2 Conservation Laws with Source Terms

As the Euler equations are a system of nonlinear hyperbolic conservation laws, non-
classical weak solutions have to be considered (see Sec. 2.1). Finite difference
discretizations that are obtained by discretizing the system of PDEs directly, for in-
stance by replacing the derivatives in Eq. (2.1) simply by central differences, require
differentiability and are therefore restricted to classical solutions. The appropriate
alternative here is the finite volume (FV) approach that is based on the discretiza-
tion of the integral form (2.4) and leads to numerical schemes that are conservative
for s ≡ 0. Lax and Wendroff proved in their famous theorem that the limit q(x, t)
of a converging conservative scheme is always a weak solution [110].

We define a rectangular computational cell Cjk around each mesh point
(xj

1, x
k
2). The domain of cell Cjk reads

Ijk = [x
j−1/2
1 , x

j+1/2
1 [× [x

k−1/2
2 , x

k+1/2
2 [ . (4.7)

We use Ijk and the discrete time interval [tl, tl+1[ as integration domain in the integral
form (2.4) and obtain∫

Ijk

q(x, tl+1) dx−
∫

Ijk

q(x, tl) dx

+
d∑

n=1

tl+1∫
tl

∫
∂Ijk

fn(q(o, t))σn(o) do dt =

tl+1∫
tl

∫
Ijk

s(q(x, t)) dx dt . (4.8)

Within each computational cell Cjk the value Qjk(t) is an approximation to the
exact cell average value

Qjk(t) ≈
1

|Ijk|

∫
Ijk

q(x, t) dx . (4.9)

By employing the approximated values Qjk(t) instead of q(x, t) as argument for
s(q(x, t)) a natural approximation to the cell average of the source term function is
found immediately:

s(Qjk(t)) ≈
1

|Ijk|

∫
Ijk

s(q(x, t)) dx (4.10)

Furthermore, we define numerical flux functions Fn at the sides of Cjk by

F
1,+1/2
jk (Q(t)) ≈ 1

∆x2

x
k+1/2
2∫

x
k−1/2
2

f1(q(x
j+1/2
1 , x2, t)) dx2 ,
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F
2,+1/2
jk (Q(t)) ≈ 1

∆x1

x
j+1/2
1∫

x
j−1/2
1

f2(q(x1, x
k+1/2
2 , t)) dx1 .

We insert these approximations into (4.8) and divide by |Ijk|. We obtain

Qjk(tl+1) = Qjk(tl)−
d∑

n=1

1

∆xn

tl+1∫
tl

(
F

n,+1/2
jk (Q(t))− F

n,−1/2
jk (Q(t))

)
dt+

tl+1∫
tl

s(Qjk(t)) dt . (4.11)

Explicit Schemes

If the Euler Method is used to approximate all time integrals of Eq. (4.11), the
time-explicit scheme

Ql+1
jk = Ql

jk −
d∑

n=1

∆t

∆xn

(
F

n,+1/2
jk (Ql)− F

n,−1/2
jk (Ql)

)
+ ∆t s(Ql

jk) (4.12)

is derived. For s ≡ 0 the scheme is conservative. Although the Euler Method
is only first-order accurate, higher-order accuracy can be achieved by the choice
of proper numerical flux functions Fn. Various high resolution methods have been
developed for the case s ≡ 0 that resolve discontinuities sharply and that are at least
second-order accurate in smooth solution regions.1 The MUSCL-Hancock variable
extrapolation method that is employed throughout this thesis for this purpose is
described in Sec. 4.3. In the following we assume a consistent and stable high
resolution discretization of Fn that gives second-order accuracy on smooth solutions
for the special case s ≡ 0. Nevertheless, the accuracy of the entire scheme (4.12)
will only be of first order, because the source term discretization is just first-order
accurate in time. An explicit second-order alternative is

Ql+1
jk = Ql

jk −
d∑

n=1

∆t

∆xn

(
F

n,+1/2
jk (Ql)− F

n,−1/2
jk (Ql)

)
+

1

2
∆t
(
s(Ql

jk) + s(Ql
jk + ∆ts(Ql

jk))
)

(4.13)

that applies a two-stage Runge-Kutta method for the source term integral.

Mixed Explicit-Implicit Schemes

If all fluxes vanish, i.e. fn ≡ 0, Eq. (2.1) reduces to the ordinary differential equation
(ODE)

∂q

∂t
= s(q(t)) (4.14)

1Detailed presentations of different higher order reconstruction techniques can be found in the
books of Toro [187], Hirsch [94] and LeVeque [117].
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and our FV scheme (4.11) simplifies to the initial-value problem

Ql+1
jk =

tl+1∫
tl

s(Qjk(t)) dt

that can be solved separately in every computational cell. The efficiency of the time-
explicit schemes (4.12) and (4.13) can suffer significantly from the mathematical
properties of the ODE (4.14). If the ODE is stiff (see Def. 17) the explicit schemes
(4.12), (4.13) will undergo significant stability restrictions that reduce the maximal
time step drastically [56, 106]. From the theory of ODEs it can be concluded that
for instance scheme (4.12) can be guaranteed to be stable only, if the eigenvalues ξm
of the Jacobian ∂s(q)/∂q satisfy the condition |ξm + 1| < 1 for all m = 1, . . . ,M .2

Schemes for stiff ODEs should be time-implicit and in order to obtain a stable FV
scheme we have to discretize a least the source term integral in (4.11) with a time-
implicit method. Two alternatives with absolute stability and second-order accuracy
on the source term integral are

Ql+1
jk = Ql

jk −
d∑

n=1

∆t

∆xn

(
F

n,+1/2
jk (Ql)− F

n,−1/2
jk (Ql)

)
+

1

2
∆t
(
s(Ql

jk) + s(Ql+1
jk )
)

(4.15)
that is based on the Trapezoidal Rule and

Ql+1
jk = Ql

jk −
d∑

n=1

∆t

∆xn

(
F

n,+1/2
jk (Ql)− F

n,−1/2
jk (Ql)

)
+ ∆t s

(
1

2

(
Ql

jk + Ql+1
jk

))
(4.16)

that utilizes the Mid-Point Rule. Both methods require the solution of a nonlinear
equation for Ql+1

jk in every cell. In practice, even mixed schemes like (4.15) or (4.16)
are usually regarded to be too expensive. The accurate integration of a stiff source
term (especially in the case of detailed non-equilibrium combustion) can involve time
steps that are still significantly below a reasonable global time step ∆t (compare
Chap. 1). If the source term integration in only one single cell needs a time step
∆tc � ∆t, ∆tc would have to be used as global time step, although the changes in
the hydrodynamic flow during ∆tc might be negligible. A strict local phenomenon
would determine the efficiency of the entire scheme. Therefore, we introduce in
Sec. 4.1.3 a method that allows a more decoupled treatment of the time-implicit
source term discretization and the time-explicit hydrodynamic transport scheme.
This method is the operator splitting technique or method of fractional steps, which
is most frequently used for time-dependent reactive flow computations [137]. It is
the basic discretization throughout this thesis.

2See [56] for a detailed discussion of the region of absolute stability for the explicit Euler Method.
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Implicit Schemes

Most schemes for hyperbolic conservation laws rely on a flux approximation only on
the basis of tl, but in principle the same implicit quadrature rule that is applied to
the source term integral in (4.11) could also be used for the flux integrals. In this
case the numerical fluxes Fn

jk do not only depend on Ql but also on the unknown

values Ql+1. The major advantage of fully or globally implicit discretizations is that
the time step ∆t is (theoretically) not restricted by any stability considerations.3

Their principal disadvantage is, that they require the solution of a large coupled
system of nonlinear algebraic equations for all cell values in each time step and
become extraordinary expensive, if a large number of grid cells is unavoidable. Useful
references on time-implicit high resolution methods are [206, 88].

A thorough comparison of globally implicit and mixed explicit-implicit schemes
coupled by the method of fractional steps (compare Sec. 4.1.3) applied to time-
dependent reactive flow problems, in particular to one-dimensional ZND detonations
waves with simplified chemistry (compare Sec. 3.1.1), can be found in the work of
Geßner [78]. He noticed that the usage of larger time steps in fully implicit schemes
increases the numerical damping remarkably and that time-dependent results ob-
tained with such schemes (although computationally more cumbersome) are usually
less accurate in time than those of operator splitting methods. The fully implicit
approach is particular well suited for stationary, non-time-dependent flow problems
like they typically arise for instance in steady aerodynamics [207]. But it is inappro-
priate for the simulation of detonation waves, because detonations are characterized
by an intrinsically instationary behavior (compare Sec. 3.2). Consequently, globally
implicit schemes are not considered any further in this thesis.

4.1.3 The Method of Fractional Steps

The method of fractional steps is based on the idea of time-operator splitting that
has been introduced by Janenko [96]. The homogeneous partial differential equation

∂q

∂t
+

d∑
n=1

∂

∂xn

fn(q) = 0 , IC: Ql ∆t
=⇒ Q̃l+1 (4.17)

and the ordinary differential equation

∂q

∂t
= s(q) , IC: Q̃l+1 ∆t

=⇒ Ql+1 (4.18)

3A special case are numerical methods that follow characteristics backward in time. They dis-
cretize the flux integrals with an implicit quadrature rule, but ∆t is restricted by the standard
CFL condition (compare Eqs. (4.29) and (4.42)) of time-explicit schemes. High resolution schemes
of this type are for instance Colella’s Piece-Wise Linear Method that uses the Trapezoidal Rule
between the two discrete time points tl and tl+1 and Ben Artzi’s and Falcovic’s Generalized Rie-
mann Problem Method that applies the mid-point approximation at tl + 1

2∆t. See [187] for an
introduction to both methods.
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are solved successively with the result of the preceding step as initial condition
(IC). In each computational cell the source term is integrated separately, the global
coupling is achieved afterward by solving the homogeneous transport problem.

If we denote the discrete solution operator of (4.17) by H(∆t) and the discrete
operator of (4.18) by S(∆t), the entire splitting scheme (4.17)+(4.18) reads

Ql+1 = S(∆t)H(∆t)(Ql) . (4.19)

Scheme (4.19) is called Godunov splitting. It is only first-order accurate in time, even
if higher-order accurate operators S(∆t) and H(∆t) are employed [187]. A second-
order accurate alternative is

Ql+1 = S( 1
2
∆t)H(∆t)S( 1

2
∆t)(Ql) (4.20)

that is called Strang splitting [175]. But in many practical cases nearly identical
results are obtained with (4.19) and (4.20). Leaving the application of boundary
conditions aside the successive application of Strang splitting reads

S( 1
2
∆t)H(∆t)S(∆t)H(∆t)S(∆t) . . .S(∆t)H(∆t)S( 1

2
∆t)(Q0) ,

which is identical to Godunov splitting beside the first and the last step.

Local Sub-Cycling and Global Time Step Selection

The method of fractional steps decouples the physical processes of hydrodynamic
transport and chemical reaction. Especially, it allows the integration of the source
term with multiple time steps that can be chosen separately for each grid cell Cjk

(sub-cycling). The local time steps ∆tνjk are chosen with respect to the local stiffness
and required accuracy under the restriction

∆t =
∑

ν

∆tνjk .

A further advantage of the operator splitting approach with local sub-cycling is
that the source term need not be considered in the derivation of high resolution FV
schemes and existing implementations can be reused without modifications. On the
other hand, sophisticated ODE methods of high accuracy with automatic time step
adjustment and automatic switching between schemes for stiff and non-stiff ODEs
can be incorporated as a “black-box” (compare Sec. 4.10).

In principle, the method of fractional steps with local sub-cycling would allow
us to leave the source term integration completely aside when selecting the global
time step ∆t. But it has to be underlined that nevertheless all physical relevant
phenomena have to be resolved by the transport scheme. Especially stiff reaction
terms usually require a significant global time step reduction. Various heuristic
criteria have been proposed to detect such cases [137, 43]. But stiff source terms
also require a sufficiently fine spatial resolution that is able to represent the strong
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local flow changes due to the source correctly. If the mesh widths ∆xn are too
coarse, the unavoidable averaging in the cells can lead to utterly incorrect results
[123].

In this thesis, we only present sufficiently resolved calculations. A fully adaptive
mesh refinement approach (AMR) is utilized to supply the necessary local temporal
and spatial resolution dynamically on the basis of hydrodynamic refinement crite-
ria. The entire refinement strategy is described in detail in Chap. 5. In particular,
the heuristic error estimation derived in Sec. 5.4.2 provides a natural criterion to
recognize changes in the hydrodynamic flow caused by the source term. Conse-
quently, no additional limiting strategy for the time steps on the different levels of
the AMR hierarchy by an heuristic criterion derived from the source term had to be
implemented. In all computations included in this thesis (even those with stiff non-
equilibirum chemistry) a sufficient refinement was achieved by applying the criteria
of Sec. 5.4 only.4

Dimensional Splitting

The idea of operator splitting can also be applied to the solution of (4.17), i.e. to the
homogeneous operator H(∆t). A simple dimensional splitting scheme in two space
dimensions is

∂q

∂t
+

∂

∂x1

f1(q) = 0 , IC: Ql ∆t
=⇒ Q̃1/2 ,

∂q

∂t
+

∂

∂x2

f2(q) = 0 , IC: Q̃1/2 ∆t
=⇒ Ql+1 .

(4.21)

By denoting the single dimensional steps by X (∆t)
1 and X (∆t)

2 scheme (4.21) is written
in analogy to scheme (4.19) as

Ql+1 = X (∆t)
2 X (∆t)

1 (Ql) . (4.22)

The three-dimensional analogue simply reads Ql+1 = X (∆t)
3 X (∆t)

2 X (∆t)
1 (Ql). Like the

standard Godunov splitting (4.19) scheme (4.22) is first-order accurate in time, if

the solution operators X (∆t)
n are at least first-order accurate [187]. A second-order

accurate scheme (supposed that the operators X (∆t)
n are at least second-order) is

Ql+1 = X ( 1
2
∆t)

1 X (∆t)
2 X ( 1

2
∆t)

1 Ql) (4.23)

or Ql+1 = X ( 1
2
∆t)

1 X ( 1
2
∆t)

2 X (∆t)
3 X ( 1

2
∆t)

2 X ( 1
2
∆t)

1 (Ql) in three space dimensions. Dimen-
sional splitting is a simple and efficient possibility of extending high resolution
schemes that originally have been developed in one space dimension to multiple
dimensions. Therefore, we restrict our presentation of numerical schemes for the
hydrodynamic transport to the one-dimensional case.

4Geßner incorporated a sophisticated global time step limitation derived from local source term
integration into a fully adaptive refinement strategy, but noticed no improvement compared to the
fully adaptive approach alone for typical detonation problems with simplified chemistry [78].
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4.2 Upwind Methods

All modern high resolution FV schemes are built upon first-order accurate upwind
methods that utilize characteristic information. To introduce the idea of upwinding
and to supply the basis of the Flux Difference Splitting methods (see Sec. 4.2.4),
the upwind scheme for linear hyperbolic systems of conservation laws is derived.

4.2.1 Linear Upwind Scheme

In Sec. 2.2 we recalled the exact solution of the RP for the linear system (2.18).
It was found that the solution is self-similar, i.e. q(x, t) ≡ v(x/t). In particular,
q(0, t) = const. holds true for t ∈ R+. Hence, the flux F(q

L
,q

R
) := f(q(0, t)) =

Aq(0, t) can easily be evaluated for all times t for the exact solution (2.20)

F(q
L
,q

R
) = Aq

L
+
∑

λm<0

amλmrm = Aq
R
−
∑

λm≥0

amλmrm

=
∑

λm≥0

δmλmrm +
∑

λm<0

βmλmrm .
(4.24)

We introduce the notations

Λ+ := diag(λ+
1 , . . . , λ

+
M), λ+

m = max(λm, 0) = 1
2
(λm + |λm|) for all m = 1, ...,M ,

Λ− := diag(λ−1 , . . . , λ
−
M), λ−m = min(λm, 0) = 1

2
(λm − |λm|) for all m = 1, ...,M

and
A+ := RΛ+ R−1 , A− := RΛ−R−1

with
A = A+ + A− , |A| = A+ −A−

and express Eq. (4.24) with these definitions in short as

F(q
L
,q

R
) = Aq

L
+ A−∆q = Aq

R
−A+∆q = A+q

L
+ A−q

R
. (4.25)

Further on, summation yields the useful expression

F(q
L
,q

R
) =

1

2

(
Aq

L
+ Aq

R
− |A|∆q

)
. (4.26)

A numerical scheme for Eq. (2.18) that naturally considers the characteristic infor-
mation can now be constructed by assuming a FV discretization as introduced in
Sec. 4.1.2 with cell values Ql

j, j ∈ Z, l ∈ R+
0 and by solving the Riemann initial-value

problem between two neighboring cells in every time step. We choose Ql
j as q

L
and

Ql
j+1 as q

R
and introduce the notation ∆Ql

j+1/2 = Ql
j+1 −Ql

j. The numerical flux
function then reads

F(Ql) = F(Ql
j,Q

l
j+1) = AQl

j + A+∆Ql
j+1/2 = AQl

j+1 −A−∆Ql
j+1/2 .
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We insert these numerical fluxes into (4.12) and obtain the FV upwind scheme for
linear systems

Ql+1
j = Ql

j −
∆t

∆x

(
F(Ql

j,Q
l
j+1)− F(Ql

j−1,Q
l
j)
)

(4.27)

= Ql
j −

∆t

∆x

(
A−∆Ql

j+1/2 + A+∆Ql
j−1/2

)
. (4.28)

Scheme (4.27) is Godunov’s Method for Eq. (2.18), because the flux function f eval-
uated for the constant exact intermediate states q(xj+1/2, t) is utilized as numerical
flux. The scheme is first-order accurate [117]. Obviously, its numerical flux (4.26)
is consistent. As scheme (4.27) is linear, only stability is required further to prove
its convergence (compare Sec. 4.1.1).

CFL Condition

The linear upwind scheme (4.27) is stable under the Courant-Friedrichs-Levy (CFL)
condition [117, 187, 82]

|λm|∆t
∆x

≤ 1 , for all m = 1, . . . ,M . (4.29)

4.2.2 Nonlinear Equations

Godunov’s Method requires the exact solution q(x, t) of the RP between q
L

and q
R

at least for x = 0. But the values q
L
, q

R
are only approximations on a finite grid.

Satisfying results can often be obtained, if the intermediate RPs by themselves are
solved approximately. Schemes utilizing an approximative Riemann solver within
Godunov’s Method are said to be of Godunov-type.

In case of nonlinear hyperbolic systems even the approximate solution of the RP
can be a very challenging task, especially for complex equations of state (compare
Sec. 2.3.3). Therefore, methods for nonlinear systems usually avoid the evalua-
tion of the intermediate state and try to approximate the flux at x = 0 directly on
the basis of upwind directions of the neighboring values q

L
and q

R
. Two differ-

ent approaches here are Flux-Vector Splitting (FVS) and Flux-Difference Splitting
(FDS). FDS methods are of Godunov-type. They utilize a suitable linearization of
f(q) on the basis of q

L
and q

R
and solve the linear RP as described in Sec. 4.2.1.

FVS methods are simpler and do not employ any RP. Consequently they are not of
Godunov-type. Upwind directions are identified separately for q

L
and q

R
.

4.2.3 Flux-Vector Splitting Approach

The FVS approach requires a splitting of f(q) into two components f+(q) and f−(q),
such that the equation

f(q) = f+(q) + f−(q) (4.30)
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Figure 4.1: Splitting of the flux function within each computational cell at time tl.

is satisfied under the restriction that the eigenvalues λ̂+
m and λ̂−m of the split Jacobian

matrices

Â+(q) =
∂f+(q)

∂q
, Â−(q) =

∂f−(q)

∂q

fulfill the conditions λ̂+
m ≥ 0 and λ̂−m ≤ 0 for all m = 1, . . . ,M . Further on, the

splitting is required to reproduce regular upwinding, i.e.

f+(q) = f(q) , f−(q) = 0 if λm ≥ 0 for all m = 1, . . . ,M ,
f+(q) = 0 , f−(q) = f(q) if λm ≤ 0 for all m = 1, . . . ,M .

(4.31)

The FVS approach then approximates the unknown intermediate flux F(q
L
,q

R
) by

F(q
L
,q

R
) = f+(q

L
) + f−(q

R
) . (4.32)

The construction of the inter-cell numerical flux in the FVS method is shown in Fig.
4.1.

4.2.4 Flux-Difference Splitting Approach

The FDS approach uses an approximate Riemann solver to calculate an approxima-
tion to the unknown intermediate flux F(q

L
,q

R
). Instead of the RP between q

L
and q

R
for the nonlinear equation (2.17) a RP with the same initial data for the

modified conservation law
∂q̄

∂t
+
∂ f̄(q̄)

∂x
= 0 (4.33)

with a linear flux function f̄(q̄) = Â(q
L
,q

R
)q̄ is solved. Herein, Â(q

L
,q

R
) denotes

a suitable constant Jacobian chosen with respect to the initial data. The RP for
this modified linear conservation law can easily be solved exactly (see Sec. 2.2.1),
but care must be taken in the approximation of the intermediate flux F(q

L
,q

R
).

The obvious choice F̄(q
L
,q

R
) according to Eq. (4.24) leads to a scheme that is

inconsistent with the original conservation law. The scheme would satisfy a different
discrete conservation property than a scheme for the original conservation law and
would converge toward the wrong weak solution.
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Let SR denote the largest eigenvalue of the original and of the modified RP. We
evaluate the integral form (2.4) for both RPs over the domain [0, SR∆t] × [0,∆t]
and obtain for Eq. (2.17)

SR∆t∫
0

q(x,∆t) dx− SR∆tq
R

+ ∆t
[
f(q

R
)− F(q

L
,q

R
)
]

= 0 (4.34)

and for Eq. (4.33)

SR∆t∫
0

q̄(x,∆t) dx− SR∆tq
R

+ ∆t
[
f̄(q

R
)− F̄(q

L
,q

R
)
]

= 0 . (4.35)

As the integrals in (4.34) and (4.35) must be equal, we immediately find the correct
expression for the flux approximation for a scheme that internally utilizes a modified
conservation law:

F(q
L
,q

R
) = F̄(q

L
,q

R
)− f̄(q

R
) + f(q

R
) (4.36)

An analogous calculation for the smallest eigenvalue SL and integration over [SL∆t, 0]×
[0,∆t] gives

F(q
L
,q

R
) = F̄(q

L
,q

R
)− f̄(q

L
) + f(q

L
) . (4.37)

We insert for F̄(q
L
,q

R
) and f̄(q

L/R
) the expressions from Eq. (4.24) and (2.19) and

derive
F(q

L
,q

R
) = f(q

L
) +

∑
λ̂m<0

amλ̂mr̂m = f(q
R
)−

∑
λ̂m≥0

amλ̂mr̂m (4.38)

or in terms of the notations of Sec. 4.2.1

F(q
L
,q

R
) = f(q

L
) + Â−∆q = f(q

R
)− Â+∆q (4.39)

=
1

2

(
f(q

L
) + f(q

R
)− |Â|∆q

)
. (4.40)

If these flux approximations are used within a FV scheme, as it has been introduced
in Sec. 4.2.1, the update formula simply reads

Ql+1
j = Ql

j −
∆t

∆x

(
Â−(Ql

j,Q
l
j+1)∆Ql

j+ 1
2

+ Â+(Ql
j−1,Q

l
j)∆Ql

j− 1
2

)
. (4.41)

A necessary stability condition for scheme 4.41 is

max
j∈Z

|λ̂m,j+ 1
2
|∆t
∆x

≤ 1 , for all m = 1, . . . ,M . (4.42)

Note, that in the general nonlinear case condition (4.42) is only a necessary, but not
a sufficient condition for stability [117].
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Obviously, scheme (4.41) can be implemented without explicit evaluation of
F(q

L
,q

R
). It suffices to calculate the fluctuations

Â−(q
L
,q

R
)∆q =

∑
λ̂m<0

amλ̂mr̂m , Â+(q
L
,q

R
)∆q =

∑
λ̂m≥0

amλ̂mr̂m . (4.43)

With the notations A±∆ := Â±(q
L
,q

R
)∆q and by utilizing the waves Wm := amr̂m

the fluctuations (4.43) can be written as

A−∆ =
∑

λ̂m<0

λ̂mWm , A+∆ =
∑

λ̂m≥0

λ̂mWm . (4.44)

The wave formulation (4.44) is the basis of the Wave Propagation Method introduced
in Sec. 4.3.2.

4.3 Methods of Higher Order

Two contradictory requirements on numerical methods for nonlinear hyperbolic con-
servation laws are a higher order of accuracy in smooth solution regions and the ab-
sence of spurious (unphysical) oscillations near large gradients or discontinuities that
are visible in simple second order schemes, like Lax-Wendroff or Beam-Warming.5

One possibility to avoid spurious oscillations is to use a monotone scheme.

Definition 14 (Monotonicity). A finite volume scheme Ql+1
j = H(∆t)(Ql

j−s, . . . ,

Ql
j+s) is said to be monotone, if the updates after one step Vl+1

j = H(∆t)(Vl; j),

Wl+1
i = H(∆t)(Wl; j) of two given discrete sequences Vl = (Vl

j),W
l = (Wl

j) that

satisfy Vl
j ≥ Wl

j for all j ∈ Z, always satisfy Vl+1
j ≥ Wl+1

j for all j ∈ Z.

Consistent monotone methods can be proven to converge toward the entropy solution
[90, 46]. But unfortunately, the monotonicity requirement is too severe to construct
numerical schemes of higher order.

Theorem 4. A monotone method is at most first order accurate.

The proof of Theorem 4 can be found in [90]. Less restrictive than the monotonicity
property is the concept of total variation diminishing (TVD) schemes.

Definition 15 (TVD property). A scheme Ql+1
j = H(∆t)(Ql; j) is called total

variation diminishing (TVD), if the property

TV (Ql+1) ≤ TV (Ql)

is satisfied for all discrete sequences Ql. Herein, TV (Q) denotes the discrete total
variation, which is defined by

TV (Ql) :=
∑
j∈Z

|Ql
j+1 −Ql

j| .

5Typical examples for this behavior can be found for instance in [117] or [94].
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TVD schemes maintain the property that no new extrema in x can be created. Local
minima are non-decreasing, while local maxima are non-increasing (see [87] for the
proof). This property is called monotonicity-preserving.

Theorem 5. A monotonicity-preserving three-point scheme Ql+1
j = H(∆t)(Ql

j−1,Q
l
j,

Ql
j+1) is at most first-order accurate.

The proof for Theorem 5 can also be found in [87]. TVD schemes of higher order
employ at least five discrete points and usually have the form

Ql+1
j = H(∆t)(Ql

j−2,Q
l
j−1,Q

l
j,Q

l
j+1,Q

l
j+2) .

Theorem 6. A conservative consistent scheme is total variation diminishing (TVD),
if it can be written in viscous form (see Def. 16).

Godlewski and Raviart show in [81] that Theorem 6 is equivalent to the incremental
form originally utilized by Harten in [87].

The theoretical base of TVD methods is sound for scalar problems only, but the
concept can be used as a guideline for the construction of powerful numerical meth-
ods for nonlinear systems that are higher-order accurate in smooth regions of the
solution and that approximate discontinuities sharply without artificial overshoots.
Such schemes are called high resolution schemes. It has to be underlined, that
monotonicity-preserving TVD schemes do not necessarily converge toward the en-
tropy solution. The Roe scheme without entropy correction (see Sec. 4.6.2) is an
example for a first-order accurate scheme, which is TVD in most situations (compare
Sec. 4.8.2), but can violate the entropy condition.

The TVD concept only makes sense for homogeneous conservation laws with
s ≡ 0. It is no appropriate guideline for the construction of numerical methods that
solve the inhomogeneous equation (2.1) directly, because the source term s(q) may
increase the total variation of the exact solution and it would be inadequate to try
to construct numerical schemes that attempt to suppress this behavior [187]. As we
employ the method of fractional steps and solve the homogeneous equation (4.17)
and the ODE (4.18) separately (see Sec. 4.1.3) we are justified to employ a TVD
scheme for the solution of (4.17).

4.3.1 MUSCL-Hancock Method

A method for the practical construction of second-order five-point TVD schemes,
especially on the basis of Godunov-type upwind schemes, has been developed by Van
Leer in a series of papers [191, 192, 193, 194, 195]. Profound descriptions of this
technique, which is also called the variable extrapolation approach or slope limiting
can be found in the books of Toro [187] and Hirsch [94]. To simplify the notations
we restrict the description to scalar problems and note that satisfactory, oscillation
free results are obtained, if the technique is simply applied component-wise in the
case of nonlinear systems.
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In the MUSCL (Monotone Upwind Schemes for Conservation Laws) variable
extrapolation method the cell-wise constant approximation Ql

j is replaced by a linear

(ω = 0) or quadratic interpolation (ω 6= 0) Q̃j(x), x ∈ [xj−1/2, xj+1/2] between the
three values Ql

j−1, Q
l
j and Ql

j+1. This interpolation is second-order accurate for

ω = 1/3 and first-order accurate for all other values [94]. Special factors Φ
±
j∓1/2,

called slope limiters are utilized to restrict the gradients used for this interpolation to
ensure the TVD property. In smooth solution regions Φ

±
j∓1/2 ≈ 1 should be satisfied,

while near discontinuities Φ
±
j∓1/2 must vanish appropriately to avoid overshoots that

violate the TVD condition. At the boundaries of cell j the one-sided extrapolated
and limited values read

Q̃
L

j+ 1
2

= Ql

j
+

1

4

[
(1− ω) Φ

+

j− 1
2
∆j− 1

2
+ (1 + ω) Φ

−
j+ 1

2
∆j+ 1

2

]
, (4.45)

Q̃
R

j− 1
2

= Ql

j
− 1

4

[
(1− ω) Φ

−
j+ 1

2
∆j+ 1

2
+ (1 + ω) Φ

+

j− 1
2
∆j− 1

2

]
(4.46)

with ∆j−1/2 = Ql
j − Ql

j−1, ∆j+1/2 = Ql
j+1 − Ql

j. Note, that only for ω = 0 the
following conservation property is satisfied:

Ql

j
=

1

∆x

xj+1/2∫
xj−1/2

Q̃(ξ) dξ

Time Integration

It is possible to use the extrapolated values Q̃L and Q̃R for the flux approxima-
tion with any of the first-order upwind methods of the preceding sections. In this
case F (Q̃L

j+1/2, Q̃
R
j+1/2) would be used for instance at xj+1/2 instead of F (Ql

j, Q
l
j+1).

The result would be a scheme, which is higher-order in space, but only first-order
in time [94]. A scheme that gives second-order accuracy in space (for ω 6= 1/3)
and in time can be constructed by applying the Mid-Point Rule approximation in
time. Following an idea of Hancock, Van Leer suggested to construct extrapolated
values first and to evolve these values by ∆t/2 before they are utilized for the flux
approximation [196]. For instance F (Q̄L

j+1/2, Q̄
R
j+1/2) is now used at xj+1/2. The

evolved extrapolated values are constructed by a standard time-explicit first-order
FV discretization by

Q̄
L

j+ 1
2

= Q̃
L

j+ 1
2
− 1

2

∆t

∆x

(
f(Q̃

L

j+ 1
2
)− f(Q̃

R

j− 1
2
)
)
,

Q̄
R

j− 1
2

= Q̃
R

j− 1
2
− 1

2

∆t

∆x

(
f(Q̃

L

j+ 1
2
)− f(Q̃

R

j− 1
2
)
)
.

A slightly different second-order method can be constructed by evolving the values
of the old time level by ∆t/2 first, i.e.

Q?
j = Ql

j
− 1

2

∆t

∆x

(
F (Ql

j+1
, Ql

j
)− F (Ql

j
, Ql

j−1
)
)

and by constructing extrapolated values Q̃L, Q̃R from Q? for the flux approximation
in the second step. The advantage of the MUSCL-Hancock Method is that it avoids
the expensive evaluation of F in the first step and uses a reasonable inter-cell flux
approximation on the basis of f .
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Slope Limiters

The crucial task in both approaches is of course the choice of the slope limiter
function Φ that is used to define Φ±

j∓1/2 by

Φ
+

j− 1
2

:= Φ
(
r+
j− 1

2

)
, Φ

−
j+ 1

2
:= Φ

(
r−
j+ 1

2

)
with r+

j− 1
2

:=
∆j+ 1

2

∆j− 1
2

, r−
j+ 1

2

:=
∆j− 1

2

∆j+ 1
2

such that the entire scheme is TVD and therefore monotonicity-preserving. Using
the identity r−

j+ 1
2

= 1/r+
j− 1

2

the Eqs. (4.45), (4.46) can be written in the form

Q̃
L

j+ 1
2

= Q
j
+ 1

2
Ψ
(
r+
j− 1

2

)
∆j− 1

2
, Q̃

R

i− 1
2

= Q
j
− 1

2
Ψ
(
r+
j+ 1

2

)
∆j+ 1

2

with

Ψ(r) =
1

2

[
(1− ω)Φ(r) + (1 + ω) rΦ

(
1

r

)]
. (4.47)

The condition for both methods to be TVD for any Courant number 0 ≤ CCFL ≤ 1
is the well-known inequality

Ψ(r) < min(2, 2r) . (4.48)

The rigorous proof of the validity of the last relation for the MUSCL-Hancock
Method can be found for instance in the book of Toro [187]. Hirsch presents a
similar proof for the second, less efficient scheme [94]. Frequently used slope limiter
functions Φ constructed under condition (4.48) are (in ascending order of sharp re-
production of discontinuities, compare left picture of Fig. 4.10) the Minmod-type
limiter

Φ(r) = max(0,min(r, 1)) , (4.49)

the Van Albada-type limiter [190]

Φ(r) = max

(
0,
r2 + r

1 + r2

)
, (4.50)

the Van Leer-type limiter [192]

Φ(r) =
r + |r|
1 + |r|

, (4.51)

and the Superbee-type limiter [157]

Φ(r) = max(0,min(2r, 1),min(r, 2)) . (4.52)

All these functions satisfy Φ(1) = 1,Φ(0) = 0 and the symmetry property

Φ(r) = rΦ

(
1

r

)
(4.53)

under which Eq. (4.47) reduces to Ψ(r) = Φ(r). The functions (4.49) and (4.50)
satisfy Φ(∞) = 1, while (4.51) and (4.52) satisfy Φ(∞) = 2. Comparisons of the
functions (4.49) to (4.52) used as slope limiters for MUSCL are presented by Hirsch
[94] and Toro [187].



68 CHAPTER 4. NUMERICAL METHODS

4.3.2 Wave Propagation Method

The Wave Propagation Method of LeVeque is a second-order accurate extension for
FDS schemes that utilize the fluctuations (4.43) instead of the numerical fluxes, see
[119, 118, 107, 120]. The method is very attractive, because the wave propagation
formulation allows a second-order accurate multi-dimensional scheme without any
dimensional splitting (compare Sec. 4.1.3).

One Space Dimension

Utilizing the wave formulation (4.44) the one-dimensional Wave Propagation Method
reads

Ql+1 = Ql
j −

∆t

∆x

(
A−∆j+ 1

2
+A+∆j− 1

2

)
− ∆t

∆x

(
F̃j+ 1

2
− F̃j− 1

2

)
. (4.54)

Herein, F̃j±1/2 denote additional terms that are necessary to achieve second-order
accuracy in smooth regions of the solution. The basic second-order scheme of the
Wave Propagation Method is the Lax-Wendroff scheme. At each cell interface F̃j+1/2

is uniquely defined as the difference between the second-order Lax-Wendroff flux and
the first-order upwind flux (4.2.1). This difference reads

F̃j+ 1
2

=
1

2
|A|
(

1− ∆t

∆x
|A|
)

∆j+ 1
2

=
1

2

M∑
m=1

|λ̂m
j+ 1

2
|
(

1− ∆t

∆x

)
|λ̂m

j+ 1
2
| W̃m

j+ 1
2
. (4.55)

In order to achieve a total variation diminishing scheme, limited waves W̃m
j+1/2 are

used instead of the original waves Wm
j+1/2 := am

j+1/2r̂
m
j+1/2. The wave limiting is

calculated by

W̃m
j+ 1

2
= Φ(Θm

j+ 1
2
)Wm

j+ 1
2

(4.56)

with

Θm
j+ 1

2
=

{
am

j− 1
2

/am
j+ 1

2

, λ̂m
j+ 1

2

≥ 0 ,

am
j+ 3

2

/am
j+ 1

2

, λ̂m
j+ 1

2

< 0 .

All limiter functions (4.49) to (4.52) can be applied as wave limiters in (4.56). A
detailed presentation of the construction of the second-order correction term (4.55)
and the wave limiting (4.56) can be found in [118]. Setting Ã+∆j+1/2 := A+∆j+1/2+

F̃j+1/2 and Ã−∆j−1/2 := A−∆j−1/2 − F̃j−1/2 we can write Eq. (4.54) in short as

Ql+1
j = Ql

j −
∆t

∆x

(
Ã−∆j+ 1

2
+ Ã+∆j− 1

2

)
.
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Figure 4.2: Waves included in the two-dimensional Wave
Propagation scheme (4.58).

Two Space Dimensions

We only describe the Wave Propagation Method in two space dimensions. The three-
dimensional extension is analogously to the two-dimensional case, but is technically
more tedious. A complete description for all space dimensions can be found in [107].
For clarity, we write B instead of A2 and y for x2 in the following.

The two-dimensional scheme is based on a second-order accurate Taylor expan-
sion of the solution q(x, y, t) of the linear advection equation

qt + Aqx + Bqy = 0 (4.57)

at t+ ∆t [107]:

q(t+∆t) = q−∆t(Aqx+Bqy)+
1

2
∆t2

(
A2qxx + BAqxy + ABqyx + B2qyy

)
+O(∆t3)

Neglecting third-order terms and rearranging gives

q(t+ ∆t) = q−∆t

(
Aqx −

1

2
∆tA2qxx −

1

2
∆tABqyx

)
−∆t

(
Bqy −

1

2
∆tB2qyy −

1

2
∆tBAqxy

)
.

While the terms Aqx − 1
2
∆tA2qxx, Bqy − 1

2
∆tB2qyy are approximated appropri-

ately by the second-order accurate fluctuation terms Ã±∆ and B̃±∆, the two cross
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derivatives need further consideration. In the Wave Propagation Method they are
approximated by applying a FDS scheme in the transverse direction on Ã±∆ and
B̃±∆. The update formula for the two-dimensional second-order accurate method
is

Ql+1
jk = Ql

jk −
∆t

∆x

(
Ã−∆j+ 1

2
,k −

1

2

∆t

∆y

[
A−B̃−∆j+1,k+ 1

2
+A−B̃+∆j+1,k− 1

2

]
+

Ã+∆j− 1
2
,k −

1

2

∆t

∆y

[
A+B̃−∆j−1,k+ 1

2
+A+B̃+∆j−1,k− 1

2

])
−∆t

∆y

(
B̃−∆j,k+ 1

2
− 1

2

∆t

∆x

[
B−Ã−∆j+ 1

2
,k+1 + B−Ã+∆j− 1

2
,k+1

]
+

B̃+∆j,k− 1
2
− 1

2

∆t

∆x

[
B+Ã−∆j+ 1

2
,k−1 + B+Ã+∆j− 1

2
,k−1

])
.

(4.58)

The origins of the wave contributions in Eq. (4.58) are visualized in Fig. 4.2. If the
cross derivative fluctuations are added to the fluctuations in the normal direction,
Eq. (4.58) takes the simple form

Ql+1
jk = Ql

jk−
∆t

∆x

(
Â−∆j+ 1

2
,k + Â+∆j− 1

2
,k

)
−∆t

∆y

(
B̂−∆j,k+ 1

2
+ B̂+∆j,k− 1

2

)
. (4.59)

The proof of second-order accuracy in smooth solution regions for scheme (4.58)
can be found in [119]. The exact proof is only valid for the linear equation (4.57),
but the usage of linearized Riemann solvers analogously to Sec. 4.2.4 allows the
application of formula (4.58) also in the nonlinear case. In combination with an ap-
propriate limiting strategy, that constructs total variation diminishing second-order
accurate fluctuations Ã±, B̃±, formula (4.58) defines a powerful multi-dimensional
high resolution scheme.

The main disadvantage of the Wave Propagation Method is its expense. While
the Strang splitting (4.23) involves the solution of three RPs, Eq. (4.58) requires
the solution of two RPs in the normal and four in the transverse direction. A Strang
splitting in three space dimensions needs five RPs, but the corresponding extension
of the Wave Propagation Method uses three RPs in the normal direction and a
minimum of 36 transverse RPs (see the three-dimensional algorithm in [107]).

4.4 Multi-Component Euler Equations

In the Secs. 4.5 to 4.7 we develop conservative high resolution finite volume methods
for the homogeneous multi-component Euler equations for thermally perfect gases.
In this section we supply generalities independent of a particular scheme. We for-
mulate appropriate discrete boundary conditions and discuss the practical solution
of the implicit temperature equation. Further on, a standard test case is specified.
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4.4.1 Discrete Boundary Conditions

The application of a one-dimensional FV scheme (4.27) on a domain [0, b] discretized
with N finite volumes requires a boundary flux approximation Fl

1/2 at x = 0 and

an approximation Fl
N+1/2 at x = b. In Sec. 2.3.1 we introduced three different

types of boundaries for the multi-component Euler equations: Reflective, inflow
and transmissive boundaries. Those can be implemented by prescribing the dis-
crete fluxes at the boundaries directly or by employing fictitious values Ql

0(Q
l
1) and

Ql
N+1(Q

l
N) leading to the computation of the required boundary fluxes in the flux

approximations F(Ql
0,Q

l
1) and F(Ql

N ,Q
l
N+1). The usage of such ghost cells can be

recommended especially for implementations that should be used within parallel or
adaptive algorithms (compare Sec. 5.2).

If we prescribe for instance the discrete flux at a reflective boundary at x = b
directly, we evaluate condition (2.35) for Ql

N and use

Fl
N+1/2 = (0, . . . , 0, p(Ql

N), 0) . (4.60)

A corresponding ghost cell value is in primitive variables

ρi,N+1 = ρl
i,N , ul

1,N+1 = −ul
1,N , pl

N+1 = pN

or

Ql
m,N+1 =

{
− Ql

m,N , for m = K + 1,
Ql

m,N , for m = 1, ..., K,K + 2
(4.61)

in conservative quantities [187]. If this ghost cell value is used in the numerical flux
approximation F(Ql

N ,Q
l
N+1), every reasonable scheme for Euler equations should

be identical to (4.60). If the numerical stencil requires s > 1 ghost cells (compare
Def. 4.3), we apply condition (4.61) symmetrically, i.e. we set Ql

N+1+κ(Q
l
N−κ) for all

κ = 0, . . . , s−1. At an inflow boundary with the time-dependent Dirichlet boundary
value qi(t) we simply use

Fl
N+1/2 = f(qi(tl)) (4.62)

as prescribed flux and
Ql

N+1 = qi(tl)

as ghost cell value. At a reasonably chosen inlet the value qi(tl) is identically
preserved at least in Ql

N and a consistent numerical flux approximation (see Def.
13) returns (4.62). The difficult von Neumann boundary condition (2.36) at an
outlet can be implemented approximately by setting

Fl
N+1/2 = f(Ql

N) .

The same boundary flux is returned by every consistent numerical flux approxima-
tion, if

Ql
N+1 = Ql

N

is used in the ghost cells.
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4.4.2 Evaluation of the Temperature

Thermally perfect gases require the computation of the temperature T from the
conserved quantities Q by solving the implicit equation (2.56). As the unique solv-
ability of Eq. (2.56) has been proved in Prop. 1, the practical solution of Eq. (2.56)
is a straight-forward task (see also [71]). We start the solution procedure in each
computational cell by applying a standard Newton method to Eq. (2.56), i.e.

Tι+1 = Tι −
ϕ(Qj, Tι)

ϕ′(Qj, Tι)
.

Herein, ϕ′(·, T ) is the derivative of ϕ(·, T ) with respect to T , which has already been
evaluated in Eq. (2.58). We use the temperature value of the preceding time step
t−∆t as initial value Tι=0 to start the Newton iteration. If the Newton method does
not converge in a reasonable number of iterations, we apply a standard bisection
technique. The bisection method is always guaranteed to converge, because ϕ(·, T )
is a strict monotone function (see proof of Prop. 1). Lower and upper limit of
the possible temperature-range of the approximating polynomials for cpi(T ) are the
appropriate initial bounds for the bisection iteration.

In order to speed up the evaluation of cpi(T ) and hi(T ) we construct two con-
stant tables for each species during the startup of the computational code (compare
[71]). They store the values cpi(Tν) and hi(Tν) of all integer values Tν in the valid
temperature range. Values for intermediate temperatures Tν < T < Tν+1 are con-
structed by linear interpolation between Tν and Tν+1. The tables are initialized by
utilizing the functions of the Chemkin-II-library [102]. Throughout this thesis only
the thermodynamic constants for (2.45) and (2.46) from the standard Chemkin-II
thermodynamical data base [103] have been applied.

4.4.3 Shocktube Example

We use the RP of Tab. 4.1 as a first non-reactive test to evaluate the upwind
schemes of the following sections. The computational domain has a length of 10 cm
and has outflow boundary conditions on both sides. The gas is thermally perfect
O2. The computations are stopped after 80µs, when the three different simple
waves that occur in this RP are clearly separated. Fig. 4.3 displays a highly
resolved reference computation on a grid of 4000 cells utilizing the Roe scheme
of Sec. 4.6.1 with entropy correction and second-order MUSCL variable extrap-
olation. Fig. 4.3 shows that the solution consists of a shock at the right, a

x [cm] x < 3 x > 3
ρ [kg m−3] 1.1 0.25
u1 [m s−1] 270 170
p [kPa] 110 25

Table 4.1: Riemann ini-
tial data for Test 1.

moving contact discontinuity in the middle and
a transonic rarefaction wave. All numerical tests
were run on a grid of 200 cells (∆x = 0.05 cm).
With automatic adjustment of ∆t in order to
achieve a maximal Courant number of CCFL ≈
0.8 in every step the computations require ap-
proximately 170 discrete time steps.
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Figure 4.3: Reference solution of Test 1. Gas: O2, thermally perfect.

4.5 Flux-Vector Splitting

In this section we apply the FVS approach introduced in Sec. 4.2.3 to the multi-
component Euler equations for thermally perfect gases. Although we have assumed
a one-dimensional FV scheme to simplify the notations, all numerical flux approxi-
mations are formulated for the general d-dimensional case. In a dimensional splitting
method (compare Sec. 4.1.3) the given formulae correspond to to the approximation
of f1. The flux approximations in the other directions follow directly by interchang-
ing the velocities u1, . . . , ud canonically.

All presented methods have been derived around 1990 for two thermally perfect
gases in one space dimension. The simple Steger-Warming FVS was published by
Larrouturou and Fezoui [109], Liu and Vinokur [127] and Grossman and Cinella [84].
Extensions of the Van Leer FVS can be found in multiple works [169, 127, 109, 84],
although only Shuen, Liou and Van Leer [169] and Vinokur and Montagné [198]
presented the essential derivation for a single thermally perfect gas in detail. In the
following, we briefly review and extend this extensive literature for our purpose.
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4.5.1 Steger-Warming Splitting

If the flux function f(q) satisfies the homogeneity property, i.e. f(q) = A(q)q, a
FVS can easily be derived by starting with an appropriate splitting of the diagonal
matrix of eigenvalues Λ. According to Sec. 4.2.1 we define Λ+, Λ− by

Λ+(q) := diag(λ+
1 , . . . , λ

+
M) , λ+

m = 1
2
(λm + |λm|) for all m = 1, . . . ,M ,

Λ−(q) := diag(λ−1 , . . . , λ
−
M) , λ−m = 1

2
(λm − |λm|) for all m = 1, . . . ,M

(4.63)
and

A+(q) := R(q)Λ+(q)R−1(q) , A−(q) := R(q)Λ−(q)R−1(q) . (4.64)

The FVS then reads
f(q) = A+(q)q + A−(q)q

and the unknown intermediate flux is approximated by

F(q
L
,q

R
) = A+(q

L
)q

L
+ A−(q

R
)q

R
. (4.65)

Note, that the Jacobians of the split fluxes of the Steger-Warming FVS

∂f±(q)

∂q
=
∂ (A±(q)q)

∂q
= A±(q) +

∂A±(q)

∂q
q

are identical to A±(q) only in the linear case.
Prop. 8 states the homogeneity property for the multi-component Euler equa-

tions of Sec. 2.3. Utilizing this result, the Steger-Warming FVS is calculated directly
by inserting the matrices Λ(q), R(q) and R−1(q) derived in the Props. 9 and 10
into Eq. (4.64). With λ1 = u1 − c, λ2 = · · · = λK+d = u1 and λK+d+1 = u1 + c and
λ±m,m ∈ {1, . . . , K + d+ 1} defined in (4.63) the result reads

f±(q) = A±(q)q =
ρ

2γ



Y1τ
±

...
YKτ

±

u1τ
± − c ξ±

u2τ
±

...
udτ

±

Hτ± − u1c ξ
± − 2 δ±c2


with

δ± = λ±2 = · · · = λ±K+d ,

τ± = λ±1 + 2 δ±(γ − 1)

+λ±K+d+1 ,

ξ± = λ±1 − λ±K+d+1 .

(4.66)
The same splitting is obtained in [84, 109, 127]. The corresponding stability condi-
tion is

CSW
CFL := max

j∈Z
(|u1,j|+ cj) ≤ 1 . (4.67)

At this point the validity of the Steger-Warming flux decomposition given by (4.66)
has to be discussed, i.e. it would have to be proven that the eigenvalues of the
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Figure 4.4: First-order results of Test 1. Density distribution computed with dif-
ferent FVS schemes compared to the reference solution of Fig. 4.3. Left: Steger-
Warming FVS, right: Van Leer FVS.

Jacobians Â±(q), derived from the split functions f+(q), f−(q), really satisfy the
necessary conditions λ̂+

m ≥ 0 and λ̂−m ≤ 0 for all admissible states. This rather
lengthy and technical proof is omitted here and we refer to [109], where for the
simplified case of calorically perfect species the additional necessary condition

γi <
5

3
for all i = 1, . . . , K (4.68)

is found. In [198] the same condition is derived for a single thermally perfect gas.
It is reasonable to assume that this condition carries over to the general case of
mixtures of thermally perfect species, but [109] and [127] underline that no rigorous
analysis for the validity of the FVS (4.66) seems to be possible without additional
assumptions.

The Steger-Warming FVS (4.66) has the drawback that the split fluxes are not
continuously differentiable, if one of the eigenvalues changes sign. In stagnation
points, i.e. u1 = 0, the eigenvalues calculated from the Jacobians Â±(q) are not
identical. In sonic points, i.e. u1 = ∓c, the eigenvalues of one split-Jacobian Â±(q)
do not vanish and the switching to the other split flux with f∓(q) = f(q) is not
smooth. Consequently, the Steger-Warming FVS gives comparably poor results for
nearly stationary and transonic flow phenomena. The large glitch in the approxi-
mation of the sonic rarefaction wave in the left picture of Fig. 4.4 clearly illustrates
this defect.

4.5.2 Van Leer Splitting

In order to obtain a FVS with less numerical diffusion, Van Leer introduced split
fluxes f±(q) for the Euler equations of a single polytropic gas that are continuously
differentiable within the subsonic range −c ≤ u1 ≤ c and have vanishing slope for
u1 −→ ∓c.
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The Van Leer FVS does not utilize the homogeneity property, instead it uses
carefully constructed polynomials of minimal order for f±(q) that are valid only
within −c ≤ u1 ≤ c. The ansatz of the Van Leer FVS is to express all components
of the flux function f(q) by cubic polynomials of the velocity u1

fm(u1) = am,0 + am,1u1 + am,2u
2
1 + am,3u

3
1

where the coefficients am,0 , . . . , am,3 depend on q. The splitting is then constructed
component-wise by utilizing one of the relations

f+
m(u1) = f−m(u1) , if fm(u1) = fm(−u1) or

f+
m(u1) = −f−m(u1) , if fm(u1) = −fm(−u1)

that follow from (4.30) and from the fact that the eigenvalues of the Euler equations
have to be reproduced, i.e. λ1(u1) = −λK+d+1(−u1). Further on, the requirement
of continuous differentiability at u1 = ∓c necessitates the factor (u1 ± c)2 in all
components of the constructed split fluxes.

Extensions of the Van Leer FVS to a single real gas can be found in [126] and in
[198]. It is not surprising, that the polynomials of the split fluxes are not uniquely
defined in the general case (see [126] for a detailed discussion). For mixtures of
thermally perfect gases we therefore utilize the splitting of Van Leer-type, which is
most frequently used [169, 127, 109, 84]. It reads

f±(q) = ± ρ

4c
(u1 ± c)2



Y1
...
YK

u1 − (u1 ∓ 2c)/γ
u2
...
ud

H − ζ(u1 ∓ c)2


with

H = h+
u2

2
,

ζ =
h/c2

1 + 2h/c2
.

(4.69)

The splitting (4.69) is explicitly constructed for −c ≤ u1 ≤ c. For |u1| > c the
relations (4.31) have to be applied. Note, that the necessary stability condition for
the Van Leer FVS is not relation (4.67), but the more complex inequality6

CV L
CFL := max

j∈Z
[(|u1,j|+ cj) Πj]

∆t

∆x
≤ 1 (4.70)

with Πj =


γj + 3

2γj + u1,j(3− γj)/cj
if |u1,j| < cj ,

1 otherwise .

6For the Van Leer FVS we implement automatic time step adjustment on the basis of relation
(4.70). When we say for instance CCFL ≈ 0.95, we mean CV L

CFL ≈ 0.95. For the Van Leer scheme
CV L

CFL is not an approximation to the maximal signal speed, but only an upper bound for stability.
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Like for the Steger-Warming FVS it would have to be shown that the Jacobians
of the split fluxes (4.69) satisfy the necessary conditions λ̂+

m ≥ 0 and λ̂−m ≤ 0 for
all admissible states. This property can be proven for a single polytropic gas, but
numerical tests indicate that it is lost in the general real gas case [109]. Nevertheless,
the necessary (but not sufficient) condition

γi ≤ 3 for all i = 1, . . . , K

can be obtained [198]. The original Van Leer FVS for a single polytropic gas was
constructed under the requirement that in case of subsonic flow with |u1| ≤ c the
smallest eigenvalue of Â±(q) is forced to vanish. Unfortunately, this property which
minimizes numerical diffusion does not carry over to the general case [126, 198].
Nevertheless, the Van Leer FVS gives significantly better numerical results than the
Steger-Warming FVS (compare Fig. 4.4 and especially Fig. 4.9).

4.6 Godunov-type Methods

In this section we apply the FDS approach of Sec. 4.2.4 to the multi-component
Euler equations for thermally perfect gases. In particular, we derive a consistent
Roe scheme and extend it to a robust and reliable method. Following the work
of Abgrall on multi-component mixtures of calorically perfect gases [1], we give
a simplified derivation of the specific Roe linearization for the general thermally
perfect case by Grossman and Cinella [84]. Like in the preceding section the flux
approximation of f1 is formulated for the general d-dimensional case.

4.6.1 Roe Scheme

The difficult task in the FDS approach is the derivation of a constant matrix
Â(q

L
,q

R
) for each RP that approximates the original Jacobian appropriately. Roe

suggested the following three properties for such a matrix [156]:

(i) Â(q
L
,q

R
) is diagonalizable with real eigenvalues.

(ii) Â(q
L
,q

R
) → ∂f(q)

∂q
smoothly as q

L
,q

R
→ q.

(iii) Â(q
L
,q

R
)∆q = f(q

R
)− f(q

L
)

The third property ensures the conservation of the resulting scheme and is just
another form of Eq. (4.39). In order to find a Roe matrix Â(q

L
,q

R
) for the multi-

component Euler equations of Sec. 2.3 we follow Roe’s original approach and look for
some smooth function q̂ = q̂(v,w) satisfying q̂(v,w) = q̂(w,v), q̂(v,v) = v that is
inserted into the Jacobian of the original equations, i.e. Â(q

L
,q

R
) = A(q̂(q

L
,q

R
)).

Obviously, this approach satisfies the properties (i) and (ii). To further satisfy
property (iii) we use a direct method that is the essential idea of the Roe-Pike
approach [158].
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From Prop. 10 we know that A(q̂) is diagonalizable with A(q̂) = R(q̂)Λ(q̂)R−1(q̂)
for all admissible states. Therefore, property (iii) is equivalent to

∆f := f(q
R
)− f(q

L
) =

M∑
m=1

amλm(q̂)rm(q̂) with ∆q := q
R
− q

L
=

M∑
m=1

amrm(q̂) .

(4.71)
The wave strengths am are easily found by evaluating R−1(q̂)∆q:

a1, aK+d+1 =
α

2
± ∆ρû1 −∆m1

2ĉ
, a1+i = ∆ρi − Ŷiα for i = 1, . . . , K , (4.72)

aK+n = ∆mn −∆ρûn for n = 2, . . . , d

with

α =
γ̂ − 1

ĉ2

[
K∑

i=1

∆ρi
φ̂i

γ̂ − 1
−

d∑
n=1

ûn∆mn + ∆Ē

]
and ∆ρ =

K∑
i=1

∆ρi .

We expect that the sought average q̂ is a generalization of the averages

ρ̂ =

√
ρLρR +

√
ρRρL√

ρL +
√
ρR

=
√
ρLρR and v̂ =

√
ρLvL +

√
ρRvR√

ρL +
√
ρR

for v = u1, u2, u3, H

that have been found by Roe for a single polytropic gas [156]. We therefore make
use of a calculus tailored for these averages that has been introduced by Abgrall [1].
Its rules, which can be verified by straight-forward computations, are:

∆v = vR − vL , δ =

(
ρR

ρL

)1/2

, v =
vR + δvL

1 + δ
, v =

vL + δvR

1 + δ

ρ = ρ̂ , v = v̂ for v 6= ρ , ρv = ρ v = ρ̂v̂ , ∆(vw) = v∆w + w∆v

With this calculus various useful relations can be derived. For instance, we find
immediately

∆mn = ∆(ρun) = ρ̂∆un + ûn∆ρ , ∆(ρu2
n) = 2ρ̂ûn∆un + û2

n∆ρ ,

∆(ρu1v) = ρ̂v̂∆u1 + ρ̂û1∆v + û1v̂∆ρ for v = H, Yi, u2, u3 .

A further important relation, which can easily be shown to be true, is
∑
Ŷi = 1.

We check the required property ∆f =
∑
amλm(q̂)rm(q̂) and find that the K species

equations are already satisfied for the expected averages Ŷi and û1. The momentum
equations for m2, . . . ,mn yield the averages û2, . . . , ûd. The momentum equation for
m1 gives the relation

αĉ− ρ̂∆u1

2ĉ
(û1 − ĉ)2 +

K∑
i=1

û2
1

(
∆ρi − Ŷiα

)
+
αĉ+ ρ̂∆u1

2ĉ
(û1 + ĉ)2 = ∆(ρu2

1 + p) ,
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which can only be satisfied under the necessary condition ∆p = ĉ2α. The same
condition is obtained from the last relation by employing the averages Ê and Ĥ:

αĉ− ρ̂∆u1

2ĉ
(û1 − ĉ)(Ĥ − û1ĉ) +

K∑
i=1

û1

(
û2 − φ̂i

γ̂ − 1

)(
∆ρi − Ŷiα

)
+

d∑
n=2

û1ûnρ̂∆un

+
αĉ+ ρ̂∆u1

2ĉ
(û1 + ĉ)(Ĥ + û1ĉ) = û1∆(ρE) + û1ĉ

2α+ Ĥρ̂∆u1 = ∆(u1ρH) ,

where the expression

∆(ρE) = Ĥα+ ρ̂
d∑

n=1

ûn∆un + û2(∆ρ− α)− (∆ρi − Ŷiα)
K∑

i=1

φ̂i

γ̂ − 1
(4.73)

that follows from ∆q =
∑
amrm(q̂) is used to simplify the result. In order to find

appropriate averages for the remaining terms φ̂i, γ̂ we insert

∆(ρE) = ∆(ρe) + ρ̂
d∑

n=1

ûn∆un +
û2

2
∆ρ

and α = ∆p/ĉ2 into Eq. (4.73). We obtain

∆(ρe) =
û2

2
∆ρ+

∆p

ĉ2

(
Ĥ − û2 +

K∑
i=1

Ŷi
φ̂i

γ̂ − 1

)
−

K∑
i=1

∆ρi
φ̂i

γ̂ − 1
. (4.74)

We assume that the averaged frozen speed of sound ĉ can be calculated according
to Eq. (2.69) by

ĉ2 =
K∑

i=1

Ŷi φ̂i − (γ̂ − 1)û2 + (γ̂ − 1)Ĥ (4.75)

and therefore replace ĉ2 in (4.74) by the last expression. The result reads

∆(ρe) =
∆p

γ̂ − 1
−
∑

∆ρi

(
φ̂i

γ̂ − 1
− û2

2

)
. (4.76)

We assume that φ̂i can be evaluated according to Eq. (2.60) with the standard
Roe-averaged quantities êi, ĥi and T̂ by

φ̂i = (γ̂ − 1)

(
û2

2
− ĥi

)
+ γ̂ Ri T̂ = (γ̂ − 1)

(
û2

2
− êi

)
+Ri T̂ . (4.77)

If we insert this expression for φ̂i in Eq. (4.76), we obtain

∆(ρe) =
∆p

γ̂ − 1
+
∑

∆ρi

(
êi −Ri

T̂

γ̂ − 1

)
. (4.78)
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We introduce the average ρ̂i by ρ̂i = ρ
i
. It can easily be verified that ρ̂i satisfies

the useful relations ρ̂i = Ŷiρ̂ and ρ̂ =
∑
ρ̂i. Further on, we introduce the standard

Roe-average R̂, for which R̂ =
∑
ŶiRi holds true. From R̂ = R/Ŵ the additional

relations

Ŵ =

(√
ρL

1
WL

+
√
ρR

1
WR√

ρL +
√
ρR

)−1

=

(∑ Ŷi

Wi

)−1

(4.79)

can be derived. Utilizing the expressions for ρ̂i and for R̂, we find from ∆p =
∆(
∑
ρiRiT ) =

∑
ρ̂iRi∆T +

∑
T̂Ri∆ρi that the averages for the mixture satisfy the

equation ∆p = ρ̂R̂∆T + T̂ R̂∆ρ. Finally, we introduce arbitrarily averaged specific
heats ĉpi, ĉvi , for which we assume that they satisfy the condition Ri = ĉpi − ĉvi.
We define averaged mixture properties by

ĉp :=
∑

Ŷiĉpi and ĉv :=
∑

Ŷiĉvi with R̂ = ĉp − ĉv (4.80)

and define further γ̂ as usual by γ̂ := ĉp/ĉv. With these new averages Eq. (4.78)
can be simplified to

∆(ρe)−
∑

êi∆ρi =
∑

ρ̂iRi
∆T

γ̂ − 1
=
ρ̂R̂∆T

γ̂ − 1
= ρ̂ĉv∆T =

∑
ρ̂iĉvi∆T ,

and by applying ∆(ρe) = ∆(
∑
ρiei) =

∑
ρ̂i∆ei +

∑
êi∆ρi we find that the only

remaining necessary condition for an average state satisfying Eq. (4.71) is

∆ei = ĉvi∆T . (4.81)

Equivalent to Eq. (4.81) is the condition ∆hi = ĉpi∆T that could be derived by an
analogous computation. We insert the definitions from (2.45) for ∆ei = ei(TR) −
ei(TL) and ∆hi = hi(TR)−hi(TL) and derive for the averaged specific heats for each
species for ∆T > 0

ĉvi =
1

∆T

∫ TR

TL

cvi(s)ds and ĉpi =
1

∆T

∫ TR

TL

cpi(s)ds (4.82)

and ĉvi = cvi(TL = TR), ĉpi = cpi(TL = TR) for ∆T = 0. Note, that for calorically
perfect species with cvi = ĉvi = const. and cpi = ĉpi = const. the caloric equations

êi = h0
i + cviT̂ and ĥi = h0

i + cpiT̂ carry over to the averaged values. But, already
simple examples are sufficient to prove that this property is usually lost in the general
case of thermally perfect species.

Having now found a consistent average state q̂ that satisfies (4.71) and the
condition ∆p = ĉ2α we can simplify the expressions for the wave strengths am by
eliminating α. Equivalent to (4.72) are the more convenient expressions

a1, aK+d+1 =
∆p∓ ρ̂ĉ∆u1

2ĉ2
, a1+i = ∆ρi − Ŷi

∆p

ĉ2
, aK+n = ρ̂∆un . (4.83)
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Figure 4.5: First-order results of Test 1. Density distribution computed with the
Roe scheme. Left: no entropy correction, right: entropy enforcement with EF 3.

According to (4.42) the necessary stability condition of the Roe scheme for mix-
tures of thermally perfect species reads

CRoe
CFL := max

j∈Z
(|û1,j+ 1

2
|+ ĉj+ 1

2
)
∆t

∆x
≤ 1 . (4.84)

The same scheme is derived by Grossman and Cinella in [84]. Their derivation
follows exactly the procedure outlined by Glaister for a single real gas with arbitrary
equation of state [80]. Glaister and Grossman-Cinella utilize the original Roe-Pike
method that involves a further (unnecessary) linearization in the derivation, but
leads to the identical result at the end. A good explanation of the original Roe-Pike
method [158] can be found in the book Toro [187].

In case of the multi-component Euler equations the Roe solver approximates the
solution of the RP by

qRoe(x, t) =


q

L
, x < λ̂1 t

q?

L
, λ̂1 t ≤ x < λ̂2 t

q?

R
, λ̂2 t ≤ x ≤ λ̂K+d+1 t

q
R
, x > λ̂K+d+1 t

(4.85)

Figure 4.6: Approximation
of the RP for Euler equa-
tions by the Roe scheme.

with λ̂1 = û1 − ĉ, λ̂2 = · · · = λ̂K+d = û1,
λ̂K+d+1 = û1 + ĉ and q?

L
−q

L
= a1r̂1, q

R
−q?

R
=

aK+d+1r̂K+d+1. The linearized solution consists
of discontinuous jumps only (compare Fig. 4.6
to the exact solution of the RP in Fig. 2.2). Rar-
efaction waves in the first and last characteristic
field, which are genuinely nonlinear (see Prop.
5), are approximated by shock waves that violate
the entropy condition (2.27). In most situations
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the intermediate flux approximation F(q
L
,q

R
) is unaffected by this simplification,

but if a transonic rarefaction occurs, the intermediate flux can be heavily incorrect
and the computed solution might not be an entropy solution anymore. Various
techniques, so called entropy corrections or entropy fixes, have been suggested to
overcome this problem.

4.6.2 Entropy Corrections

The easiest way of ensuring physically reasonable approximations is to apply finite
volume methods that are based on an extended viscous equation like (2.5). Even
numerical schemes that have been derived explicitly for Eq. (2.1) usually have this
property. In this case, ε is not an arbitrary free parameter, but depends on the
actual numerical scheme and its inherent numerical viscosity or dissipation. The
numerical viscosity of a FV scheme can be quantified by writing it in viscous form.

Definition 16 (Viscous form). We say that a finite volume scheme Ql+1
j =

H∆t(Ql
j−s, ...,Q

l
j+s) can be put in viscous form, if there exists a positive semi-definite

matrix-function Dl
j+1/2 = D(Ql

j−s+1, . . . , Ql
j+s) called the viscosity matrix such that

the scheme can be written in the form

Ql+1
j = Ql

j −
∆t

2∆x

(
f(Ql

j+1)− f(Ql
j−1)

)
+

1

2

(
Dl

j+1/2∆Ql
j+1/2 −Dl

j−1/2∆Ql
j−1/2

)
.

(4.86)

The numerical flux of a scheme in viscous form is

FV
j+1/2 =

1

2

(
f(Ql

j+1) + f(Ql
j)−

∆x

∆t
Dl

j+1/2∆Ql
j+1/2

)
. (4.87)

Comparing (4.40) with (4.87) we see that the viscosity matrix of the Roe scheme
only depends on the two neighboring values q

L
, q

R
and that the viscous term of the

method reads

D(q
L
,q

R
)∆q =

∆t

∆x
|A(q̂)|∆q =

∆t

∆x

M∑
m=1

am|λ̂m|r̂m . (4.88)

Obviously, a characteristic field with λ̂m = λ(q̂) = 0 has no influence on the numer-
ical viscosity of the Roe scheme (4.88) and we might think that the method simply
is not viscous enough in transonic regimes with λ1,K+d+1(q̂) ≈ 0 to avoid violation
of the entropy condition. In order to increase the entropy enforcement near sonic
points Harten proposed to replace |λm(q̂)| with a suitable chosen |λ̄m|. Possible
choices for |λ̄m| are

EF 1 : |λ̄m| = |λm(q̂)|+ η , (4.89)

EF 2 : |λ̄m| = max(|λm(q̂)|, η) , (4.90)

EF 3 : |λ̄m| =

{
|λm(q̂)| , if|λm(q̂)| ≥ 2η ,

|λm(q̂)2|/4η + η , otherwise ,
(4.91)
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Figure 4.7: First-order results of Test 1. Difference between the density distribution
computed with the Roe scheme and different entropy fixes against the reference
solution in the transsonic rarefaction region.

where η = η(q
L
,q

R
) ≥ 0 [87]. Unfortunately, the actual tuning of η is empirical

and depends on the problem. For the Euler equations Sanders et al [160] proposed
the natural choice

η(q
L
,q

R
) =

1

2
max

m

(
|λm(q

R
)− λm(q

L
)|
)

=
1

2
(|u1,R − u1,L|+ |cR − cL|) . (4.92)

Note, that the Euler equations require an entropy correction only in the first and
the last characteristic field. In order to avoid an unnecessary smearing of contact
discontinuities we use |λ̄m| ≡ |λm(q̂)| in all other characteristic fields. Fig. 4.7
shows a comparison of the three entropy fixes EF 1 to 3 utilizing (4.92) and the
Harten-Hyman (HH) method of the next section. As the differences are relatively
small, Fig. 4.7 displays the local difference of the total density against the reference
solution, i.e. |ρ(x) − ρr(x)| (see also Fig. 4.9). EF 1 adds numerical viscosity to
all shock waves and consequently has the largest error in the shock approximation
(not shown). All other entropy corrections give a similar result on the shock, but
the resolution of the transonic rarefaction is worst with EF 2 (compare Fig. 4.7).
EF 3 and the Harten-Hyman method are nearly identical and give the best result.

Harten-Hyman Method

A further entropy correction that avoids adding numerical viscosity in an empirical
manner has been presented by Harten and Hyman [89]. Their method is most
frequently used today, because it gives sharply resolved results without an empirical
parameter η (compare Fig. 4.7).
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The basic idea of the method is to replace the simple wave solution of an entropy-
violating shock by the simple wave of a rarefaction (2.23) with v(x/t) = q? = const.
The correction is applied only to transonic phenomena, because only those affect
the inter-cell flux approximation. An entropy-violating transonic shock can easily
be detected with Liu’s entropy condition 2.27 by checking the inequality

λν(q
l
ν) < 0 < λν(q

r
ν) .

In case of the multi-component Euler equations, we have ν = 1, K + d + 1 with
ql

1
= q

L
, qr

1
= q?

L
and ql

K+d+1
= q?

R
, qr

K+d+1
= q

R
.

The new intermediate state q?
ν is found by evaluating the integral form (2.4)

for the simple wave solutions of the unphysical shock and the simplified rarefaction
wave over [λl

ν∆t, λ
r
ν∆t] × [0,∆t] and by canceling all unnecessary terms. With the

notations λl
ν := λν(q

l
ν), λ

r
ν := λν(q

r
ν) the results reads

(λr
ν − λ̂ν)q

r
ν + (λ̂ν − λl

ν)q
l
ν = (λr

ν − λl
ν)q

?
ν

from which we immediately find

q?
ν =

ql
ν(λ

l
ν − λ̂ν) + qr

ν(λ̂ν − λr
ν)

λl
ν − λr

ν

. (4.93)

Utilizing (4.93) we can express the new jumps q?
ν − ql

ν and qr
ν − q?

ν in terms of the
wave qr

ν − ql
ν = aν r̂ν by

q?
ν − ql

ν =
λ̂ν − λr

ν

λl
ν − λr

ν

aν r̂ν , qr
ν − q?

ν =
λl

ν − λ̂ν

λl
ν − λr

ν

aν r̂ν .

The jumps in the flux approximation over λl
ν and λr

ν are therefore

∆l
νF = λl

ν

λ̂ν − λr
ν

λl
ν − λr

ν

aν r̂ν =: λ̄l
ν aν r̂ν , ∆r

νF = λr
ν

λl
ν − λ̂ν

λl
ν − λr

ν

aν r̂ν =: λ̄r
ν aν r̂ν .

Instead of (4.38) the numerical flux then reads

F(q
L
,q

R
) = f(q

L
) +

∑
λ̂m<0
m6=ν

amλ̂mr̂m + λ̄l
ν aν r̂ν = f(q

R
)−

∑
λ̂m≥0
m6=ν

amλ̂mr̂m − λ̄r
ν aν r̂ν .

(4.94)
Detailed derivations of the Harten-Hyman entropy fix can also be found in the books
of LeVeque [117] and Toro [187]. For the Euler equations the flux approximation
(4.38) simplifies to F(q

L
,q

R
) = f(q

L
) + λ̄l

1 a1r̂1 for a sonic rarefaction in the first
and to F(q

L
,q

R
) = f(q

R
)− λ̄r

K+d+1 aK+d+1r̂K+d+1 for a sonic rarefaction in the last
characteristic field.
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4.6.3 A Robust Roe-type Method

In order to complete our explanations on the Roe scheme for multi-component gas-
mixtures we formulate an algorithm that implements the Roe method and incorpo-
rates all corrections that will be derived in the following sections to make the scheme
robust and reliable.

(S1) Calculate the standard Roe-averages ρ̂, ûn, Ĥ, Ŷi, T̂ .

(S2) Compute γ̂ by evaluating both ĉv and ĉp from (4.82) and (4.80) or evaluate

only one and utilize the standard Roe-average R̂ or calculate Ŵ from (4.79).

(S3) Calculate φ̂i from (4.77) with the standard Roe-averages êi or ĥi.

(S4) Use (4.75) to evaluate ĉ.

(S5) Use ∆q = q
R
− q

L
and ∆p to compute the wave strength am from (4.83).

(S6) Calculate W1 = a1r̂1, W2 =
K+d∑
m=2

amr̂m, W3 = aK+d+1r̂K+d+1 from Prop. 10.

(S7) Evaluate s1 = û1 − ĉ, s2 = û1, s3 = û1 + ĉ.

(S8) Evaluate ρ?
L/R, u?

1,L/R, e?
L/R, c?1,L/R from q?

L
= q

L
+ W1, q?

R
= q

R
−W3.

(S9) If ρ?
L/R ≤ 0 or e?

L/R ≤ 0 use FHLL(q
L
,q

R
) from Eq. (4.96) and skip (S10) and

(S11).

(S10) Entropy correction:

(a) Numerical viscosity methods EF 1/2/3:

i. Calculate |s̄1/3| from |s1/3| according to (4.89)/(4.90)/(4.91).
|s̄2| ≡ |s2|.

ii. FRoe(qL
,q

R
) =

1

2

(
f(q

L
) + f(q

R
)−

3∑
ι=1

|s̄ι|Wι

)
(b) Harten-Hyman method (HH):

i. If u1,L − cL < 0 < u?
1,L − c?L set

s1 :=
(û1 − ĉ)− (u?

1,L − c?L)

(u1,L − cL)− (u?
1,L − c?L)

(u1,L − cL).

ii. If u?
1,R + c?R < 0 < u1,R + cR set

s3 :=
(û1 + ĉ)− (u1,R + cR)

(u?
1,R + c?R)− (u1,R + cR)

(u?
1,R + c?R).

iii. FRoe(qL
,q

R
) = f(q

L
) +

∑
sι<0

ι=1,...,3

sιWι.

(S11) Positivity correction: Replace Fi,Roe by F?
i,Roe according to Eq. (4.107).

Algorithm 1: Hybrid Roe-HLL scheme with mass fraction positivity correction. Step
(S10a) is used with one of the entropy enforcement (EF) formulas (4.89) to (4.91).
Step (S10b) is applied for the Harten-Hymann (HH) entropy correction.
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Figure 4.8: Left: simplified approximation of the RP by the HLL scheme, right:
first-order results of Test 1 computed with HLL.

4.6.4 Harten-Lax-Van Leer Scheme

The Harten, Lax and Van Leer (HLL) scheme is a Godunov-type method that uses
a very simple approximative Riemann solver [91].7 It approximates the solution of
the RP simply by two discontinuous waves. The intermediate state q? is assumed
to be constant (compare Fig. 4.8). The approximative solution is

q̄(x, t) =


q

L
, x < SL t ,

q? , SL t ≤ x ≤ SR t ,
q

R
, x > SR t ,

(4.95)

where SL and SR denote suitable approximations to the smallest and largest signal
speed involved in the RP. From (4.95) the flux approximation

F(q
L
,q

R
) =


f(q

L
) , 0 < SL ,

SRf(q
L
)− SLf(qR

) + SLSR(q
R
− q

L
)

SR − SL

, SL ≤ 0 ≤ SR ,

f(q
R
) , 0 > SR ,

(4.96)

can be derived. The only non-trivial case is SL ≤ 0 ≤ SR. Like in Sec. 4.2.4 the
obvious choice F(q

L
,q

R
) = f(q?) would lead to a scheme that would be inconsis-

tent with the original conservation law; and analogously to Sec. 4.2.4 the correct
flux approximation is found by evaluating the integral form (2.4) over the domains
[0, SR∆t]×[0,∆t] and [SL∆t, 0]×[0,∆t]. After canceling ∆t we obtain the equations

F(q
L
,q

R
) = f(q

L
) + SL(q? − q

L
) and F(q

L
,q

R
) = f(q

R
) + SR(q? − q

R
)

that allow the elimination of the unknown intermediate state q? and lead directly
to the proposed result.

7The name HLLE after Einfeldt [62] is also used.
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Figure 4.9: First-order results for Test 1. Difference of the total density against the
reference solution for Roe-EF 3, HLL and the FVS of Van Leer and Steger-Warming.
Top, left: whole computational domain. Top, right: transonic rarefaction. Bottom,
left: contact discontinuity. Bottom, right: shock.

The HLL scheme requires estimates of the signal speeds SL and SR. Possible choices
in our case of multi-component Euler equations are the Roe-averaged eigenvalues

SL = û1 − ĉ , SR = û1 + ĉ

or the simpler estimates

SL = min(u1,L − cL, u1,R − cR) , SR = max(u1,L + cL, u1,R + cR) (4.97)

that have been suggested by Davis [48]. Throughout this thesis only the last estimate
has been utilized. The necessary stability condition for Davis’ estimate is

CHLL
CFL := max

j∈Z
(|u1,j|+ cj)

∆t

∆x
≤ 1 . (4.98)

In order to compare all upwind schemes, Fig. 4.9 displays the local difference of the
total density against the reference solution, i.e. |ρ(x) − ρr(x)|, for all three simple
wave phenomena involved in Test 1. The best results are obtained with the Roe
scheme and entropy correction, while the Steger-Warming scheme gives the largest
errors. HLL and the Van Leer FVS do not differ significantly for this example.
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4.7 Application of Higher-Order Methods

In this section we incorporate the previously derived first-order upwind schemes for
multi-component Euler equations into the high resolution methods of Sec. 4.3. Al-
though the MUSCL extrapolation technique is tailored for Godunov-type methods,
it can be used with all previously derived schemes.8 The Wave Propagation Method
requires a FDS scheme to calculate transverse fluctuations and consequently is in-
tended to be utilized with the Roe method of Sec. 4.6.1, respectively with the robust
extension of Sec. 4.6.3.

4.7.1 MUSCL Extrapolation

The MUSCL variable extrapolation technique can be implemented in conservative
and in primitive variables. An extrapolation of the primitive variables usually gives
sharper refined discontinuities [94], but has the significant disadvantage that the
conservative quantities calculated from these primitive variable values do not nec-
essarily satisfy the TVD constrain. For usual FV schemes formulated in conserved
variables the MUSCL extrapolation therefore should reconstruct conservative quan-
tities whenever possible to lead to a robust and reliable high resolution method.

In case of the multi-component Euler equations of Sec. 2.3 a direct extrapolation
of the total energy density Ē is only possible, if all species are calorically perfect. In
the general case of thermally perfect gases this reconstruction has to be replaced by
an extrapolation of one of the primitive quantities T or p, because it otherwise could
not be guaranteed that the reconstructed vector of state q̃ remains in the space of
admissible states S. In particular, for arbitrary enthalpy functions hi the implicit
temperature equation (2.56) does not need to have a solution T̃ corresponding to

q̃, if ˜̄E is reconstructed directly. Further on, we enforce that all species are treated
equally.

We recommend to extrapolate the primitive quantities ρ̃, p̃ and Ỹ1, . . . , ỸK and
the conserved quantities m̃1, . . . , m̃d. The remaining entries of q̃ are then calculated
from these values by

ρ̃i = Ỹiρ̃ ,
˜̄E = ρ̃

K∑
i=1

Ỹihi(T̃ )− p̃+
m̃2

2ρ̃
with T̃ =

p̃

R

(
K∑

i=1

ρ̃i

Wi

)−1

.

In order to ensure that both ρ̃ and all ρ̃i are TVD and to avoid an inconsistency
between

∑
ρ̃i and ρ̃, it has to be enforced that the reconstructed mass fractions Ỹi

satisfy the condition
∑
Ỹi = 1. From Eqs. (4.45), (4.46) we get for Ỹ L

i , Ỹ R
i with Yi

denoting the ith mass fraction in the middle cell and Y −1
i , Y 1

i the values in the left

8Hirsch gives a detailed comparison between the MUSCL variable extrapolation with slope
limiting and the flux extrapolation with flux limiting for both Steger-Warming and Van Leer FVS
for standard Euler equations that clearly shows the superiority of the MUSCL technique over the
flux limiting also for FVS methods [94].
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Figure 4.10: Second-order results of Test 1 with MUSCL-Hancock Method utilizing
the Roe scheme with EF 3 and different slope limiters. Left: solution with Minmod-
(4.49) and Van Leer-limiter (4.51). Right: comparison of the result at the contact
discontinuity with the limiter-functions (4.49) to (4.52).
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Ỹ
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+
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+
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+
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Summation of these two equations gives the condition

K∑
i=1

Φ
+

i (Yi − Y −1
i ) + ω

K∑
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Φ
−
i (Y 1

i − Yi) = 0

that can only be satisfied, iff Φ
+

1 = · · · = Φ
+

K and Φ
−
1 = · · · = Φ

−
K . This equality can

easily be enforced by applying the same limiter values Φ
+
,Φ

−
to all mass fractions.

A possible choice for symmetric slope limiters satisfying Eq. (4.53) that guaranties
the TVD property in all components is

Φ
+

= Φ
−

= min(Φ
+

1 , . . . ,Φ
+

K ,Φ
−
1 , . . . ,Φ

−
K) . (4.101)
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A numerical example utilizing the proposed reconstruction strategy is shown in
Fig. 4.10. The improvement in employing a thoroughly constructed second-order
method, especially in the approximation of the contact discontinuity is obvious.

4.7.2 Multi-Dimensional Wave Propagation

Analogously to the previous section, the wave limiting (4.56) is only reliable for
multi-component Euler equations, if all species are calorically perfect gases. In the
thermally perfect case, the separate construction of a limited wave W̃m in each char-
acteristic field can create fluctuations A±∆ =

∑
λ̂±m W̃m leading to values Q outside

of the space of admissible states S. Consequently, the one-dimensional variant of the
Wave Propagation Method (4.54) is no appropriate higher-order scheme for ther-
mally perfect Euler equations. But the two-dimensional scheme (4.58) is still appli-
cable. Formula (4.58) is a second-order multi-dimensional scheme that only requires
arbitrarily constructed second-order accurate fluctuations in the normal direction.
For Euler equations of thermally perfect gases we calculate these fluctuations from
the second-order fluxes of the previously described reliable MUSCL-Hancock method
and by applying Eq. (4.39). For instance, the fluctuations Ã±∆ are therefore defined
by

Ã−∆j+ 1
2
,k := F1(Q̄

L

j+ 1
2
,k
, Q̄

R

j+ 1
2
,k
)− f1(Q

l
jk) , (4.102)

Ã+∆j+ 1
2
,k := f1(Q

l
j+1,k)− F1(Q̄

L

j+ 1
2
,k
, Q̄

R

j+ 1
2
,k
) . (4.103)

This simple trick, which allows the computation of fluctuations from standard nu-
merical fluxes, is also mentioned in [107] as an opportunity to incorporate for in-
stance an exact Riemann solver for Euler equations into the Wave Propagation
scheme. In our particular case, it allows the direct application of the robust Roe-
type scheme formulated in Algorithm 1 in Sec. 4.6.3 on the one hand and the usage
of the appropriate higher-order reconstruction technique on the other hand.

The Riemann solver in the normal direction implements the MUSCL-Hancock
method and calculates the temporary values Q̄L, Q̄R. All steps (S1) to (S11) of
Algorithm 1 are then employed to compute numerical fluxes on the basis of Q̄L and
Q̄R. At the end of the solution routine these fluxes are transformed with f1/2(Q)
according to Eq. (4.39) into fluctuations (see Eqs. (4.102), (4.103) for the x1-
direction). In the transverse solution routine we execute just the steps (S1) to (S7)
and use (4.44) to evaluate the transverse flux splitting of the previously derived
second-order fluctuations.

It has to be underlined, that the multi-dimensional update formula (4.58) does
not satisfy a maximum principle for the mass fractions Yi in the multi-component
case (compare Sec. 4.9.1). Consequently, scheme (4.58) can create negative mass
fraction values. Although the appropriate correction (4.107) is considered in the
computation of Ã±∆, B̃±∆, the summation of cross-derivate terms can produce
multi-dimensional fluctuations Â±∆, B̂±∆ that lead to violations of the maximum
principle. We enforce the validity of the maximum principle for the entire Wave
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x [cm] x < 5 x > 5
ρ [kg m−3] 0.25 0.25
u1 [m s−1] -5000 5000
p [kPa] 25 25

Table 4.2: Riemann initial data for Test
2. Domain: 10 cm, outflow boundaries.
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Figure 4.11: First-order results of Test
2 at t = 3µs after ca. 40 time steps
with CCFL ≈ 0.8, ∆x = 0.05 cm. Gas:
O2.

Propagation Method by transforming Â±∆, B̂±∆ with (4.39) back into numerical
fluxes F̂1, F̂2 and by applying the usual positivity correction (4.107) on F̂1, F̂2.
Instead of Eq. (4.59) we finally use the standard formula (4.4) to calculate the
numerical update.

4.8 Problems and Failures of Upwind Schemes

Shock-capturing upwind schemes give physically reasonable and satisfactory approx-
imations for many practical problems. But specific situations exist, where different
schemes show a very different behavior. In particular the Roe scheme, which gives
the best result in Test 1 suffers from various approximation problems and failures.
As our goal is the derivation of a reliable high resolution shock-capturing method for
detonation flow we recall these problems as they are known today, because most of
them have to be circumvented in a reliable transport scheme for this problem class.

4.8.1 Unphysical Values

It is possible that the Roe scheme of Sec. 4.6.1 produces unphysical approximations
to the total density or the internal energy, i.e. ρ ≤ 0 or e ≤ 0. The FVS schemes and
the HLL method do not show this behavior and are much more robust. The problem
can occur near the vacuum state, but also in the approximation of very strong shock
waves with small density or internal energy values at one side. Riemann initial data
for a typical test problem near vacuum for thermally perfect oxygen are given in
Tab. 4.2. Without entropy fix the Roe scheme breaks down right in the first step;
with entropy correction EF 3 a negative total density occurs after approximately 30
time steps with intended Courant number CCFL ≈ 0.8.

A detailed analysis of the origin of unphysical approximations for flows near
vacuum state can be found in a paper by Einfeldt et al. [62]. For the standard case
of a single calorically perfect gas it is shown, that the production of unphysical flow
values is an intrinsic deficiency of all Godunov-type methods based on linearized
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x x < 5 x > 5
ρ 9.6172813 1.0
u1 -0.6499430 -8.8358689
p 75.785546 1.0
c 2.919 1.095

Table 4.3: Initial data for Test 3.
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Figure 4.12: Oscillating numerical
solution of Godunov’s Method at t =
2.

Riemann solvers and does not occur when using the HLL approximate Riemann
solver instead.

For the standard Euler equations Einfeldt et al. proved rigorously that the HLL
scheme is positivity preserving in ρ and e supposed the numerical signal velocities
are suitable bounds for the physical signal velocities [62]. Similar proofs for the FVS
schemes of Steger-Warming and Van Leer have been presented recently by Gressier,
Villedieu and Moschetta in [83].

A simple possibility to avoid the erroneous behavior of the Roe method is to
replace its flux approximation where necessary by the flux of a robust method, for
instance by the HLL flux. A reliable switching-criterion can be constructed easily
by evaluating the approximative intermediate states q?

L
and q?

R
in (4.85) by

q?

L
= q

L
+ a1r̂1 , q?

R
= q

R
− aK+d+1r̂K+d+1 (4.104)

(compare Sec. 2.2.1) and by checking ρ?
L/R > 0 and e?

L/R > 0. Numerical results
for such a hybrid method that utilizes Roe and HLL approximation together are
compared to the FVS schemes, which give an identical result for this problem, and
to HLL alone in Fig. 4.11. In this example, the hybrid method switches to HLL
only in the two cells near the initial discontinuity in the first five time steps.

4.8.2 Slowly Moving Strong Shocks

Some accurate shock-capturing Godunov-type schemes for Euler equations, like Go-
dunov’s Method and the Roe scheme are known to produce oscillations at isolated
slowly moving shock waves. “Slowly moving” in this context means that the ratio
of the shock velocity σ and the maximum wave speed in the characteristic field of
the shock (ν = 1, K + d+ 1) in the domain is small, i.e.

|σ|
max
j∈Z

(|λν,j|)
� 1 .

Usually the influence of these disturbances is negligible. However, if the shock is
sufficiently strong, the weakness is clearly present. This problem was first reported
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Figure 4.13: Density distributions for Test 3 with different first-order accurate
upwind schemes plotted onto the exact solution (graphs without dots). tend = 2.

by Colella and Woodward [44], but is also mentioned by Quirk [150, 151]. A first
analysis of the origin of the error was given by Roberts [154]. A recent paper of
Arora and Roe extends Roberts’ work [9].

We choose a very special example for the standard Euler equations of a polytropic
gas to demonstrate the defect. Our example is an isolated shock wave associated
to λ3 = u1 + c which is the simple wave solution of the RP in Tab. 4.3. This
RP is identical to the flow situation at the head of an steady ZND detonation with
simplified chemistry for the parameters9 γ = 1.2, Q0 = 50, f = 1.8 and therefore
corresponds to the RP at the detonation front in the limit of spatial refinement, if the
Godunov-splitting (4.19) is applied to simulate the inhomogeneous ZND equations
(see Sec. 3.1.1). We shift both velocities by +0.3 to achieve an isolated, but slowly
moving shock wave. During the simulation, the shock travels from its initial position
at x = 5 to x = 5.6 at tend = 2. For this test we utilize the domain [0, 10] which
is discretized with 200 cells (∆x = 0.05). Automatic time step adjustment for an
intended Courant number of CCFL ≈ 0.8 is used.

First-Order Results

We test the upwind schemes of the preceding sections without higher-order recon-
struction first. The front pressure histories of these first-order computations are
displayed in the two pictures at the top of Fig. 4.14. It is apparent, that none of our
shock-capturing schemes is monotone for this example. All schemes produce oscil-
lations in all flow variables. In particular, none of the tested schemes approximates

9The flow values in the von Neumann point of a ZND detonation with simplified Arrhenius
law are calculated from the Eqs. (3.22), (3.27) and (3.28) for Z = 0 and do not depend on E?

A.
Equivalently to the equation of state p = (γ − 1)(ρe− ρq0) the standard equation p = (γ − 1)ρe?

can be used. All flow variables are identical, only the specific internal and total energy differ by
the constant q0, i.e. e? = e− q0 and E? = E − q0.
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Figure 4.14: Front pressure histories of Test 3 for different first- and second -order
accurate FV upwind schemes. The dotted horizontal lines display the exact front
pressure. CCFL ≈ 0.8.
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the first intercell flux at the head of the shock wave exactly with an isolated simple
wave solution. This behavior is not surprising for the FVS schemes and the HLL
approximate Riemann solver, but it is astonishing for the Roe scheme and especially
for Godunov’s Method.10

The movement of a discontinuous jump between the two state values q
L

and q
R

through a fixed mesh involves an intermediate state q? in the cell, where the discon-
tinuity is actually located. In our case of a 3-shock wave with positive signal speed a
Godunov-type method would propagate the discontinuity by solving the RP between
q?, q

R
in the next time-step. Roberts points out that this RP only corresponds to

the sought 3-shock wave solution, if the value q? lies exactly on the Hugoniot curve
in phase space11 connecting q

L
and q

R
by a 3-shock. In [154] he demonstrates that

the Roe scheme, but also Godunov’s Method fail in approximating such a value q?

to high accuracy in case of nonlinear systems and produce significant errors in the
other characteristic fields. As the Roe scheme with Harten-Hyman entropy correc-
tion (Roe HH) and Godunov’s Method (Exact RS) do not introduce any numerical
viscosity over a shock wave these errors are not damped. The right picture of Fig.
4.13 illustrates that these methods capture the shock very sharply within two cells,
but generate unphyscial overshoots. Especially the temporal development of the
front pressure displayed in the upper row of Fig. 4.14 uncovers the huge oscillation
amplitude of these schemes.

If the Harten-Hyman entropy correction is replaced by an entropy enforcement
technique, for instance by EF 3, the results of the Roe scheme are improved (Roe EF
3). Roe EF 3 needs three cells to capture the shock (see left picture of Fig. 4.13),
but creates the smallest oscillations of all tested methods (see Fig. 4.14). Although
the shock wave is admissible and does not require any entropy correction the entropy
enforcement formulas EF 1 to EF 3 add numerical viscosity in the shock capturing
region. The shock involves such a large jump in u1 (compare Tab. 4.3) that the
parameter η computed by (4.92) usually exceeds the Roe-averaged eigenvalue û1 + ĉ
at least at one cell interface.

For fast moving shock waves all considered upwind schemes give an identical
approximation without any oscillations. Fig. 4.15 displays the result of Godunov’s
Method, if all velocities in Test 3 are increased by 8.8358689. Six cells are now
necessary to capture the shock. The results only depend on the discretization and
the numerical viscosity is so large that no differences between the different schemes
are visible.

10From property (iii) on page 77 follows the condition ŝ(q
L
,q

R
)∆q = f(q

R
) − f(q

L
) for the

approximation of isolated discontinuities by the Roe scheme. Together with property (i) on page
77 this condition should ensure that an isolated shock or contact discontinuity is approximated
with a single simple wave solution [117].

11A detailed explanations of these notions in the case of nonlinear systems can be found in the
book of LeVeque [117].
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Figure 4.15: Result of Godunov’s Method for a fast moving shock wave plotted
onto the exact solution (graphs without dots). Left: density distribution at tend = 2,
right: front pressure history.

Higher-Order Results

We test the MUSCL-Hancock method of Sec. 4.3 with a variable extrapolation in
conservative variables with all previously introduced upwind schemes. The front
pressure histories for Test 3 with Minmod- and Van-Leer-limiter are shown in Fig.
4.14. The oscillations observed in the first-order computations are amplified. For
this specific example, the higher-order reconstruction is obviously not total variation
diminishing, because the basic assumption in the derivation of the method in Sec.
4.3, a monotone upwind scheme, is not satisfied.

With the diffusive Minmod-limiter (4.49) the FVS schemes, HLL and Roe EF 3
give similar results. With the Van-Leer-limiter (4.51), which resolves discontinuities
sharper, quite different results are obtained. While the oscillations of Roe EF 3
decrease slightly, Van Leer FVS and HLL show worse results. The simple Steger-
Warming FVS even breaks down with this limiter.

4.8.3 Multi-Dimensional Strong Shocks

The so-called carbuncle phenomenon is a multi-dimensional numerical crossflow
instability that occurs at strong grid-aligned shock waves, if sophisticated shock-
capturing schemes are applied. It was first discovered by Perry and Imlay in blunt
body computations utilizing the Roe scheme for standard Euler equations [148].
They observed a spurious, but fully converged, steady-state solution for flows at
supersonic speed. It was studied in more detail from a numerical point of view by
Quirk, who introduced a simplified instationary test case on a rectangular grid with
a slightly perturbed mesh to trigger the unwanted instability [150]. In this test,
initially very weak transverse disturbances directly downstream of the shock are
amplified disastrously and lead to the total degeneration of the planar shock struc-
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ture. Like in the preceding sections the defect is caused by the capturing of a very
strong shock wave on a fixed mesh, but unlike the unphysical oscillations observed at
slowly moving shock waves, the carbuncle phenomenon is also present for standing
and rapidly propagating shocks. A drastic increase of the numerical viscosity in the
characteristic field of the shock can moderate the size of the carbuncle prones, but it
does not avoid them completely. All problems are reported to vanish entirely, if the
shock is resolved accurately, for instance with a front-tracking technique [142, 143].
Up to now, no profound explanation has been found to explain the instability sat-
isfactory, but recently Robinet, Gressier, Casalis and Moschetta presented a linear
stability analysis for the two-dimensional standard Euler equations that uncovered
an unstable mode in the equations downstream of shocks at higher Mach numbers
[155].

Recent numerical investigations [143, 58] have shown that the carbuncle phe-
nomenon is produced by all upwind schemes which conserve steady contact discon-
tinuities exactly. Some of these schemes are Godunov’s Method, the Roe scheme
(Sec. 4.6.1), Osher’s Riemann solver [63, 141, 140] and the HLL approximate Rie-
mann solver with restored contact-wave (these improved variants are HLLEM [62]
and HLLC [188, 187]). A FVS-type scheme that also preserves steady contact dis-
continuities and consequently creates carbuncles is AUSMDV [201], a recent variant
of the Advection Upstream Splitting Method (AUSM) by Liou and Steffen [125, 124].
On the other hand, schemes introducing numerical viscosity at steady contact dis-
continuities, like Steger-Warming (Sec. 4.5.1), Van Leer (Sec. 4.5.2), AUSM FVS
or for instance the simple HLL scheme (Sec. 4.6.4), do not suffer from the carbuncle
phenomenon. It is interesting to note, that physical viscosity introduced by the
diffusive terms of the Navier-Stokes equations is usually not sufficient to suppress
the unphysical behavior [143].

Detonation simulations can suffer significantly from unphysical crossflow instabil-
ities, because the shock at the detonation front is usually extraordinarily strong. The
total failure of simulations of strong grid-aligned detonation waves due to such insta-
bilities is reported by Quirk [151] and Bale, Helzel [14, 92]. All detonation configura-
tions (with simplified or with detailed chemical reaction) considered throughout this
thesis involve strong enough shock waves to create the carbuncle phenomenon. As
multi-dimensional detonation waves in general do not remain planar (compare Sec.
3.2) they intrinsically produce weak disturbances perpendicular to the detonation
front that initiate typical carbuncles in multi-dimensional grid-aligned computations
rapidly.

Test with a Strong Shock Wave

We study the appearance of unwanted crossflow instabilities at strong grid-aligned
shock waves by a simple non-reactive two-dimensional test problem. This test is
easier to implement than Quirk’s original test case [150], since it does not require a
non-Cartesian mesh. Furthermore, it illustrates that the shocks ahead of detonation
waves are usually strong enough to trigger a continuous carbuncle growth without
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Figure 4.16: Results of the carbuncle test with different upwind schemes. Isolines
of the density distribution at t = 10. CCFL ≈ 0.5.

any continuous artificial perturbation.

The RP of Tab. 4.3 is extended to two space dimensions with u2 = 0 and
placed on a rectangular domain of the size 30 × 10 at x1 = 20. In order to obtain
large carbuncle prones in minimal computational time, we reduce all velocities u1

by 0.8 giving a shock propagation velocity of −0.5. We employ a Cartesian grid of
150×51 cells. Initially, the pressure value in the middle cell right of the discontinuity
(j = 100, k = 26) is increased by +1% to initiate the two-dimensional instability.
Outflow boundary conditions are applied at the left and right side; reflective bound-
ary conditions are used in the x2-direction.

We carry out first-order accurate computations with automatic time step ad-
justment for an intended Courant number of CCFL ≈ 0.5 to tend = 10. At tend

the shock wave should be located exactly at x1 = 15. The Godunov splitting
Ql+1 = X (∆t)

2 X (∆t)
1 (Ql) is used for the dimensional extension of all previously in-

troduced upwind schemes. The results are displayed in Fig. 4.16. All expected
upwind schemes have produced characteristic carbuncle prones. In particular, the
instability is most clearly present with Roe EF 3, which underlines that the error
can not be overcome simply by increasing the numerical viscosity at the shock in x1-
direction. Note, that the carbuncle phenomenon also occurs, if the two-dimensional
Wave Propagation scheme (4.58) is used (see upper row of Fig. 4.17) and does not
have its origin in the dimensional splitting.

The initial perturbation downstream of the shock front initiates weak distur-
bances in the x2-direction in all four characteristic fields. But the carbuncle phe-
nomenon is triggered by the noise in the linearly degenerate fields corresponding
to the double eigenvalue u2 ≈ 0. While upwind schemes, which do not resolve the
contact discontinuity exactly, smooth out this noise rapidly, it is not damped in
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Roe EF 3? Roe EF 3?-H (Wave Prop.)

Figure 4.17: Results of the carbuncle test with different upwind schemes. Isolines
of the density distribution at t = 10. CCFL ≈ 0.5. Right, bottom: The H-correction
(4.105) avoids the carbuncle phenomenon.

Godunov’s Method or when using the Roe scheme. Sanders, Morano and Druguet
note that the viscosity matrices (see Sec. 4.6.2) in the x2-direction of these accurate
schemes becomes nearly singular for u2 ≈ 0 and consequently do not damp the un-
wanted transverse noise, but amplify it [160]. If the entropy enforcement formulas EF
1 to EF 3 in the Roe scheme are also applied to the contact wave in the x2-direction
the carbuncle growth is therefore moderated. The left picture of Fig. 4.17 shows the
improved result of this variant of EF 3, which we denote by Roe EF 3?. But in the
x2-direction the variations of the eigenvalues û2±ĉ in neighboring cells are extremely
small and the correction term ηj,k+ 1

2
:= η(Qj,k,Qj,k+1) calculated from (4.92) does

not add sufficient viscosity to avoid the instability completely. Sanders, Morano and
Druguet propose a multi-dimensional evaluation of the correction term in order to

Figure 4.18: H-correc-
tion between the cells
(j, k) and (j, k + 1).

consider the strength of the shock in the x1-direction also in
the numerical viscosity added in the x2-direction. Instead
of ηj,k+ 1

2
they suggest to use

η̃j,k+ 1
2

= max
{
ηj+ 1

2
,k, ηj− 1

2
, k, ηj, k+ 1

2
, ηj− 1

2
, k+1, ηj+ 1

2
, k+1

}
,

(4.105)
where η is still calculated by Eq. (4.92). They call Eq.
(4.105) “H-correction” (see Fig. 4.18). If the correction
term of the H-correction η̃ is only applied to the contact
wave in the x2-direction, the instability is already com-
pletely avoided. But in a reliable multi-purpose code the
H-correction should be implemented in both directions and
η̃ will usually be used also as the correction term for the first
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and last characteristic field. In the following we denote the Roe scheme that uses
EF 3 for all waves in combination with the H-correction by Roe EF 3?-H (see right
column of Fig. 4.17). The H-correction avoids the occurrence of carbuncle prones
in any dimensional splitting and within the multi-dimensional Wave Propagation
scheme of Sec. 4.3.2.

Other cures for the carbuncle phenomenon usually detect strong shock waves
by a heuristic criterion (for instance by evaluating pressure jumps) and switch to
a diffusive scheme, like HLL [150] or AUSM FVS [201] in the transverse direction.
The H-correction has the advantage that it does not involve an additional scheme.

4.9 Multi-Component Specific Problems

While the problems mentioned in the preceding section are already present in the
single-component case, upwind methods for multiple components face additional
difficulties. In particular, the Roe scheme can produce negative mass fractions,
which can lead to significant problems in evaluating detailed chemical reaction terms
correctly.

4.9.1 Mass Fraction Positivity

In contrast to Steger-Warming FVS, Van Leer FVS and the HLL method, the Roe
scheme of Sec. 4.6.1 has the weakness that it can produce negative partial densities
ρi. If this happens, some mass fraction values violate the condition

0 ≤ Yi ≤ 1 , i = 1, . . . , K . (4.106)

A typical RP illustrating the unphysical behavior of the Roe scheme independent of
the internally employed entropy correction is given in Tab. 4.5. The result after one
time step is shown in Fig. 4.19. Especially multi-component simulations of thermally
perfect gases can suffer significantly from this deficiency, but it is important to note
that the defect also occurs in flows of calorically perfect gases with constant γ.
In Tab. 4.4 Riemann initial data demonstrating the problem for the simplified

Left Right
ρ̄ 1.0 1.0
U1 0.0 0.0
P 1.0 50.0
Z 1.0 0.0

Table 4.4: Riemann
initial data for simpli-
fied chemistry. Q0 =
0.0, γ = 1.4.

model of Sec. 3.1.1 without reaction term are supplied.
As the solution involves rarefaction waves, it depends
on the entropy correction in use, whether the error
occurs already in the first or in the second time step.

In the Roe scheme the numerical fluxes of the partial
densities Fi(qL

,q
R
) are computed with Eq. (4.38) uti-

lizing the specific Roe matrix of Sec. 4.6.1. In [108]
Larrouturou suggests to enforce condition (4.106) by
replacing Fi(qL

,q
R
) by a modified approximation

F?
i (qL

,q
R
) that is derived from a discrete analogue
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of relation (2.77) by

F?
i (qL

,q
R
) = Fρ(qL

,q
R
) ·
{
Yi,L , Fρ(qL

,q
R
) > 0 ,

Yi,R , Fρ(qL
,q

R
) < 0 .

(4.107)

Herein, Fρ(qL
,q

R
) =

∑
Fi(qL

,q
R
) denotes the total mass flux of the Roe scheme.

Larrouturou proves that a Godunov-type scheme defined on a usual FV grid indexed
by j in space and by l in time, which utilizes (4.107), preserves the maximum
principle

min
k∈Z

Y 0
i,k ≤ Y l

i,j ≤ max
k∈Z

Y 0
i,k (4.108)

for all j ∈ Z, l ∈ N0 and i = 1, . . . , K under the CFL-like condition

∆t

∆x

[
max(Fl

ρ(Qj+1,Qj), 0)

ρl
j

−
min(Fl

ρ(Qj,Qj−1), 0)

ρl
j

]
≤ 1 for all j ∈ Z, l ∈ N0 .

Condition (4.106) then follows directly from (4.108) for all admissible initial data.
Instead of repeating the proof in [108], we apply a similar technique to verify that
the FVS schemes of Secs. 4.5.1 and 4.5.2 and the HLL scheme of Sec. 4.6.4 already
preserve the maximum principle (4.108) and do not require any modification.

Proposition 7 (Maximum principle for the mass fractions.) A FV scheme
that has a numerical flux for the partial densities Fi(qL

,q
R
), which can be written

in the form

Fi(qL
,q

R
) = Yi,L φ

+(q
L
) + Yi,R φ

−(q
R
) for all i = 1, . . . , K (4.109)

with two scalar functions φ+(q), φ−(q) that satisfy φ+(q) ≥ 0, φ−(q) ≤ 0 for all
admissible states q ∈ S, preserves the maximum principle (4.108) under the CFL-
like condition

∆t

∆x

[
φ+(Ql

j)− φ−(Ql
j)

ρl
j

]
≤ 1 for all j ∈ Z, l ∈ N0 . (4.110)

Proof. We insert (4.109) into Eq. (4.12) and set Λ := ∆t/∆x and φ±j := φ±(Ql
j) to

simplify the notations. With Fρ =
∑

Fi and
∑
Yi,L =

∑
Yi,R = 1 we obtain

ρl+1
j = ρl

j − Λ
[
φ+

j + φ−j+1 −
(
φ+

j−1 + φ−j
)]

, (4.111)

ρl+1
j Y l+1

i,j = ρl
j Y

l
i,j − Λ

[
Y l

i,j φ
+
j + Y l

i,j+1 φ
−
j+1 −

(
Y l

i,j−1 φ
+
j−1 + Y l

i,j φ
−
j

)]
. (4.112)

We divide (4.112) by (4.111) and get

Y l+1
i,j =

Y l
i,j−1Λφ

+
j−1 + Y l

i,j

(
ρl

j − Λ(φ+
j − φ−j )

)
− Y l

i,j+1Λφ
−
j+1

Λφ+
j−1 +

(
ρl

j − Λ(φ+
j − φ−j )

)
− Λφ−j+1

. (4.113)

φ+
j−1 and φ−j+1 satisfy φ+

j−1 ≥ 0, φ−j+1 ≤ 0 by definition. If furthermore

ρl
j − Λ(φ+

j − φ−j ) ≥ 0 (4.114)

is satisfied, Eq. (4.113) is just a convex combination of Y l
i,j−1, Y

l
i,j, Y

l
i,j+1 and by ex-

tending condition (4.114) appropriately, we obtain (4.110) and the maximum prin-
ciple (4.108). �
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x [cm] x < 3 x > 3
ρ [kg m−3] 1.1 0.15
u1 [m s−1] 270 170
p [kPa] 110 25
YO2 1.0 0.0
YH2O 0.0 1.0

Table 4.5: Riemann initial data for Test
4. Domain: 10 cm, outflow on both
sides.
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Figure 4.19: (Right) First-order results of Test 4 for the Roe scheme after 1 time
step with CCFL = 0.643, ∆x = 0.05 cm.

Maximum principle for the Flux-Vector Splittings

The FVS schemes (4.66), (4.69) can easily be written in the form (4.109) by using
φ+(q

L
) := f+

ρ (q
L
) and φ−(q

R
) := f−ρ (q

R
) with f+(q

L
) =

∑
f+
i (q

L
), f−(q

R
) =∑

f−i (q
R
). The functions f±ρ (q) satisfy f−ρ (q) ≥ 0 and f+

ρ (q) ≤ 0 by definition.
From (4.66) we find f±ρ (q) = ρτ±/(2γ) for the Steger-Warming FVS and from (4.69)
f±ρ (q) = ±ρ(u1±c)2/(4c) for the Van Leer FVS. For both schemes condition (4.110)
does not impose a further restriction. As an example we discuss the case of the
Steger-Warming scheme. In each time step we have to satisfy Λ(τ+ − τ−)/(2γ) ≤ 1
in every cell. By inserting τ± = λ±1 + 2 δ±(γ − 1) + λ±K+d+1 into this relation we
easily find a suitable upper bound

Λ

2γ
(|u1− c|+2 |u1|(γ−1)+ |u1 + c|) ≤ Λ

2γ
(2 |u1|+2c+2 |u1|(γ−1)) = Λ

(
|u1|+

c

γ

)
that itself is bounded by the standard CFL condition (4.84) by

Λ

(
|u1|+

c

γ

)
≤ Λ(|u1|+ c) ≤ 1 ,

which proves that (4.110) is automatically satisfied for the Steger-Warming FVS
under the standard CFL condition (4.84).

Maximum Principle for the HLL Scheme

Only the non-trivial case with SL ≤ 0 ≤ SR needs special attention. A straight-
forward calculation shows that the HLL method (4.96) can be expressed in terms of
(4.109) by setting

φ+(q
L
) :=

SR ρL u1,L − SLSR ρL

SR − SL

, φ−(q
R
) :=

SLSR ρR − SL ρR u1,R

SR − SL

.
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It is easy to check that the necessary conditions φ+(q
L
) ≥ 0, φ−(q

R
) ≤ 0 are always

satisfied under the relations SL ≤ 0 ≤ SR and SL < u1,L, u1,R < SR. The last two
conditions are trivial for the estimate of Davis (4.97). Utilizing (4.97) it can also be
shown that the HLL method satisfies condition (4.110) automatically, if the standard
CFL condition (4.84) is satisfied in every computational cell. The computation is
simple, but lengthy, because φ+(Qj) requires the signal speed estimates SL,j+1/2 and
SR,j+1/2 at the right side of cell j, while φ−(Qj) uses the estimates at the left side
SL,j−1/2 and SR,j−1/2.

4.9.2 Contact Discontinuities

The FVS schemes of Steger-Warming and Van Leer do not reproduce isolated contact
discontinuities correctly. Even in the standard case of a single calorically perfect gas
the Riemann invariants p and u1 (see Prop. 6) are not constant over a contact
discontinuity. After the first time step the approximations of pressure and velocity
show small, but unphysical oscillations in the cells near the initial discontinuity.
Usually, the influence of these oscillations on the entire simulation is negligible, but
special situations exist, where the deficiency affects the result significantly.

In case of a single calorically perfect gas the error at contact discontinuities can
perfectly be avoided by employing one of the approximative Riemann solvers of Sec.
4.6.1 and Sec. 4.6.4. If γ is constant over the contact discontinuity, HLL and the
Roe scheme reproduce a constant pressure and velocity. In case of a single thermally
perfect gas (two different values of γ on both sides of the contact due to the tem-
perature difference) the HLL scheme produces a kink in the pressure independent
of u1 in the first step. The approximation of the velocity is correct after the first
time step, but becomes corrupted after the second step due to the pressure oscilla-
tions. The Roe scheme shows the same behavior for moving contact discontinuities
with u1 6= 0. In the special case of u1 = 0 the Roe method approximates contact
discontinuities with γL 6= γR correctly without any artificial oscillations.

A typical example of a moving contact discontinuity for thermally perfect oxygen
is given in Tab. 4.6. A comparison of first-order results of all schemes is shown in
Fig. 4.20. It is obvious, that the Roe scheme produces the best approximation. HLL
and Van Leer’s FVS give a similar error in the pressure p, but HLL approximates
the velocity u1 correctly. The FVS of Steger-Warming gives the worst result.

The correct approximation of contact discontinuities with γL 6= γR is

x [cm] x < 5 x > 5
ρ [kg m−3] 0.385 1.283
u1 [m s−1] 100 100
p [kPa] 100 100
γ [−] 1.31296 1.39455

Table 4.6: Riemann initial data for Test
5. Domain: 10 cm, outflow on both sides.

important for the correct simulation
of non-mixing fluids with clearly de-
fined interfaces. Various correction
techniques have been proposed in re-
cent years for the Roe scheme for the
simplified case of mixtures of calori-
cally perfect species. An obvious idea
is to avoid any inadequate averaging
of γ over the interface [186] by using
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Figure 4.20: 1st-order results of Test 5 with thermally perfect O2 after 1 time step
at t = 0.4µs with ∆x = 0.05 cm.

two standard Roe schemes in both fluids separately. Suitable internal boundary
conditions are constructed in additional internal ghost cells by employing a level-set
function [132], which tracks the position of the interface [101, 152, 69]. The exten-
sion of this technique to chemically reactive flows is problematic, because in general
new contact surfaces could be created by chemical reaction. But the application of
the level-set technique is straight-forward, if only reaction fronts need to be tracked
that are initially present. A successful combination of the level-set technique with
the conservative ghost fluid method has been applied to detonation, but especially
to deflagration waves by Fedkiw and his collaborators [72, 70].

A different correction technique for the Roe scheme is based on the quasi-linear
transport equation

∂

∂t

(
1

γ − 1

)
+

d∑
n=1

un
∂

∂xn

(
1

γ − 1

)
= 0 . (4.115)

In [2] Abgrall noticed that a FV scheme satisfying Eq. (4.115) in the discrete
sense preserves constant pressure and constant velocity over a contact discontinuity.
Various ideas have been developed, how Eq. (4.115) might be incorporated into Roe-
type discretizations [2, 97, 170, 49, 161, 11]. A good review of these methods, that
have in common that they require a non-conservative discretization, can be found
in a recent paper by Abgrall and Karni [3]. Note, that Eq. (4.115) can only be
derived for simplified equations of state like Eq. (2.59) that use a non-temperature
dependent adiabatic coefficient γ. For the general case of temperature-dependent γ,
in particular for thermally perfect species, which are of major interest for combustion
simulation, no similar condition has been found yet.

Fortunately, contact discontinuities with significantly different γ-values do not
play an important role in shock wave induced combustion in premixed gases. But
they are present even in premixed regimes, if the reaction is thermally induced, e.g.
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in deflagration waves. Throughout this thesis only shock wave induced combus-
tion phenomena, especially self-sustaining detonations waves are considered and the
described problem therefore does not corrupt the numerical results.

4.10 Source Term Integration

The numerical incorporation of chemical reaction terms into a FV method with the
operator splitting method of Sec. 4.1.3 requires the numerical integration of an
stiff ordinary differential equation. Various reliable numerical methods are available
for this standard task today and we report briefly on our particular choice and its
application in practice.

4.10.1 Integration of the Rate Equation

The integration of reactive source terms according to Sec. 2.3.7 in a fractional step
method requires the solution of the ODE

∂ρi

∂t
= Wiω̇i (ρ1, . . . , ρK , T ) , i = 1, . . . , K (4.116)

with initial condition ρi(0) = ρY 0
i , i = 1, . . . , K in every FV cell. The total density ρ

in this cell, the specific energies E, e and the velocities un remain unchanged during
the integration. This corresponds to a chemical reaction in an adiabatic constant
volume environment.

Mixtures of thermally perfect gases require the calculation of the time-dependent
temperature T from the implicit Eq. (2.56) in every evaluation of the right side of
(4.116) by applying the robust root-finding method derived in Sec. 4.4.2. The
temperature in mixtures of calorically perfect gases can be calculated directly from
(2.59).

In numerical simulations with detailed non-equilibrium chemistry the stiffness
of the ODE (4.116) necessarily has to be considered. At least for some admissible
states Eq. (4.116) usually satisfies the following definition of Lambert [106]:

Definition 17 (Stiff ODEs). An ordinary differential equation y′ = g(y) is said
to be stiff, if the complex-valued eigenvalues ξm of the Jacobian G = ∂g(y)/∂y
satisfy the properties

- Re(ξm) < 0,m = 1, . . . , M̃ and

- max
m
|Re(ξm)| � min

m
|Re(ξm)| .

Detailed chemical kinetics are a typical source of stiff ODEs and the usage of an
appropriate implicit or semi-implicit ODE solver is essential for detonation simula-
tion.

Throughout this thesis only the semi-implicit (or linearly implicit) Runge-Kutta
method GRK4A of Kaps and Rentrop [100] has been employed to integrate stiff
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reaction terms with the local sub-cycling explained in Sec. 4.1.3. GRK4A is a
robust fourth-order “black-box” ODE integrator with automatic step size adjust-
ment. Although a second-order ODE scheme in principle would be sufficient within
a second-order accurate operator splitting (compare Sec. 4.1.3), we decided to em-
ploy the very accurate, but computationally more expensive GRK4A method. With
a sufficiently high accuracy (see Sec. 4.10.2) this decision should lead to numerical
results that are mostly independent of our specific ODE scheme and should be better
reproducible by other researchers.12

The scalar source term arising from simplified chemistry in Chap. 6 is always
integrated with a classical explicit fourth-order accurate Runge-Kutta method with
automatic time size adjustment [56, 106] nearly to machine accuracy.

Semi-Implicit ODE Methods

The basic idea of the semi-implicit approach is to avoid the expensive solution of a
system of nonlinear algebraic equations by replacing g(Yι+1) on the right-hand side
of an implicit update formula by the linear approximation

g(Yι+1) ≈ g(Yι) +
∂g

∂y

∣∣∣∣
Yι

·
(
Yι+1 −Yι

)
.

If we insert this approximation for instance into the Trapezoidal Rule (compare Eq.
(4.15)), we get

Yι+1 = Yι + ∆h

(
g(Yι) +

1

2

∂g

∂y

∣∣∣∣
Yι

·
(
Yι+1 −Yι

))
from which we derive the linearly implicit update formula(

I− ∆h

2

∂g

∂y

∣∣∣∣
Yι

)
·Yι+1 =

(
I− ∆h

2

∂g

∂y

∣∣∣∣
Yι

)
·Yι + ∆hg(Yι) ,

which defines a linear system of equations for the unknown Yι+1 with coefficient

matrix I− 1
2

∂g
∂y

∣∣∣
Yι

.

The construction of higher-order linearly implicit methods, especially with efficient
automatic step size adjustment, is quite complicated and we omit a description here,
because the details of the approach are not essential for our purpose. A profound
presentation of the numerous design rules to derive the Runge-Kutta coefficients in
the semi-implicit case, which is also said to be of Rosenbrock-Wanner-type, can be
found in the second book of Hairer and Wanner [85] and in the review article of
Cash on this subject in [6].

12A comparison of various black-box ODE solvers applied to stiff reaction terms has been done
by Geßner [78]. He analyzed the computational times of typical induction time calculations with
the hydrogen-oxygen mechanism of Oran et al. in [136, 139, 138]. The most efficient methods he
found are SAIM, a second-order hybrid method of Young and Boris tailored for chemical kinetics
[208] and GRK4A. In his tests SAIM is about three times faster than GRK4A.

A further second-order accurate black-box ODE solver that can also be recommended for stiff
reaction terms is METAN by Bader and Deuflhard [12].
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4.10.2 Accuracy Considerations

The automatic step size adjustment of ODE solvers is in general based on the esti-
mation of the local truncation error of the current step. Usually the actual step is
rejected (and repeated with decreased step size), if the relation

|τODE

m (Yι+1)|
max(|Yι+1

m |, SODE

m )
> η

ODE
(4.117)

is satisfied for any of the components of the discrete solution vector Y. Herein,
τ

ODE

m (Yι+1) denotes a suitable estimation of the local error in the mth component
in the next step. Relation (4.117) uses the relative local error above the positive
threshold S

ODE

m and the absolute local error below.
The parameters η

ODE
, S

ODE

m have to be adjusted with special care, if the operator
splitting approach is used within a dynamically adaptive method (compare Sec. 5.7)
that applies an error estimation criterion to the result of the entire splitting method.
For instance, the heuristic error estimation by Richardson extrapolation in Sec. 5.4.2
depends on the accuracy of the hydrodynamic transport scheme, but also on the
accuracy of the ODE solver. If the ODE integration is significantly less accurate,
the error of the entire method can be corrupted and if relatively small refinement
tolerances are used, an unnecessary grid adaptation will be the result.

Throughout this thesis, relation (5.26) is applied as a refinement criterion on the
mass fractions Yi, when detailed reaction mechanisms are considered. The discussed
problem is avoided completely by choosing a tolerance for the ODE solver under the
constrain

η
ODE

� min
i

(ηr
Yi

)

and scaling factors that satisfy13

max
i

(η
ODE

· SODE

Yi
) ≤ min

i
(ηr

Yi
· SYi

) . (4.118)

For instance, for the refinement criteria of Tab. 7.3 we simply select η
ODE

= 10−5

and S
ODE

Y1
= · · · = S

ODE

YK
= 10−3.

4.10.3 Evaluation of Reaction Rates

We always evaluate detailed chemical reaction rates on basis of the Chemkin-II-
library [102]. The thermodynamic constants for (2.45) and (2.46) are always taken
from the standard Chemkin-II thermodynamical data base [103]. The Jacobian
of the vector-valued rate function ω̇(ρ1, . . . , ρK , T ), which is required by any semi-
implicit ODE solver, is always approximated by standard difference quotients. Its

13In Eq. (4.118) the scaling factors S
ODE

Yi
are derived for the mass fractions Yi, but they can

be transformed directly into scaling factors for partial densities by multiplying with the constant
total density, i.e. S

ODE

ρi
:= ρS

ODE

Yi
.
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computation needs K evaluations of ω̇(·) in every time step. Further on, the four-
stage Runge-Kutta scheme in GRK4A needs three evaluations of ω̇(·) in every step.
Therefore, the computer code implementing ω̇(·) with respect to a particular mecha-
nism is the first candidate for technical optimizations to decrease the computational
time.

With the original Chemkin-II-library14 approximately 105 time steps of GRK4A
with Mechanism 1 require about 68 s on a single Pentium-850 MHz processor. As
the Chemkin-library is of course independent of a specific mechanism the parameters
ν

f/r
ji , A

f/r
j , −Ef/r

j in the formulae of Sec. 2.3.7 are stored in fields that are accessed
via numerous loops. The evaluation of ω̇(·) involves a permanent reload of these data
fields into the highest level cache. If the general-purpose Chemkin-function is re-
placed by a numerically identical function, implemented only for a single mechanism
with loop-unrolling and without any unnecessary field accesses, the computational
time for ≈ 105 GRK4A time steps reduces to less than 18 s.15 We have applied a
specified function of this type for Mechanisms 1 in all computations in Chap. 7.

14Compiled with standard Fortran-77 optimizations.
15We have implemented a simple Fortran-77 code generator on top of the Chemkin-routines that

creates the necessary mechanism-specific function automatically. It has to be executed once for
every new mechanism. Its output is standard Fortran-77 code that can be compiled and linked as
usual. The code generator implements the formulas of Sec. 2.3.7 without any loops and inserts the
parameter values ν

f/r
ji , A

f/r
j , −E

f/r
j as constants directly into the code. See the Chemkin manual

[102] for details on the implementation of the third body reactions in Mechanisms 1.



Chapter 5

Adaptive Mesh Refinement

In this chapter we develop the blockstructured dynamically adaptive mesh refine-
ment (AMR) strategy after Berger and Collela [21] which has been employed for the
large-scale computations throughout this thesis. The presented AMR algorithm is
especially tailored for time-explicit finite volume schemes for hyperbolic conserva-
tion laws and its application is essential for the efficiency of the sufficiently resolved
detonation simulations in the Chaps. 6 and 7.

Unlike other refinement strategies mentioned in Sec. 5.1 the hierarchical AMR
approach allows an effective refinement in space and in time. The single-processor
version of the AMR algorithm is developed in Sec. 5.2. In Sec. 5.3 a parallelization
strategy for parallel machines with distributed memory is presented. A rigorous
domain decomposition is applied that separates the entire AMR hierarchy from the
base level on. This strategy reduces the communication overhead and simplifies the
implementation [145]. In contrast to other presentations [21, 20, 133] a topological
notation is employed throughout the Secs. 5.2 and 5.3. The exactness of the formula-
tion ensures that the AMR sub-routines in pseudo-code could be used as guide-lines
for practical implementations. Important components, like load-balancing [145], the
creation of refinement grids from flagged cells [19] or the numerical treatment of
refinement boundaries inside the computational domain are described. Sec. 5.4
summarizes standard refinement criteria. In Sec. 5.5 we explain the object-oriented
design of our own AMR code AMROC [53]. The last section presents two highly
adaptive non-reactive standard tests: a Mach reflection and a shock wave diffrac-
tion. The examples demonstrate the efficiency of the parallel implementation and
provide the basic hydrodynamic flow patterns for the interpretation of the detona-
tion simulations in the last section of Chap. 7.

5.1 Adaptive Mesh Refinement Strategies

Detonation simulations, but also non-reactive inviscid fluid flow computations usu-
ally involve a wide range of different scales. In order to achieve a high resolution
of the physical relevant phenomena only efficient implementations of the FV shock-

109
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Figure 5.1: Unstructured refinement strategy. Hanging nodes can be avoided.

capturing schemes of the previous chapter have to utilize non-uniform grids. Various
adaptation techniques to adapt the discretization dynamically to the solution have
been developed during the last two decades.

5.1.1 Unstructured Approach

Unstructured triangulations offer superior geometrical flexibility. The coordinates
of all vertices have to be stored explicitly and the basic discretization is intrinsi-
cally non-uniform (compare Fig. 5.1). Consequently, existing implementations can
relatively easily be supplemented with dynamical adaptation. Cells that have been
flagged for refinement are simply replaced by finer ones and the numerical solution
is advanced on the entire grid simultaneously. A coarsening step is necessary to
recombine fine cells. For time-explicit FV schemes this simple strategy can be in-
efficient, because it requires a global time step that satisfies the CFL condition for
the smallest cell. Further on, unstructured triangulations are usually implemented
with cell-based data structures that store all neighborhood relationships explicitly.
The memory access during computation is strongly irregular and the performance
on vector or super-scalar computers therefore is poor. The capabilities of modern
computers with large high-level caches are difficult to exploit. Implementations on
parallel computers with distributed memory have to solve complex load-balancing
problems on the fly. In particular, appropriate synchronization regions (overlaps)
with respect to the numerical stencil are difficult to compute. A freely available
generic C++-library that supports unstructured meshes on distributed memory ma-
chines is GrAL (Grid Algorithms Library) by Berti [29, 27, 28].

5.1.2 Structured Approach

If geometric flexibility is only of secondary interest, the numerical scheme can be
formulated on a logically rectangular (not necessarily Cartesian) mesh. Rectangular
meshes allow optimizations that moderate some of the technical disadvantages of
unstructured refinement techniques. A structured refinement strategy replaces or
overlays a single coarse cell by a regular refinement block of rd cells. For simplicity,



5.1. ADAPTIVE MESH REFINEMENT STRATEGIES 111

Figure 5.2: Mesh and corresponding local quadtree-tree of a structured mesh refine-
ment strategy. r = 2, d = 2.

the refinement factor r is often fixed and all successively generated refinement blocks
can be accessed efficiently by utilizing a regular data tree (see Fig. 5.2). The data
tree avoids explicit storage of parent- or child-relations and the use of a global integer
coordinate system (compare Sec. 5.5.2) allows an easy evaluation of neighborhood
relationships.

In the case of time-explicit FV schemes the construction of time-space inter-
polated internal boundary conditions can be implemented with moderate expense
allowing a successive time step refinement with factor r. A disadvantage of struc-
tured refinement is that hanging nodes along the coarse-fine interfaces are unavoid-
able (compare left picture of Fig. 5.2).1 A recent freely available FV program for
distributed memory machines that allows arbitrary refinement factors is the NASA-
code PARAMESH by MacNeice and his collaborators [129].

Although the structured approach uses the available computer memory better
than the unstructured technique, consecutive memory blocks of rd cells are usually
not large enough to fill the vector pipelines of modern super-computers satisfac-
tory. Furthermore, a large number of small refinement blocks requires an enormous
overhead for synchronization and boundary setting. If the numerical scheme is im-
plemented with ghost cells, the waste due to overlapping neighboring ghost cells may
be non-negligible (see [133] for a detailed discussion). In particular, high resolution
schemes require a boundary size of at least two ghost cells and the memory demand
for the boundaries only can exceed that of the mere refinement regions drastically.

Unnecessary overlapping refinement boundaries can be eliminated completely,
if refinement blocks of arbitrary size are considered. This highly efficient strategy,
which involves a significantly higher algorithmic complexity and requires an elabo-
rated software infra-structure, is used within the blockstructured approach.

1A conforming closure is possible, if unstructured cells are employed. Such a hybrid refinement
strategy is used in the UG multigrid package of Bastian and Wittum [18]. But hybrid techniques
require implementations of the numerical scheme on unstructured and logically rectangular meshes
and are usually more complex that an accurate modification of the numerical stencil at hanging
nodes.
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Figure 5.3: The blockstructured refinement grids of the AMR method creates a
hierarchy of rectangular subgrids.

5.1.3 Blockstructured Adaptive Mesh Refinement

The blockstructured adaptive mesh refinement technique (AMR or SAMR) for hy-
perbolic partial differential equations has been pioneered by Berger and Oliger in [20]
and [23]. While the first approach utilized rotated refinement grids that required
complicated conservative interpolation operations, AMR denotes today especially
the simplified variant of Berger and Collela [21] that only allows refinement patches
aligned to the coarse grid mesh. The striking efficiency of this simplified variant, in
particular on vector and super-scalar computers, was demonstrated by Berger and
her collaborators in [19].

Instead of replacing single cells by finer ones the AMR method follows a patch-
wise refinement strategy. Cells being flagged by various error indicators are clustered
with a special algorithm (see [19] for details) into rectangular boxes of appropriate
size. They describe refinement regions geometrically and subgrids with the same
refinement factor in all space-directions and also in time are generated according to
them. Refined grids are derived recursively from coarser ones and an entire hierarchy
of successively embedded grid patches is thereby constructed, cf. Fig. 5.3. On each
level i of the hierarchy a separate refinement factor ri can be used. Like in the
structured approach, only the implementation of the numerical scheme on a single
rectangular grid is required. The adaptive algorithm calls this application-dependent
routine automatically. Further on, it uses conservative interpolation functions to
transfer cell values between refined subgrids and their coarser parents appropriately.

It is important to note, that refined grids overlay the coarser subgrids from which
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they have been created. The numerical solution on a particular level is first of all
advanced independently. Values of cells covered by refined subgrids are overwritten
by averaged fine grid values subsequently. The superfluous work on the coarse grid
is usually negligible compared to the computational costs for integrating the super-
imposed fine grids. Unlike the refinement technique of Sec. 5.1.2 that only allows
for one parent cell, the AMR method requires a general data tree, because arbitrary
parent- and child-relations need to be considered. In Fig. 5.3 this generality is
expressed by grid G2,2, which overlays two parents.

Replacing coarse cell values by averaged fine grid values modifies the numerical
stencil on the coarse grid. In general the important property of conservation is lost.
A flux correction replacing the coarse grid flux at the affected side of a neighboring
cell by accumulated fine grid fluxes is necessary to ensure conservation. In the
AMR method this conservative fixup is usually implemented as a correction pass.
Like in the structured approach described in the previous subsection hanging nodes
additionally have to be considered in two and three space dimensions. The correction
procedure is explained in detail in Sec. 5.2.3.

Up to now, various reliable implementations of the AMR method for single pro-
cessor computers have been developed [22, 47, 76, 133]. Even implementations for
parallel computers with shared memory architecture have reached a stable state [19].
Parallelism is an inherent feature of the AMR algorithm and in a shared memory
environment simply the numerical solution on the whole sequence of grids has to be
advanced in parallel to achieve a sufficient load-balancing.

The question for an efficient parallelization strategy becomes more delicate for
distributed memory machines, because the costs of communication can not be ne-
glected anymore. Due to the technical difficulties in implementing dynamical adap-
tive methods in a distributed memory environment only few parallelization strategies
have been considered in practice yet, cf. [50, 10, 153, 146, 104, 116].

Recent freely available implementations of the AMR algorithm for distributed
memory computers are for instance Berkeley-Lab-AMR [153] and our own imple-
mentation AMROC [53]. The basic object-oriented abstractions in both approaches
in principle are similar, but they differ significantly in the parallel data distribution
strategy. While AMROC uses a domain decomposition technique that minimizes in-
terprocessor communication (compare Sec. 5.3), the communication costs have not
been considered in the development of Berkeley-Lab-AMR [153]. In Berkeley-Lab-
AMR each level is distributed separately in a load-balancing manner and parallelized
level-transfer operations are consequently required.

5.2 Serial Algorithm

In the following, we define the AMR method exactly. Like in Sec. 4.1.1 we concen-
trate (without loss of generality) on the two-dimensional case. We assume that the
numerical scheme is a conservative time-explicit FV method in two space dimensions
(see Def. 12) that is formulated on a rectangular Cartesian grid G. Further on, we
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assume that the implementation requires s ≥ 1 auxiliary cells (ghost cells) around
G to define discrete boundary conditions.2

5.2.1 The Grid Hierarchy

Let the AMR hierarchy consist of a sequence of levels i = 0, . . . , imax. Analogously
to Sec. 4.1.1 we define a discretization of the computational domain on each level i
with successively finer mesh widths ∆xn,i, n = 1, . . . , d with d = 2 and a refined time
step ∆ti. All mesh widths of Level i > 0 are set to be ri-times smaller than those
of level i − 1. With ri ∈ N, ri ≥ 2 for i > 0 and r0 = 1 we define ∆ti := ∆ti−1/ri

and ∆xn,i := ∆xn,i−1/ri for all n = 1, . . . , d . Therefore, the ratios

∆ti
∆xn,i

=
∆ti−1

∆xn,i−1

= · · · = ∆t0
∆xn,0

for all n = 1, . . . , d

remain constant on all levels and a time-explicit FV scheme can be expected to
be stable under a CFL condition on all grids of the hierarchy [21]. The applica-
tion of successively refined time steps avoids the unnecessary update of coarse grid
cells at intermediate fine time steps and is one reason for the striking efficiency of
blockstructured AMR methods for hyperbolic equations.

Topology

With the notations of expression (4.2) we define the domain of the mth grid on level
i by

Gi,m := ]x
j−1/2
1,i , x

j+µ1−1/2
1,i [ × ]x

k−1/2
2,i , x

k+µ2−1/2
2,i [ . (5.1)

It has µ1 ·µ2 FV cells and corresponds to the interior grid of Fig. 5.4. The boundary
of Gi,m is ∂Gi,m and Ḡi,m = Gi,m ∪ ∂Gi,m is its hull. With a total number of Mi

grids on level i the domain of the entire level is

Gi :=

Mi⋃
m=1

Gi,m with Gi,m ∩Gi,n = ∅ for m 6= n , (5.2)

where we have assumed that the grids Gi,m do not overlap. The problem domain
G0 =

⋃
mG0,m does not need to be a single grid. In order to specify the setting

of ghost cell values exactly and to derive geometric relations between the grids of
different levels we introduce enlarged grid domains Gσ

i,m that extend Gi,m at all sides
by σ > 0 additional cells, i.e.

Gσ
i,m := ]x

j−σ−1/2
1,i , x

j+µ1+σ−1/2
1,i [ × ]x

k−σ−1/2
2,i , x

k+µ2+σ−1/2
2,i [ . (5.3)

Analogously to Gi we denote the enlarged level domain
⋃

mG
σ
i,m by Gσ

i . For σ = s
expression (5.3) yields the domain required for the numerical update on grid Gi,m.

2The parameter denotes s the radius of the numerical stencil (compare Def. 12). For a first-
order FV method we have s = 1, while a second-order method requires at least s = 2 (compare
Sec. 4.3).
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Figure 5.4: Parts of a refinement grid Gi,m.

We denote the additional necessary ghost cell region Gs
i,m\Ḡi,m by G̃s

i,m. But values
σ 6= s are also used in the following description to express geometric inter-level
relations. An example is condition (5.4).

We only allow properly nested refinements that satisfy the equation

Gri
i ∩Gi−1 = Gri

i ∩G0 (5.4)

for all i > 0 (compare Fig. 5.3). Condition (5.4) assures that internal cells of level
i only can abut internal cells of the levels i− 1 and i+ 1.

Grid-based Data

The notation Q(Gs
i,m, x

j
1,i, x

k
2,i) denotes the finite set of discrete approximations to

the vector of state which are defined on all discrete points (xj
1,i, x

k
2,i), j, k ∈ Z that

satisfy (xj
1,i, x

k
2,i) ∈ Gs

i,m. In general, some points (xj
1,i, x

k
2,i) will be contained in

multiple extended grids Gs
i,m. We assume that the data values associated to such

points are equal in all sets Q(Gs
i,m, ·, ·). Under this assumption, we define the vector

of state on level i as the union of all grid-based data sets Q(·, xj
1,i, x

k
2,i) by

Qi :=

Mi⋃
m=1

Q(Gs
i,m, x

j
1,i, x

k
2,i) . (5.5)

The notations Fn(Ḡi,m, ·, ·), n = 1, . . . , d denote the numerical fluxes on the edges of

Ḡi,m. While F1(Ḡi,m, x
j+1/2
1,i , xk

2,i) is used for the discrete fluxes in the x1-direction,
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F2(Ḡi,m, x
j
1,i, x

k+1/2
2,i ) denotes the flux approximations in the x2-direction. Analo-

gously to Qi the numerical fluxes on level i are defined by

Fn,i :=

Mi⋃
m=1

Fn(Ḡi,m, ·, ·) . (5.6)

The notations δFn(∂Gi,m, ·, ·), n = 1, . . . , d are only used on levels with i > 0.
They denote correction terms associated to the numerical fluxes of level i − 1
that are defined on the boundary of Gi,m. The set of correction terms for F1,i−1

is δF1(∂Gi,m, x
j+1/2
1,i−1 , x

k
2,i−1) and the corrections for F2,i−1 are stored in δF2(∂Gi,m,

xj
1,i−1, x

k+1/2
2,i−1 ). The correction terms on level i are

δFn,i :=

Mi⋃
m=1

δFn(∂Gi,m, ·, ·) . (5.7)

The values of correction terms are only required on lower-dimensional domains
∂Gi\∂G0 where a fine level i > 0 abuts the next coarser level. As the geomet-
ric location of the data values in the different sets is now clear, we neglect the point
information in the following.

5.2.2 Numerical Update

Suppose all cell values Qi are set appropriately, a whole level i is updated by applying
the solution operator H(·) implemented in formula (4.4) to all grids on level i in a
simple loop:

For all m = 1 To Mi Do

Q(Gs
i,m, t) ,F

n(Ḡi,m, t)
H(∆ti)−→ Q(Gi,m, t+ ∆ti)

The loop involves the grid-wise update of the flux approximations Fn,i.

Conservative Averaging

When two levels i and i+ 1 reach the same discrete time, the finer level values are
projected onto the coarser level, because the finer level approximation is expected
to be more accurate. Each interior cell value of level i in Gi ∩ Gi+1 is replaced by
the conservative average of the r2

i+1 internal cells of level i + 1 that overlay it. We
simply overwrite the value Qi

jk of cell (j, k) with

Q̂i
jk :=

1

(ri+1)
2

ri+1−1∑
κ=0

ri+1−1∑
ι=0

Qi+1
v+κ,w+ι . (5.8)

Although new fine-level cells are initialized from the coarser level by a conservative
interpolation formula like (5.15), the application of the projection formula (5.8)
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usually leads to a violation of the important property of discrete conservation on
the coarse level. In particular, numerical fluxes between the fine and the coarse level
domain are neglected. A special flux correction is necessary to consider numerical
fluxes at coarse-fine boundaries appropriately and to ensure the discrete conservation
across the entire hierarchy. The correction has to be applied in all coarse level cells
abutting a higher-level refinement region.

5.2.3 Conservative Flux Correction

In the update formula (4.4) of all cells of level i in (G
ri+1

i+1 \Gi+1) ∩ Gi, we have to
replace the coarse flux approximation with all modified neighboring cells by the sum
of all overlying fine level fluxes [21]. Note, that condition (5.4) ensures that only cells
of level i need to be corrected. Fig. 5.5 shows these cells for a particular refinement.
As an example we consider the cell (j, k). The correct update for Qi

jk would be

Q̌i
jk(t+ ∆ti) = Qi

jk(t)−
∆ti

∆x1,i

(
F1,i

j+ 1
2
,k
− 1

r2
i+1

ri+1−1∑
κ=0

ri+1−1∑
ι=0

F1,i+1

v+ 1
2
,w+ι

(t+ κ∆ti+1)

)
− ∆ti

∆x2,i

(
F2,i

j,k+ 1
2

− F2,i

j,k− 1
2

)
In order to replace Qi

jk(t + ∆ti) calculated from (4.4) by Q̌i
jk(t + ∆ti) we use the

correction procedure proposed in [21] that avoids the modification of the numerical
scheme and is most convenient for practical purposes. After the update on level i
we initialize the correction term δF1,i+1

j− 1
2
,k

which belongs to the fine level boundary,

but is associated to the point (x
j−1/2
1,i , xk

2,i) by

δF1,i+1

j− 1
2
,k

:= −F1,i

j− 1
2
,k
. (5.9)

During the ri+1 update steps of level i + 1 we accumulate all necessary fine level
fluxes, i.e.

δF1,i+1

j− 1
2
,k

:= δF1,i+1

j− 1
2
,k

+
1

r2
i+1

ri+1−1∑
ι=0

F1,i+1

v+ 1
2
,w+ι

(t+ κ∆ti+1) . (5.10)

When the integration of the fine level is complete, the correction is applied by
modifying Qi

jk(t+ ∆ti) by

Q̌i
jk(t+ ∆ti) := Qi

jk(t+ ∆ti) +
∆ti

∆x1,i

δF1,i+1

j− 1
2
,k
. (5.11)

To avoid the usage of the numerical fluxes of the entire level, we combine the nu-
merical update and the computation of the correction terms in a single loop:
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Figure 5.5: Usage of fine instead of coarse grid fluxes to integrate cells abutting a
fine grid. Cells needing correction are shaded. The circles mark the locations of the
relevant fluxes Fn,i, Fn,i+1 and of the correction terms δFn,i+1.

UpdateLevel(i)

For all m = 1 To Mi Do

Q(Gs
i,m, t) ,F

n(Ḡi,m, t)
H(∆ti)−→ Q(Gi,m, t+ ∆ti)

If level i > 0
Add Fn(∂Gi,m, t) to δFn,i

If level i+ 1 exists

Init δFn,i+1 with Fn(Ḡi,m ∩ ∂Gi+1, t)

Algorithm 2: Numerical update of Q and calculation of correction
terms on level i.

5.2.4 Boundary Conditions

Three different types of boundary conditions have to be considered in the AMR
method to set the values of Q(G̃s

i,m) in the ghost cell region G̃s
i,m := Gs

i,m\Ḡi,m.
Cells in

P̃ s
i,m = G̃s

i,m\G0 (5.12)

are auxiliary cells outside of the physical domain. Their values are used to implement
physical boundary conditions. Cells in

S̃s
i,m = G̃s

i,m ∩Gi (5.13)

have a unique interior cell analogue and are set by copying the data value from the
data set of the grid, where the interior cell is contained. We call the overwriting of
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Figure 5.6: Ghost cell regions of a refinement grid Gi,m.

ghost cell values with internal cell values synchronization. It assures the validity of
the equal data assumption necessary for the definitions (5.5) to (5.7).

On the root level no further boundary conditions need to be considered. But for
i > 0 also internal boundaries can occur. In the AMR method ghost cells in the
domain

Ĩs
i,m = G̃s

i,m\(S̃s
i,m ∪ P̃ s

i,m) (5.14)

are used to set internal Dirichlet boundary condition by time-space interpolation
where Gi,m abuts Gi−1. The AMR method is usually implemented with simple
linear interpolation operations [21]. For instance for the ghost cell (v + 1, w) of the
fine grid in Fig. 5.5 a frequently used bilinear space-interpolation reads

Q̌i
v+1,w := (1− f1)(1− f2)Q

i−1
j−1,k−1 + f1(1− f2)Q

i−1
j,k−1+

(1− f1)f2 Qi−1
j−1,k + f1f2 Qi−1

jk

(5.15)

with factors

f1 :=
xv+1

1,i − xj−1
1,i−1

∆x1,i−1

, f2 :=
xw

2,i − xk−1
2,i−1

∆x2,i−1

.

The interpolation (5.15) is followed by a linear time-interpolation to supply suitable
internal boundary conditions at discrete time steps that do not exist on level i− 1,
i.e.

Q̃i(t+ κ∆ti) :=

(
1− κ

ri

)
Q̌i(t) +

κ

ri

Q̌i(t+ ∆ti−1) for κ = 0, . . . ri − 1 . (5.16)

Fig. 5.6 displays all types of boundary conditions for levels with i > 0. The setting
of all ghost cell values on level i requires just a loop over all subgrids and the
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Figure 5.7: Recursive integration order of AMR. The arrows denote regridding of
finer levels. The level at which the regridding procudure is initiated (marked by the
circles) stays fixed.

application of the three types of boundary conditions. As the domains P̃ s
i,m, S̃s

i,m,

Ĩs
i,m do not overlap the order is arbitrary.

The interpolation formulae (5.15), (5.16) are also employed to initialize Qi in
new refinement regions during the regridding procedure. The maximal domain of
the space-interpolation (5.15) is Gν

i with ν = (bs/ric+ 1) ri.
3 As the condition

bs/ric + 1 ≤ s is satisfied for all ri ≥ 2, s ≥ 1 the interpolation domain Gν
i is

always fully contained in Gs
i−1, but in general it exceeds the interior grid domain

Gi−1. Consequently, time-space interpolation on level i requires the previous ghost
cell setting for Qi−1 on the entire domain at both time steps t and t+ ∆ti−1.

5.2.5 The Recursive Algorithm

The time-space interpolation formulae (5.15), (5.16) need the coarse level values
Qi−1(t) and Qi−1(t + ∆ti−1) to interpolate boundary conditions during the ri time
steps on level i. Therefore, the numerical update must be calculated first on level
i−1. Further on, the ghost cell values of Qi−1(t+∆ti−1) must be set before advancing
level i. On the other hand, we want to replace coarse level values successively
with the highest level approximation available at equal discrete times. A recursive
algorithm is most appropriate to achieve these purposes. The basic AMR algorithm
is formulated in Algorithm 3. Except the function Regrid(i), that modifies the
grid hierarchy, all elements of Algorithm 3 have already been explained. Note, that
the setting of the boundary values of Qi(t) at the beginning of AdvanceLevel(i) is
mandatory. Although boundary values of coarser levels have already been set before
advancing the next finer level, a further application of the boundary conditions is
necessary to take changes due to projection and flux correction into account. An
example for the temporal integration order of the numerical solution on a three
level hierarchy is shown in Fig. 5.7. The recursive integration of Algorithm 3 can
be started by calling AdvanceLevel(0) on the root level.

3b.c denotes the Gauss-function which rounds off to the next integer.
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AdvanceLevel(i)

Repeat ri times

Set ghost cells of Qi(t)
If time to regrid

Regrid(i)
UpdateLevel(i)
If level i+ 1 exists

Set ghost cells of Qi(t+ ∆ti)
AdvanceLevel(i+ 1)
Average Qi+1(t+ ∆ti) onto Qi(t+ ∆ti)
Correct Qi(t+ ∆ti) with δFn,i+1

t := t+ ∆ti

Algorithm 3: The basic recursive AMR algorithm.

5.2.6 Grid Generation

A level i initiates the creation of new refinement grids based upon the data of all
levels ι that satisfy ι ≥ i. Level i by itself is not modified. To consider the nesting
condition (5.4) already in the grid generation, the regridding procedure starts at the
highest level available which allows further refinement. We denote its level number
by ic. It satisfies the condition 0 ≤ ic < imax.

Appropriate refinement criteria (see Sec. 5.4) are used to flag cells which have
to be refined. Grid-based integer data sets N ι :=

⋃
mN(Gι,m, x

j
1,ι, x

k
2,ι) are useful to

store the flags. Additional buffer cells are marked around each flagged cell. In order
to ensure that a flow phenomenon which has caused the flagging remains within
the refinement region until the next regridding, the size of the buffer zone b must
satisfy the relation b ≥ κr. Herein, κr denotes the number of time steps between two
regridding operations. To minimize the influence of internal boundary conditions
on the solution b > κr should be used. A buffer zone of two cells is typical for the
standard strategy of regridding in every time step (compare Fig. 5.7).

A clustering algorithm (see detailed explanation below) is necessary to create
new refinement grids Ğι+1,m ⊂ G0 on the basis of N ι. This algorithm generates
successively smaller grids until the ratio between flagged and all cells in every new
grid Ğι+1,m is above a prescribed threshold 0 < ηtol < 1. As usual we define

Ğι :=
⋃

m Ğι,m. In order to ensure that the previously generated new refinement

grids of the next finer level are fully contained in Ğι+1 all cells in N ι below Ğι+2 are
also flagged before creating the buffer zone.

Before the new grids Ğι+1 can be used to replace Gι+1, the validity of the nesting
condition (5.4) has to be enforced over the modified hierarchy. In Algorithm 4 we
evaluate the invalid region for level ι + 1 by calculating the complement CĞι :=
G0\Ğι of the next coarser level domain Ğι in G0 and by enlarging CĞι by one

additional cell, i.e. CĞ
1

ι . The operation Ğι+1 := Ğι+1\CĞ
1

ι then eliminates all
regions violating (5.4) from the new level domain Ğι+1.
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Note, that Algorithm 4 can create only one new level above ic, but all levels above
i could be removed.

Regrid(i) - Regrid all levels ι > i

For ι = ic Downto i Do

Flag N ι according to Qι(t)
If level ι+ 1 exists?

Flag N ι below Ğι+2

Flag buffer zone on N ι

Generate Ğι+1 from N ι

Ği := Gi

For ι = i To ic Do

CĞι := G0\Ğι, Ğι+1 := Ğι+1\CĞ
1

ι

Recompose(i)

Algorithm 4: The regridding procedure.

The reinitialization of the hierarchy is done in Recompose(i). In particular, grid-
based auxiliary data Q̆(Ğι, t) is necessary to reorganize the grid-based data of the
vector of state. Cells in newly refined regions Ğι\Gι are initialized by interpolation,
values of cells in Ğι ∩ Gι are copied. As interpolation requires the previous reorga-
nization of Qι−1(t) (including an update of ghost cell values) recomposition begins
on level i+ 1.

Recompose(i) - Reorganize all levels ι > i

For ι = i+ 1 To ic + 1 Do

Interpolate Qι−1(t) onto Q̆ι(t)

Copy Qι(t) onto Q̆ι(t)

Set ghost cells of Q̆ι(t)

Qι(t) := Q̆ι(t), Gι := Ğι

Algorithm 5: Serial recomposition.

Clustering by Signatures

We use the algorithm proposed in [19] to cluster flagged cells into new Grids Ğι+1,m.
It counts the number of flagged cells in each row and column on the entire domain
of N ι. These sums Υ are called signatures. First, cuts into new boxes are placed
on all edges, where Υ vanishes at one side (first picture of Fig. 5.8). In the second
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Figure 5.8: Grid generation by signatures [19].

step, cuts are placed at zero crossings of the discrete second derivative ∆. The
algorithm starts with the steepest zero crossing and uses successively weaker cuts,
until the ratio between flagged and all cells in every new grid is above the prescribed
threshold value ηtol (second and third picture of Fig. 5.8). Throughout this thesis
threshold values between 0.7 and 0.9 have been applied.

5.3 Parallel Algorithm

The computationally most expensive operation of Algorithm 3 is the numerical up-
date in UpdateLevel(i). The update loop over all subgrids Gs

i,m can be parallelized
in a natural way by computing the update of different grids on different computing
nodes. A time-explicit scheme only requires the synchronization of Qi(t) before the
grid-based data is distributed and this operation is already part of the boundary
update in the basic algorithm. Consequently, the efficient usage of parallel comput-
ers with shared memory is straight-forward. Only an estimation of the necessary
work on each subgrid is necessary to split up the loop in UpdateLevel(i) in a
load-balancing manner.

This simple strategy is not practicable on parallel computers with distributed
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memory. The computing nodes of distributed memory architectures usually do not
have enough memory to store the complete data of large-scale problems. Therefore,
the hierarchical data must be split between the available nodes. As communication
times usually can not be neglected in these environments, this splitting should be
done in a way that minimizes communication on the one hand and balances the
work on the other hand. In the following, we describe a parallelization strategy for
blockstructured AMR that takes both goals into account. Its main idea has been
proposed by Parashar and Browne in [145, 146].

5.3.1 Decomposition of the Hierarchy

We assume a parallel machine with P identical nodes. We follow a rigorous domain
decomposition approach and partition the computational domain. The root domain
G0 is split into P non-overlapping portions Gp

0, p = 1, . . . , P by

G0 =
P⋃

p=1

Gp
0 with Gp

0 ∩G
q
0 = ∅ for p 6= q ,

which are defined as usual as the union of new non-overlapping grids Gp
i,m by

Gp
0 :=

Mp
0⋃

m=1

Gp
0,m .

The key idea now is that all higher level domains Gi are required to follow the
decomposition of the root level:

Gp
i := Gi ∩Gp

0 (5.17)

Condition (5.17) can cause the splitting of a subgrid Gi,m into multiple subgrids
Gp

i,κ on different processors. Although the merging of subgrids Gp
i,κ on processor p

is allowed, the total number of grids in
⋃

pG
p
i usually exceeds the number of grids

in Gi, i.e.
∑

pM
p
i > Mi.

4 Under requirement (5.17) we estimate the work on an
arbitrary rectangular subdomain Ω ⊂ G0 by

W(Ω) =
imax∑
i=0

[
Ni(Gi ∩ Ω)

i∏
κ=0

rκ

]
. (5.18)

Herein, Ni(G) is the total number of FV cells of level i that are completely contained
in Ḡ. The product in (5.18) is used to consider the time step refinement. A nearly
equal distribution of the work necessitates

Lp :=
P · W(Gp

0)

W(G0)
≈ 1 for all p = 1, . . . , P . (5.19)

The creation of a load-balanced decomposition Gp
0 requires an appropriate partition-

ing algorithm.

4For the example of Fig. 5.9 we have Mp
1 = 2, Mq

1 = 1 and M1 = 2.
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Figure 5.9: Splitting of refinement grids due to distribution based on the root level.

5.3.2 The Parallel Recursive Algorithm

The second goal in designing an efficient parallelization strategy, the reduction of the
communication overhead, is already considered in condition (5.17) in a natural way.
Together with the use of synchronized ghost cells this condition allows a strictly
local execution of most AMR operations. In particular, no major modification of
Algorithm 3 is necessary. We start our explanation of this fact, which simplifies
the practical implementation enormously, with the setting of the ghost cell values
in parallel.

Boundary Conditions

The domain decomposition technique increases the complexity of the ghost cell syn-
chronization. In the parallel algorithm, the synchronization domain of a decomposed
grid Gs,p

i,m on node p is divided into the local domain

S̃s,p
i,m = G̃s,p

i,m ∩G
p
i ,

and the parallel domains

S̃s,q
i,m = G̃s,p

i,m ∩G
q
i , q = 1, . . . , P , q 6= p .

While the cell values in S̃s,p
i,m can be copied from interior cells, which are locally

available on p, the setting of cells in S̃s,q
i,m requires communication with node q on

which the interior cells originally reside.
The setting of physical and internal boundaries remains strictly local. Analo-

gously to Sec. 5.2.4 the domain for the space-interpolation Gν,p
i is fully contained

in Gs,p
i−1, the local domain of the next coarser level. The parallel synchronization of

Qi−1(t), Qi−1(t + ∆ti−1) is guaranteed by the AMR algorithm itself and therefore
the parallel synchronization of level i is the only communication operation necessary
to set the ghost cells on level i.
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Figure 5.10: Conservative flux correction in parallel. Cells needing correction are
shaded. The circles mark the locations of the relevant fluxes Fn,i, Fn,i+1 and of the
correction terms δFn,i+1.

Numerical Update and Flux Correction

The function UpdateLevel(i) does not involve any parallel overhead. Apparently,
the new vector of state Q(Gp

i,m, t+∆ti) on each grid Gp
i,m and the fluxes Fn(Ḡp

i,m, t)
can be computed strictly local on the basis of Q(Gs,p

i,m), but also the computation of
the correction terms does not require communication.

To illustrate this, we assume a parallel border in Fig. 5.5 at j− 1
2
. Let cell (j, k)

be contained in Gq
i and let cell (v, w) be contained in Gp

i+1. Then the necessary

correction term δF1,i+1
j−1/2,k resides on node p, because it is assigned to the fine level.

The initialization of this term in (5.9) requires the coarse grid flux F1,i
j−1/2,k. This

flux is available on node p, because the basic AMR strategy ensures that below
(v, w) an interior coarse cell (j−1, k) exists on p having F1,i

j−1/2,k as flux into a ghost

cell (j, k). On the other hand, F1,i
j−1/2,k is also computed on q, where (j, k) is interior

and (j − 1, k) is a ghost cell. As the ghost cells have been synchronized before the
numerical update, the same boundary flux is calculated on both nodes (compare
level i in Fig. 5.10). The fine grid fluxes F1,i+1

v+1/2,w+ι are only available on p, because

no abutting interior fine grid cell exists on q. As the correction term δF1,i+1
j−1/2,k is

also stored on p the summation in (5.10) remains local (compare level i+ 1 of node
p in Fig. 5.10).

The only operation of the flux correction that necessarily requires communica-
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tion is the application of correction terms like in (5.11). In our example, the term
δF1,i+1

j−1/2,k of node p has to be applied onto the value of the interior cell (j, k), which is
stored on node q. Our practical implementation only allows the setting of ghost cell
values from interior cells. We achieve the parallel exchange by employing auxiliary
grid-based cell-centered data H(G1,p

i,m, x
j∗

1,i, x
k∗
2,i) that has an overlap of one cell. Hi

is initialized with zero everywhere. On node p the value δF1,i+1
j−1/2,k is copied into

the interior cell (j − 1, k). Then Hi is synchronized and all values are shifted by
one cell to the right. On node q this technique transfers δF1,i+1

j−1/2,k from the ghost

cell (j − 1, k) to the interior cell (j, k), where it can be applied. The simultaneous
application of this trick to all correction terms δFn,i+1 reduces the parallel overhead
for the entire procedure to two synchronization operations per space-direction. The
transfer and application of δF1,i+1

j−1/2,k via Hi to the interior cell (j, k) is expressed by
the black arrow in Fig. 5.10.

Finally, we remark that strict locality of the inter-level averaging (5.8) follows
directly from condition (5.17). This property avoids the expensive parallel commu-
nication of volume data during the averaging operation.

5.3.3 Parallel Grid Generation

Analogously to Algorithm 3 the regridding procedure formulated in Algorithm 4 is
hardly affected by the parallelization. The flagging of cells on each level can be
done locally. If an error estimation criterion like the one explained in 5.4 is used,
the computation of auxiliary time steps involves parallel boundary synchronization,
but this does not modify Algorithm 4. The only difficult task in the creation of Ğι+1

from N ι in Algorithm 4 is the clustering.

Two possibilities exist for running the clustering algorithm in parallel. The
clustering algorithm could be executed strictly locally on N(Gp

ι ) or it could be
executed on the data of the entire level N(Gι). Note, that both options can be
guaranteed to give an identical result only for a clustering threshold of ηtol = 1.
For ηtol < 1 the algorithm has some freedom in combining flagged and non-flagged
cells leading to slightly different results for both approaches. The second option
would require a global concatenation of all data sets N(Gp

ι ) to N(Gι). This parallel
operation is extremely expensive and we therefore execute the clustering algorithm
strictly locally and communicate only the result Ğp

ι+1 globally to obtain the global

list Ğι+1 =
⋃

p Ğ
p
ι+1. The global list Ğι+1 is mandatory to ensure the correct proper

nesting of the new hierarchy. To consider the buffer zone before local clustering, we
use extended grid-based data Ñ ι :=

⋃
mN(Gb

ι,m, x
j
1,ι, x

k
2,ι) instead of N ι. Herein, b

is the size of the buffer region (see Sec. 5.2.6). By synchronizing Ñ ι before creating
the buffer zone we ensure that all interior cells are flagged correctly.

The main changes in the regridding procedure are in Recompose(i). Instead of
Algorithm 5 we apply Algorithm 6. Due to our distribution strategy we now have
to consider a complete reorganization of the entire hierarchy even for a regridding
at a higher level. In Fig. 5.7 this corresponds to the three regridding operations
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initiated by level 1. In particular, the whole relevant data of levels with ι ≤ i has to
be copied. Like the synchronization operation, these copy operations are partially
local and parallel. For levels with ι < i the relevant data is Qι(t), Qι(t + ∆tι) and
δFn,ι, for level i we have to copy Qi(t) and δFn,i. The initialization of a level with
ι > i is in principle identical to Algorithm 5. As explained in the previous section
the interpolation is a strictly local operation, supposed the next coarser level has
already been reorganized. The copy operation is a combination of local and parallel
copy.

Recompose(i) - Reorganize all levels

Generate Gp
0 from {G0, ..., Gi, Ği+1, ..., Ğic+1}

For ι = 0 To ic + 1 Do

If ι > i

Ğp
ι := Ğι ∩Gp

0

Interpolate Qι−1(t) onto Q̆ι(t)
else

Ğp
ι := Gι ∩Gp

0

If ι > 0

Copy δFn,ι onto δF̆n,ι

δFn,ι := δF̆n,ι

If ι ≥ i then κι = 0 else κι = 1
For κ = 0 To κι Do

Copy Qι(t+ κ∆tι) onto Q̆ι(t+ κ∆tι)

Set ghost cells of Q̆ι(t+ κ∆tι)

Qι(t+ κ∆tι) := Q̆ι(t+ κ∆tι)

Gp
ι := Ğp

ι, Gι :=
⋃

pG
p
ι

Algorithm 6: Parallel recomposition. Executed on
each node p = 1, . . . , P .

5.3.4 Partitioning

It is evident, that the overall efficiency of the chosen parallelization strategy depends
especially on the first step of Recompose(i), the partitioning algorithm. This algo-
rithm has to create a load-balanced domain decomposition for the new hierarchy,
which consists for ι ≤ i of unchanged level domains Gι and for ι > i of new domains
Ğι. The topology of the entire hierarchy is globally available and the partitioning
algorithm therefore can be called locally with an identical result everywhere.

The algorithm has to meet several requirements. It must balance the estimated
workload, while the amount of data that has to be synchronized during the numerical
solution procedure should be as small as possible. A slight change of the grid
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Figure 5.11: A generalization of Hilbert’s space-filling curve is used to distribute
grid blocks. The domain of the space-filling exceeds the calculation domain, because
the number of cells in x1- and x2-direction are not of the same power of 2.

hierarchy should involve a moderate data redistribution. The paritioning algorithm
must be fast, because it is carried out on-the-fly.

Distribution strategies based on space-filling curves give a good compromise be-
tween these partially competing requirements. A space-filling curve defines a con-
tinuous mapping from [0, 1] onto [0, 1]d, d ≥ 2, cf. [159]. As such curves can be
constructed recursively, they are locality preserving and therefore avoid an exces-
sive redistribution overhead. Further on, the surface is small, which reduces the
synchronization costs.

By applying the mapping of a space-filling curve to the discrete index space of
the root level, the root level cells become ordered. This sequence can easily be
split into portions of equal size yielding load-balanced new distributions Gp

0. The
computational time necessary for distribution can be decreased, if neighboring cells
with the same workload are concatenated. In this case, generalized space-filling
must be employed [145, 146].

It has to be noted that for instance Hilbert’s space-filling curve can only be
defined on index domains satisfying (2ν)d with ν ∈ N. Consequently, the domain
for the space-filling curve exceeds the computational domain in most cases (see
Fig. 5.11). This is the reason why space-filling curves sometimes fails in producing
perfectly connected subdomains.
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5.4 Refinement Criteria

Throughout this thesis only the refinement criteria presented in this section are
utilized. The criteria are always applied to selected scalar quantities, e.g. to some
components of the vector of state and/or additionally evaluated derived quantities
like the hydrodynamic pressure p.

5.4.1 Scaled Gradients

An adaptation along discontinuities can easily be achieved by evaluating gradients
multiplied by the step size (scaled gradients) in all directions. Cell (j, k) is flagged
for refinement, if any of the relations

|w(Qj+1,k)−w(Qjk)| > εw , |w(Qj,k+1)−w(Qjk)| > εw , |w(Qj+1,k+1)−w(Qjk)| > εw
(5.20)

is satisfied for an arbitrary scalar quantity w, which is derived from the vector of
state Qi(t). The constant εw denotes a prescribed refinement limit. In case of Euler
equations, the scalar quantities ρ and p are often sufficient to achieve a reasonable
refinement.

5.4.2 Heuristic Error Estimation

A simple adaptation criterion for regions of smooth solutions is the heuristic esti-
mation of the local truncation error by Richardson extrapolation [21, 23, 20]. The
local truncation error of a difference scheme of order o (compare Def. 11) satisfies

q(x, t+ ∆t)−H(∆t)(q(·, t)) = C∆to+1 +O(∆to+2) .

If q is sufficiently smooth, we have for the local error at t+ ∆t after two time steps
with ∆t

q(x, t+ ∆t)−H(∆t)
2 (q(·, t−∆t)) = 2C∆to+1 +O(∆to+2) (5.21)

and for the local error at t+ ∆t after one time step with 2∆t

q(x, t+ ∆t)−H(2∆t)(q(·, t−∆t)) = 2o+1C∆to+1 +O(∆to+2) . (5.22)

Subtracting (5.21) from (5.22) we obtain the relation

H(∆t)
2 (q(·, t−∆t))−H(2∆t)(q(·, t−∆t)) = (2o+1 − 2)C∆to+1 +O(∆to+2) , (5.23)

which can be employed to approximate the leading-order term C∆to+1 of the local
error at t+∆t. The implementation of a criterion based on (5.23) requires a discrete
solution Qi defined on a mesh two times coarser than the mesh of level i. With
yj

1,i = (2j + 1)∆x1,i and yk
1,i = (2k + 1)∆x2,i, j, k ∈ Z we therefore introduce

Qi :=
⋃
m

Q(Gs
i,m, y

j
1,i, y

k
2,i) .



5.5. OBJECT-ORIENTED IMPLEMENTATION 131

The coarser approximationQi(t−∆t) is initialized by averaging the previous solution
Qi(t − ∆t) onto it and by setting the ghost cell values Q̃i(t − ∆t) appropriately.
Then Qi(t) and Qi(t−∆t) are updated as usual:

Qi(t)
H(∆ti)−→ Qi(t+ ∆t) and Qi(t−∆t)

H(2∆ti)−→ Qi(t+ ∆t)

Finally, Qi(t + ∆t) is averaged onto a second coarsened solution Q̄i to compare it
to Qi. The difference

τjk :=
|Q̄i

jk(t+ ∆t)−Qi
jk(t+ ∆t)|

2o+1 − 2

is an approximation to the leading-order term of the local error. But from the
local approximation τjk no approximation to the global error can be derived. The
practical usage of τjk therefore remains empirical. Analogously to (5.20) we define

τw
jk :=

|w(Q̄i

jk(t+ ∆t))− w(Qi
jk(t+ ∆t))|

2o+1 − 2
. (5.24)

If the relation
τw
jk > ηw (5.25)

is satisfied, all four cells below the coarsened cell (j, k) are flagged for refinement.
While the criterion (5.25) uses an approximation to the absolute local error, better
results are often obtained with the criterion

τw
jk

max(|w(Qi
jk(t+ ∆t))|, Sw)

> ηr
w (5.26)

that is formulated analogously to relation (4.117) and combines relative and absolute
error.

5.5 Object-oriented Implementation

The profound explanation of the AMR method in the Secs. 5.2 and 5.3 forms
the basis of our object-oriented framework AMROC (Adaptive Mesh Refinement in
Object-oriented C++). In the following this framework and its implementation will
be sketched.

5.5.1 Three-level Design

In principle, three main abstraction levels can be identified in AMR. At the top
level, the specific application is formulated. Only single-grid routines operating on
Q(Gs

i,m) are necessary. Mandatory are the numerical scheme and functions to set
the initial and physical boundary conditions. In our implementation these functions
are in Fortran-77 and mimic the syntax of the popular non-adaptive code Clawpack
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[121, 120]. No knowledge about adaptivity is required to specify them. Interface-
objects in C++ supply a generic access to these functions to the AMR level below.

The parallel AMR algorithm and its components for error estimation, grid gener-
ation and flux correction make up the middle level which is completely in C++. The
Algorithms 2 and 3 are implemented in the central class AMR-Solver. An object of
this type coordinates the whole computation and calls methods of the component-
classes Flagging, Clustering and Fixup according to the Algorithms 2 and 3. We
denote this level, which is formulated exactly along the lines of Secs. 5.2 and 5.3
the mere AMROC level. It is written independent of the spatial dimension and of
the specific numerical scheme at the application level. The Flagging-object is ex-
changeable and the adaptive algorithm is therefore not restricted to the refinement
indicators presented in Sec. 5.4.

The middle level operates mainly on grid-based hierarchical data structures that
are supplied by the base level. The definitions in the Secs. 5.2 and 5.3 are the basis
for its design.

5.5.2 The Hierarchical Data Structures

The base level stores the topology of the hierarchy and allocates all kind of grid-
based data. Additionally, it provides standard operations that require topological
information, like ghost cell synchronization, interpolation or averaging to the middle
level. Furthermore, elementary topological operations on grids Gi,m and on grid sets
are supplied. Some of these operations are ∩, ∪, \ and the enlargement operation
Gσ

i,m. The implementation of these operations can be simplified significantly, if a
global integer coordinate system is employed. All coordinates in the description in
Sec. 5.2 can be mapped uniquely into this integer coordinate system by replacing
the mesh widths ∆xn,i, i = 0, . . . , imax by increasing integers, i.e.

∆xn,i
∼=

imax∏
κ=i+1

rκ for all n = 1, . . . , d .

Further on, we use a similar mapping to denote the discrete time steps by a unique
positive integer. The use of integer coordinates eliminates round-off errors com-
pletely [19] and speeds up the execution.

The most important elementary class of the base level is the GridBox-class. It de-
fines a rectangle Gi,m in the global integer index space. A list of GridBoxes is stored
inside the GridBoxList-class. Methods for topological operations on GridBoxes and
GridBoxLists are provided. GridBoxLists are employed by the GridHierarchy-class
to store the topology of the hierarchy. GridHierarchy holds the global GridBoxLists
Gi and the local GridBoxLists Gp

i that store each processor’s local contribution.
Grid-based data are allocated locally with respect to Gp

i inside the GridFunction-
class. For each gridGp

i,m GridFunction allocates a GridDataBlock-object, which adds
consecutive data storage in Fortran-format to the GridBox-object. The type of data
used by GridDataBlock is a template parameter for GridFunction. GridFunction is
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Figure 5.12: All GridFunctions for the AMR method allocate grid-based data with
respect to a single GridHierarchy-object which stores the grid lists for each level.

very flexible and allows beside different staggerings also the reduction of grids to
lower-dimensional slices and the extension with differently sized ghost cell regions.
Hence, the grid-based data Qi, δFn,i+1, N i are stored in different GridFunction-
objects. The usage of a single base class for all kind of hierarchical grid-based
data exploits the commonality in organizing rectangular data blocks independent of
their storage type and reduces the implementation work significantly. By employing
template data types and compile-time parameters carefully we were able to derive all
necessary GridFunction-objects from the base class without a loss of computational
performance.

All GridFunction-objects are equally distributed with respect to a single Grid-
Hierarchy-object (see Fig. 5.12). When the AMR-Solver-object calls the GridHier-
archy method Recompose() with new lists Ği, the partitioner is called and new
GridBoxLists Gi and Gp

i are created. Initiated by Recompose() the GridFunction-
objects then redistribute their data automatically. This corresponds to the partially
local and parallel copy-operations in Algorithm 6. Further on, GridFunction imple-
ments the setting of boundary conditions for Qi. In this case, each GridDataBlock
allocates extended data Q(Gs,p

i,m) and stores detailed topological information on P s
i,m,

Is
i,m, Ss,p

i,m and Ss,q
i,m. GridFunction sets ghost cells in P s

i,m by a call to the user-defined
physical boundary function. Cells in Is

i,m are set by applying the interpolation func-
tion to Qi−1.
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Figure 5.13: Object-oriented design of the AMROC framework. GF means Grid-
Function.
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Figure 5.14: Comparison of the refinement grids of a four-level solution with
AMROC’s DAGH (top left) and the original DAGH (bottom right).

An object diagram of the entire design with focus on the middle level is displayed
in Fig. 5.13. It is in Booch’s notation [30]. An arrow denotes a simple message to
the object to which it points.

AMROC’s DAGH Package

In our implementation the base level is an extension of the DAGH (Distributive
Adaptive Grid Hierarchies) package by Parashar and Browne [145, 146] and is com-
pletely in C++. We call this level AMROC’s DAGH. A complete redesign of parts of
the DAGH package was necessary to allow the AMR algorithm like it was described
in Secs. 5.2 and 5.3. AMROC’s version of DAGH implements GridFunction- and
GridHierarchy-classes that are much more general and allow a more efficient adap-
tation than those of the original DAGH package. The GridFunction-class of the
original DAGH package is restricted to grids that are aligned to the base mesh
coarsened by a factor of 2, i.e.

G?
i,m := ](2j − 1)∆x1,0, (2j + µ?

1 − 1)∆x1,0[ × ](2k − 1)∆x2,0, (2k + µ?
2 − 1)∆x2,0[ .

(5.27)
In general we have Gi ⊆ G?

i , but for i > 0 usually Gi ⊂ G?
i is satisfied. Therefore, the

original DAGH usually refines more cells than required. The restriction in DAGH
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imax Level 0 Level 1 Level 2 Level 3 Level 4
1 43/22500 145/38696AMROC’s
2 42/22500 110/48708 283/83688DAGH
3 36/22500 78/54796 245/109476 582/165784grids/cells
4 41/22500 88/56404 233/123756 476/220540 1017/294828
1 238/22500 125/41312Original
2 494/22500 435/48832 190/105216DAGH
3 695/22500 650/55088 462/133696 185/297984grids/cells
4 875/22500 822/57296 677/149952 428/349184 196/897024

Table 5.1: Refinement after the last time step of a typical test problem for four
computations with an increasing number of refinement levels with AMROC’s DAGH
(lines 2 to 5) and the original DAGH (lines 6 to 9). r1,2,3,4 = 2.

follows from the simplifying assumption that two grids on neighboring levels only
can be connected by an 1 : 1 relation. A coarse grid may only have one child and a
fine grid has exactly one parent. If this assumption is violated, the coarser level grids
are split. Consequently, the maximal number of grids on all levels is equal. This
reduces the recomposition overhead on higher levels, but leads to an increasing waste
in advancing the numerical solution. As the entire computational time is usually
dominated by the numerical update (especially in three space dimensions or with
a detailed chemical reaction term) AMROC’s DAGH is a significant improvement
over the original package.

Fig. 5.14 displays the grids on a four-level solution of a typical non-reactive
shock wave test problem used by AMROC’s DAGH and the original DAGH. Tab.
5.1 shows the number of grids and cells for a uniform refinement factor of 2. All
solutions have been computed with Hilbert’s space-filling curve on 7 computing
nodes. The simplification in DAGH does not fall into account, if only one or two
refinement levels are used. But if a higher number of levels is necessary, the drastic
improvement by allowing arbitrary AMR grids is apparent.

Additional new useful features in AMROC’s DAGH are level-dependent refine-
ment factors, multiple periodic boundary conditions, a restart option from memory
for automatic time step algorithms and a restart feature for a variable number of
computing nodes.

5.5.3 Comparison with Other Implementations

One of the few available parallel implementations of the AMR algorithm for dis-
tributed memory computers beside AMROC is Berkeley-Lab-AMR [153]. Both
packages are implemented basically in C++, while computational expensive grid-
dependent operations are written in Fortran. Berkeley-Lab-AMR involves approxi-
mately 50,000 lines of code (loc) [153], while AMROC currently consists of approx-
imately 46, 000 loc plus approximately 6, 000 loc for visualization and data conver-
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Figure 5.15: Mach reflection at a wedge. Adaptive solution with two levels of
refinement with the Wave Propagation Method and MUSCL reconstruction. Isolines
of ρ on refinement grids at t = 0.09. Left: grid extensions and boundary conditions.

sion.5 Although both packages are written independently of the spatial dimension
whenever possible, the drastic increase in complexity compared to the serial two-
dimensional Fortran-77 code AMRClaw [22] with approximately 8, 500 loc due to
the support of distributed memory machines is apparent.

5.6 Non-reactive Examples

We use two standard test problems in two space dimensions for non-reactive poly-
tropic Euler equations to validate the AMR method and to measure the efficiency of
the implementation. Both examples use the constant adiabatic coefficient γ = 1.4
which corresponds to air at room temperature and atmospheric pressure. Both
calculations are done in dimension-less variables.

5.6.1 Mach Reflection at a Wedge

The first test (AMR Test 1) is the Mach reflection of a Mach-10 shock wave at a 30
degree wedge (compare lower left corner of Fig. 5.15). This well-known example was
utilized in [205] to evaluate upwind schemes for standard Euler equations and was
used by Berger and Collela to demonstrate the advantages of the AMR algorithm in
[21]. We have selected it to allow a direct comparison on the one hand, but especially

5Approximately 21, 000 loc of the packages that the author of this thesis has combined to
AMROC, in particular the ≈ 7, 000 loc that implement the parallel AMR method and also the
≈ 6, 000 loc for post-processing have been coded by himself and only just made the high quality
results in this thesis possible.
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Figure 5.16: Comparison of the Wave Propagation Method with MUSCL extrapo-
lation (left) and standard wave limiting (right).

to introduce the Mach reflection in the non-reactive case which will provide a sound
base for Sec. 7.4.1, where the Mach reflection of a hydrogen-oxygen detonation will
be studied.

The angle of 30o is too large to allow a regular reflection exactly in the point,
where the incident shock hits the wall. Instead a Mach reflection occurs (see for
instance [45] for details). The origin of the reflected shock lifts up from the surface
and a third shock, the Mach stem, appears. Incident and reflected shock hit the
Mach stem in a triple point. A contact discontinuity, the slip line, originates in
the triple point and separates material passing through the Mach stem from that
passing through incident and reflected shock (compare Fig. 5.15). The pressure
behind the Mach stem is significantly higher than that of the incident shock.

Computational Setup and Initialization

In order to simulate a 30 degree wedge with a Cartesian code that does not allow
the embedding of non-Cartesian internal walls we exploit the rotational invariance
property of the two-dimensional Euler equations (compare Prop. 3) and rotate the
surface of the wedge and the velocity vector of the incident shock by −30o. The
values q

i
of the incident shock are therefore ρi = 1.0, pi = 116.5, u1,i = 8.25 cos(30o),

u2,i = −8.25 sin(30o). It propagates with Ms = 10.0 into the region q
0

with ρ0 = 1.4,
p0 = 1.0, u1,0 = 0.0, u2,0 = 0.0.

The computational domain and the initial and boundary conditions are displayed
in the upper left corner of Fig. 5.15. At t = 0 the incident shock crosses the lower

Level 0 Level 1 Level 2
Grids 26 42 96
Cells 27500 15572 109376

Table 5.2: Number of grids and cells
of the adaptive solution in Fig. 5.15.

boundary at x1,l = 0.1 and the upper
boundary at x1,u = 0.1 + tan(30o). The
propagation speed in the x1-direction is
Ms cos(30o). To avoid disturbances at the
upper boundary a time-dependent bound-
ary condition is applied here. All ghost
cells left of the shock front are set to the
inflow value q

i
; all ghost cells right of it are
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Task P=1 P=2 P=4
s % s % s %

Integration 3406 81.9 1607 68.2 803 56.6
Flux correction 176 4.2 107 4.5 106 7.5
Boundary setting 139 3.3 364 15.5 291 20.5
Recomposition 227 5.5 197 8.4 161 11.4
Clustering 116 2.8 31 1.3 16 1.1
Misc. 87 2.3 41 2.1 31 2.9
Total / Parallel Efficiency 4150 100.0 2348 88.4 1409 73.7

Table 5.3: Mach reflection at a wedge. Computational times on a PC-Cluster of
Pentium III-850 MHz-PC’s connected with Fast Ethernet. All timings have been
calculated with the Wave Propagation Method utilizing the standard wave limiting
(4.56) and the conservative fluctuation correction proposed in [22].

set by using transparent outflow boundary conditions.
We utilize a base grid of 250×110 cells and calculate 262 time steps with intended

Courant number CFLRoe
CFL ≈ 0.8 to tend = 0.09. A two-level refinement with the

factors r1 = 2 and r2 = 4 is employed which corresponds to a uniform grid of
2000 × 880 cells (1.76 M). The refinement criteria are only applied to the total
density ρ. For (5.20) we apply ερ = 0.4 and for (5.25) we use ηρ = 0.1.

For this example, we employ the two-dimensional Wave Propagation Method
(4.58) and the Roe scheme of Sec. 4.6.1 with Harten-Hyman entropy fix for a single
polytropic gas. As the fluctuation formulation of the Wave Propagation Method is
not directly compatible to the conservative flux correction of Sec. 5.2.3, we recom-
mend to utilize Eq. (4.39) to transform the final fluctuations into numerical fluxes
and to calculate the correction terms as usual (compare last paragraph of Sec. 4.7.2).
Note, that Eq. (4.39) is only applicable to hyperbolic equations in conservation-law
form (2.1). A formulation of the conservative correction in terms of the fluctuations
that is applicable also to quasi-linear hyperbolic equations has been proposed by
Berger and LeVeque in [22], but it requires the solution of additional RPs and in-
troduces unneccesary overhead for systems in conservation-law form, like the Euler
equations.

Benchmark Computations

To allow a direct comparison to the popular AMRClaw code we use the special
fluctuation correction in [22] and the standard wave-by-wave limiting (see Sec. 4.3.2)
for the benchmark computations of Tab. 5.3. But the results with MUSCL-Hancock
extrapolation in conservative variables as proposed in Sec. 4.7.2 are nearly identical.
Fig. 5.16 displays a comparison between the adaptive solutions with both techniques
and Minmod-limiter. It seems that the MUSCL approach gives even slightly better
results than the standard wave-by-wave limiting technique (compare isolines near
the lower boundary). With both variants the differences between adaptive and
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corresponding uniform solution are negligible. The Figs. 5.15 and 5.16 illustrate
that all relevant discontinuities are perfectly refined and that no artificial kinks
appear at the level boundaries.6

A standard PC-Cluster of Pentium-III-850 MHz CPUs connected with 100 MHz-
Fast Ethernet has been used for the benchmark calculations. Like in all computa-
tions throughout this thesis the executables were generated with the highest opti-
mization level possible. While the run with a uniform mesh would require ≈ 29 h on
one node, the AMROC computation achieves a solution of similar quality in about
69 min. With four symmetric parallel nodes the computational time decreases to less
than 23.5 min. The two-dimensional single-processor code AMRClaw of Berger and
LeVeque [22], which is written completely in Fortran-77, solves the problem with
the same implementation of the numerical scheme and a nearly identical refinement
in about 58 min. The speed-up is only moderate, which underlines the high quality
of the C++ implementation of the parallel and multi-dimensional AMROC code.

Tab. 5.3 shows a breakdown of the computational time for the most important
AMR operations in AMROC. For one node the fractions spent in different parts of
the code are in good agreements with the results in [21]. For two-dimensional stan-
dard Euler equations 70% to 80% of the computational time are used for numerical
integration. Typical for AMR computations is that this portion scales up perfectly
in parallel, while the overhead for the ghost cell setting, especially on the highest
level, increases continuously. On one node only the interpolation at the fine bound-
aries is expensive, but in parallel the synchronization overhead becomes dominant.
It takes more than 90 % of the time for the boundary setting.

5.6.2 Shock Wave Diffraction

The second test (AMR Test 2) is the diffraction of a Mach-1.5 shock wave over
a 90 degree sharp corner in three space dimensions. It has been inspired by a
planar standard test case, which has been studied extensively in the past [184]. The
example introduces the basic hydrodynamic structure of diffracting shock waves (see
also Sec. 7.4.2, where diffracting detonation waves are studied) and demonstrates
the parallel domain decomposition strategy developed in Sec. 5.3.1 in combination
with a generalization of Hilbert’s space filling curve as a partitioner (see Sec. 5.3.4).

An incident shock wave propagating out of confinement into an unconfined region
is diffracted due to the area increase. The diffraction emanates from the boundary
and weakens the incident shock continuously. The right picture of Fig. 5.17 displays
a snapshot, where the diffraction has not affected the whole incident shock wave
yet. The shock is separated into an incident shock wave with still unmodified flow
values and the diffracted shock with continuously decreasing pressure and density
values toward the left boundary. An expanding rarefaction wave occurs behind the

6This would not be the case, if a relevant discontinuity would leave the highest level during
the simulation. The interpolation at level borders can cause an excessive smearing of strong
discontinuities that can corrupt the results drastically. This problem is discussed in detail in [21].
Strong discontinuities always have to remain in the highest level of refinement.
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Figure 5.17: Shock wave diffraction over a 90 degree corner in three space dimen-
sions. Left: grid extensions and boundary conditions, right: main flow features.

diffracted shock wave. It propagates backward into the post-shock region. In Fig.
5.17 the actual upstream boundary of this expansion wave is plotted. The isolines
of the expansion wave merge along the line A exactly in the corner. The parts
of the flow field processed by diffracting and incident shock wave are separated
by the weak contact discontinuity B. A stronger contact discontinuity C with a
characteristic vortex originates in the corner.

A more detailed description of the entire phenomenon that also includes minor
flow features has been given by Hillier [93].

Basic Setup and Initialization

The computational domain and the boundary conditions are displayed in the left
picture of Fig. 5.17. We normalize all flow values with respect to q

0
. The values

q
i

of the incident shock are ρi = 1.862, pi = 2.4583, u1,i = 0.8216, u2,i = 0.0,
u3,i = 0.0. The normalized values ahead of the shock are ρ0 = 1.0, p0 = 1.0,
u1,0 = 0.0, u2,0 = 0.0, u3,0 = 0.0. Initially, the incident shock is placed at x1 = 1.25.

We employ the Roe scheme of Sec. 4.6.1 for a single polytropic gas in combination
with the MUSCL-Hancock method of Sec. 4.3.1 with a reconstruction in conservative
quantities and Van Albada-limiter. The Godunov dimensional splitting Ql+1 =
X (∆t)

3 X (∆t)
2 X (∆t)

1 (Ql) is applied. Note, that the usage of dimensional splitting within
a domain decomposition strategy requires the synchronization of the ghost cells after
each dimensional step X (∆t)

n . Note further, that near the internal corner (1.3, 1.3, 1.3)
ambiguous ghost cells have to be considered. The correct application of fixed wall
boundary conditions requires a re-setting of the values of these ghost cells with
respect to the next dimensional step.
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Figure 5.18: Isolines of the density at ∆ρ = 0.04 ρ0 on refinement grids at tend =
0.75.

Parallel Adaptive Computation

We utilize a base grid of 60×40×40 cells and calculate 36 time steps with intended
Courant number CRoe

CFL ≈ 0.95 to tend = 0.75. A three-level adaptation with constant
refinement factors r1,2,3 = 2 is used, which corresponds to a uniform grid of 49.15 M
cells. The refinement criteria for (5.20) are ερ = 0.2 and εĒ = 0.15. This setting
achieves a complete adaptation of the expanding shock wave and the strong discon-
tinuity C, but avoids the refinement of the entire expansion wave. Only line A is
contained in level 3 and the weak discontinuity B is not considered. The adaptation
displayed in Fig. 5.18 is in principle in good agreement with the two-dimensional
adapted grids considered in [184].

During the adaptive simulation the total number of cells increases continuously
from 1.55 M at t = 0 to 6.14 M at tend. The computation required ≈ 4.1 h on a
PC-Cluster of eight Pentium-III-850 MHz double-processor machines connected with
1 GHz Myrinet. The successive improvement of the numerical solution by adaptation
and the distribution to the 16 processors involved is visualized in Fig. A.30. The
right column of Fig. A.30 demonstrates our parallel domain decomposition technique
in practice. The affiliation of subgrids to the processors is indicated by color. It
is obvious, that the distribution of grids on levels i > 0 is determined by the grids
on level 0. Further on, Fig. A.30 shows that the domains Gp

0 generated by a
generalized space filling curve are mostly connected and have a relatively small
surface. Although they vary remarkably in geometric size, the overall computational
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Figure 5.19: Decomposition of the AMR hierarchy at tend = 0.75 to 16 computing
nodes. Left: cells on each level. Right, top: workload according to Eq. (5.19) on
each node. Right, bottom: total number of grids and cells.

work is nearly equally distributed among the different nodes. The left graphic of Fig.
5.19 displays the number of cells per processor on each level and the large variation,
especially on level 2, is apparent. Nevertheless, the current workload estimations
according to Eq. (5.19) in the right plot of Fig. 5.19 vary only in a range of less
than 4%, which guarantees that the work in advancing the numerical solution will
be nearly equally distributed in the next time step ∆t0.

5.7 Reactive flows

We use the method of fractional steps (compare Sec. 4.1.3) to incorporate source
terms into the parallel AMR algorithm. In case of multi-component Euler equations
with reaction term (2.78), the conservative flux correction of Sec. 5.2.3 then ensures
the conservation of total density ρ, momentum densities mn and total energy density
Ē.

As the numerical integration of the source term is only a cell-wise operation,
the extension to inhomogeneous equations is a straight-forward task. Only the grid-
based implementation of the numerical scheme has to be extended. For the Godunov
splitting (4.19) the grid-based update in UpdateLevel(i) simply reads

Q(Gs
i,m, t) ,F

n(Ḡi,m, t)
H(∆ti)−→ Q̃(Gi,m, t+ ∆ti)

Q̃(Gi,m, t+ ∆ti)
S(∆ti)−→ Q(Gi,m, t+ ∆ti) ,

while the Strang splitting (4.20) requires the integration of the source term over the
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extended domain Gs
i,m in the first step to avoid an additional ghost cell synchroniza-

tion before the transport step, i.e.

Q(Gs
i,m, t)

S( 1
2∆ti)

−→ Q̃(Gs
i,m, t)

Q̃(Gs
i,m, t) ,F

n(Ḡi,m, t)
H(∆ti)−→ Q̃(Gi,m, t+ ∆ti)

Q̃(Gi,m, t+ ∆ti)
S( 1

2∆ti)

−→ Q(Gi,m, t+ ∆ti) .

In a flexible framework the operatorsH(·) and S(·) should be implemented in separate
functions (compare step() and src() in Fig. 5.13).

Finally, a minor extension of the averaging and interpolation operators can be
necessary in combination with the temperature computation strategy described in
Sec. 4.4.2. As the dependence of T on Q is usually nonlinear, the actual temperature
value has to re-computed in all cells modified by the level-transfer operators.



Chapter 6

Validation with Simplified
Chemistry

In this chapter we validate the numerical methods that have been derived in the
Chaps. 4 and 5 by detonation simulations with the simplified Arrhenius kinetics
introduced in Sec. 3.1.1. A suitable numerical method for detonation simulation
should capture detonation waves correctly at smallest resolutions (compare Chap.
1). Although dynamic adaptive mesh refinement can moderate the expense of deto-
nation calculations significantly, the application of a suitable high resolution scheme
is essential for the efficiency of a computation. All calculations in this chapter
are carried out in normalized quantities according to (3.18) and under the length
normalization (3.20).

In Sec. 6.1 a stable and an unstable overdriven one-dimensional detonation close
to the limit of absolute stability are considered. It is demonstrated that the solution
can be corrupted significantly due to artificial oscillations similar to those observed
at slowly moving strong shock waves in Sec. 4.8.2. We demonstrate that the problem
can be cured within the Roe scheme by adding numerical viscosity via the entropy
fix. Further on, we show the enormous resolution improvements by second-order
reconstruction and by utilizing quasi-stationary detonation configurations, whenever
possible.

In Sec. 6.2 two-dimensional cellular structures of overdriven detonations are
simulated. The results underline the superiority of the hybrid Roe-type method
of Sec. 4.6.3 over all tested scheme especially in the multi-dimensional case. The
last section of this chapter presents large-scale adaptive computations of the cellular
structure for one of the overdriven configurations of Sec. 6.2. The results verify the
correctness and high efficiency of the parallel AMR algorithm developed throughout
the previous chapter.

6.1 Planar Detonation Structure

For the one-dimensional calculations with the simplified ZND model we always uti-
lize the parameters γ = 1.2, E?

0 = 50, Q0 = 50 that are typical for a wide range of

145
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real gaseous systems. The overdrive factor f is varied. The computational domain
always has the length 400. The exact ZND solution of Sec. 3.1.1 is used as initial
condition, but all velocities are shifted by −D. Therefore the velocity ahead of the
detonation is −D, while downstream of the detonation front it is −Ù . Due to this
transformation the detonation front remains quasi-stationary at its initial position,
which we set to 395. Constant in- and outflow boundary conditions are applied at
the right and the left side. A relatively large domain is necessary to avoid that
disturbances generated at the outflow boundary reach the detonation front before
the simulation is stopped.1

The basic numerical method of the one- and two-dimensional computations in
this chapter is the second-order accurate fractional step method of Strang (4.20).
The ODE of the mass fraction of product B due to chemical reaction

dZ

dt
= L1/2(1− Z) exp

(
−E?

0

PV

)
= L1/2(1− Z) exp

(
−E?

0

T

)
(6.1)

is integrated with an explicit standard fourth-order accurate Runge-Kutta method
nearly to machine accuracy (compare Sec. 4.10.1). Some authors [35, 122] solved
Eq. (6.1) exactly under the assumption of constant T , i.e.

Z(t) = 1− (1− Z(t0)) exp
(
−L1/2 exp(−E?

0/T )t
)
,

but this simplification is not possible, if detailed reactive source terms with stiff
non-equilibrium chemistry have to be considered. As we are interested especially in
numerical methods suitable for this general case, we do not use this simplification,
which would lead to slightly, but not essentially, different numerical results.

Following [35, 122, 95, 144] we plot the temporal development of the von Neu-
mann pressure, the pressure directly at the head of the detonation front. Note, that
the front pressure is identical to the maximal pressure over the entire domain only
for stable and moderately unstable detonation waves. If the oscillations are large,
the von Neumann pressure can drop below the global maximum. Fig. 6.1 illustrates
this effect, which is called clipping [95].

6.1.1 Validation of Upwind Schemes

In order to test different FV upwind schemes within the fractional step method, we
employ the two one-dimensional detonation test problems for γ = 1.2, E?

0 = 50,
Q0 = 50 proposed by Fickett and Wood [74] that also have been utilized frequently
to evaluate numerical schemes [35, 151, 122, 95, 144].

The two test cases are f = 1.8 (ZND Test 1) and f = 1.6 (ZND Test 2). It
was noted in Sec. 3.2 that the ZND detonation is stable for f = 1.8 and has one

1An approximation to the upstream signal speed of these disturbances is −Ù(Z = 1)+
C(Z = 1). A detailed discussion of the minimal computational domain size necessary to sup-
press any interactions with the left boundary completely in case of a detonation traveling with
velocity D can be found in [95].
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Figure 6.1: Difference between von Neumann pressure (top) and global pressure
maximum (bottom) for γ = 1.2, E?

0 = 50, Q0 = 50, f = 1.6.

unstable mode for f = 1.6. Both test cases are sufficiently far away from the limit of
absolute stability f ?

0 = 1.73 so we can expect that suitable schemes should reproduce
the qualitative correct behavior of the detonation wave at moderate resolutions.
The test resolutions are 5, 10 and 20 finite volumes (Pts) per half reaction length
L1/2. The FV upwind schemes are varied. The schemes to be tested are the Flux-
Vector Splittings of Steger-Warming (Sec. 4.5.1) and Van Leer (Sec. 4.5.2) and the
Godunov-type methods with the approximate Riemann solvers of Harten-Lax-Van
Leer (HLL) (Sec. 4.6.4) and Roe (Sec. 4.6.1). The Roe scheme is implemented
with enforced mass fraction positivity and entropy enforcement EF 3 (Roe EF 3:
steps (S1) to (S7), (S10a), (S11) of Algorithm 1) or with Harten-Hymann entropy
correction (Roe HH: steps (S1) to (S7), (S10b), (S11) of Algorithm 1). Further on,
Godunov’s Method with exact Riemann solver is used for comparisons [187].2

6.1.2 Stable ZND Detonation

The ZND detonation with parameters γ = 1.2, E?
0 = 50, Q0 = 50, f = 1.8 is

stable. A stationary flow approximation depending on the resolution of the grid
should be produced by any suitable scheme. First, we test the applicability of the
different upwind schemes to detonation waves in general and do not employ the

2All upwind schemes that have been developed originally for the standard case of a single
polytropic gas can easily be extended to the simplified ZND model, because in this model γ is
assumed to be constant. In particular, derivations of exact Riemann solvers carry over immediately,
only the slightly different equation of state (3.1) and a further advection equation for Z have to be
considered. See [187] for the exact Riemann solver that has been employed here for comparisons.
A complete derivation of an exact Riemann solver for the simplified detonation model can be found
in the thesis of Helzel [92].
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Figure 6.2: First-order results of ZND Test 1. Left: unphysical oscillation of the front
pressure with Roe HH and the Godunonv’s Method. Right: density distributions of
stable approximations to the detonation front at tend = 50. 10 Pts/L1/2.

MUSCL-Hancock method. All computations end at tend = 50. Automatic time-step
adjustment based on an intended Courant number of CCFL ≈ 0.9 is used.

Comparison of the Results with Different Upwind Schemes

The results of the considered upwind methods differ remarkably. No stable approx-
imation is obtained with the upwind schemes with the smallest numerical viscosity,
the Roe scheme with Harten-Hyman entropy correction (Roe HH) and Godunov’s
Method (Exact RS) (see left picture in Fig. 6.2). The other tested upwind schemes
reproduce the stable solution, but as the grid is refined (and the numerical viscos-
ity decreases) the time necessary to obtain a constant solution enlarges (compare
Fig. A.1). The right picture of Fig. 6.2 compares the stationary approximations at
tend = 50 to the exact solution of Fig. 3.3, which is plotted into Fig. 6.2 with the full
line without any dots. It is obvious, that the HLL scheme gives the worst result. The
detonation front is smeared over three computational cells and the pressure maxi-
mum of the approximation is clearly ahead of the exact solution. For 20 Pts/L1/2

the HLL scheme still gives an oscillating solution at tend (see Fig. A.1). The Steger-
Warming FVS gives the second worst approximation. The front is smeared over
three cells, but the pressure maximum is much closer to the exact maximum than
with HLL and the remaining oscillation at tend for 20 Pts/L1/2 is smaller. Van Leer
FVS gives a significantly better approximation. A stationary result is obtained for
all three test resolutions. The detonation front is sharply represented within two
computational cells and the pressure maximum is near to the maximum of the exact
solution. But the approximation of the smooth reaction region is still poor. The
Roe scheme with entropy enforcement 3 gives a better result here. Roe EF 3 approx-
imates the reaction region well, needs only two cells to capture the detonation front
and reproduces the pressure maximum one cell behind the exact solution. In order
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Figure 6.3: First-order results of ZND Test 1. Left: front pressure histories. The
dotted line at P ≈ 75.79 corresponds to the exact ZND value. Right: L1-norm of
the density. 10 Pts/L1/2.

to quantify exactly the quality of the different upwind schemes Fig. 6.3 displays
the temporal development of the front pressure (left picture) and the error in the
density computed in the L1-norm (4.6) against the exact solution (right picture).
The smallest error is achieved by Roe EF 3. The error norm with Van Leer FVS is
larger, but this scheme gives the best approximation to the stationary front pressure
and achieves a stationary solution at all test resolutions in the shortest time.

The Roe HH scheme and Godunov’s Method show a complex, but regular pat-
tern of non-decreasing oscillations in the von Neumann pressure (see left picture
in Fig. 6.2). The error in the L1-norm increases continuously as these unphysical
oscillations are transported downstream and affect the solution on the entire do-
main (not displayed). Apparently, these two upwind schemes introduce a numerical
instability into the fractional step method and it fails to compute a stable solution
profile at all test resolutions (compare Fig. A.1). In particular, even the choice of
smaller intended Courant numbers (and therefore smaller time-steps) hardly affects
the result (see left picture of Fig. 6.4 for an exemplary time resolution study for
Godunov’s Method).

Explanation for the Failure of Accurate Riemann Solvers

In Sec. 4.8.2 we studied the applicability of the different upwind schemes to slowly
moving strong shocks. Roe HH and Godunov’s Method were found to produce large
oscillations, while all other schemes gave significant better results. The smallest
oscillations were generated by Roe EF 3. This qualitative behavior is reproduced
exactly in our quasi-stationary detonation simulations, because the occurrence of a
slowly moving strong shock wave will usually be unavoidable.

In a fractional step method the inhomogeneous equations are decomposed in a
homogeneous transport step and a reaction step. As illustrated in Sec. 4.8.2 the
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solution of the homogeneous RP at the head of a stationary ZND detonation should
be an isolated shock wave solution with zero propagation velocity. Such a simple
wave solution would be reproduced exactly by the accurate Riemann solvers and
they consequently would require initial values for a homogeneous RP that has the
sought stationary shock as exact solution. Analogously to the explanation given in
Sec. 4.8.2 the approximated value at the detonation front q? and the value in the
unburned region q

R
that make up this RP have to reside on the Hugoniot curve

of a single shock wave with zero velocity. This strong requirement will usually
not be fulfilled after an integration step with a nonlinear source term. Hence, the
homogeneous RP does not have the required simple wave solution, but involves a
strong shock wave with usually not vanishing propagation velocity. As explained in
Sec. 4.8.2 the approximation of this slowly moving strong shock introduces minor
oscillations that are not damped by the Riemann solvers with minimal numerical
viscosity. Consequently, they fail in approximating a qualitatively correct solution
near the limit of absolute stability. For overdrive factors far away from f ?

0 the source
term dominates the computations and the oscillations introduced by these Riemann
solvers also become negligible.

The Influence of Numerical Viscosity on the Solution of the Roe Scheme

In order to demonstrate the dependence of the approximation on the numerical
viscosity of the upwind schemes we utilize a linear convex-combination of Eq. (4.91)
and |λ̄m(q̂)| instead of Eq. (4.91) in Roe EF 3, i.e.

EF 3’ : |λ̄m| =
{
|λm(q̂)| , if|λm(q̂)| ≥ 2η ,

τ(|λm(q̂)2|/4η + η) + (1− τ)|λm(q̂)| , otherwise ,
(6.2)

which is identical to EF 3 for τ = 1 and does not add any numerical viscosity
to shocks for τ = 0, like the Harten-Hyman entropy fix (Roe HH). The results of
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Figure 6.5: Numerical test for ZND Test 1 with the Roe HH-HLL hybrid scheme.
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this study are displayed in the right picture of Fig. 6.4. It is obvious, that EF 3
adds more numerical viscosity than it is required to stabilize the solution, while the
numerical instability becomes more and more dominant as τ approaches 0. For the
particular configuration studied an optimal choice seems to be τ ≈ 0.25.

Another empirical method to add numerical viscosity directly at the detonation
front would be to switch only here from Roe HH or the exact Riemann solver to a
more viscous scheme like HLL. When using the Roe scheme this switching can easily
be accomplished by monitoring the wave strength of the last genuinely nonlinear
field. In Fig. 6.5 numerical results for such a hybrid variant of Roe HH are displayed.
The heuristic switching criterion is |aK+d+1| > 1. In every time-step, this criterion
enforces the usage of the HLL flux at the three cell-interfaces near the leading shock
wave. Stable results are obtained with this technique, but the approximation is
worse than with Roe EF 3 (compare left picture of Fig. 6.4). This is not surprising,
because HLL is more viscous than Roe EF 3 and we already have seen in the
preceding numerical analysis that even Roe EF 3 adds more numerical viscosity
than necessary.

6.1.3 Unstable ZND Detonation

The overdrive factor f = 1.6 is below the limit of absolute stability and the ZND
detonation has one unstable mode. After an initial period, the flow pattern of the
numerical results should change regularly and clearly defined oscillations should
travel downstream. A reference solution at high resolution is displayed in Fig. 6.6.
The left graph shows the regular oscillating front pressure over time, while the right
one displays the pressure distribution in the whole computational domain at t = 70.
For t > 40 the oscillation is very regular.

Like in the preceding section, we test the six different upwind schemes by first-
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Figure 6.6: Reference solution for ZND test 2. Left: temporal development of front
pressure. Right: pressure distribution at t = 70. The instability at the front creates
regular pressure waves in the downstream direction.

order computations. All simulations end at tend = 50, when the instability should
be clearly established. Automatic time step adjustment based on a Courant number
CCFL ≈ 0.9 is used. The front pressure histories for all upwind schemes applied to
this test (ZND Test 2) are displayed in Fig. A.2. All upwind schemes show a behavior
similar to ZND Test 1. Roe HH and Godunov’s Method fail in approximating
a qualitatively correct instability. Once again, the physically correct behavior is
suppressed at all test resolutions by the numerical instability that has already been
observed in ZND Test 1. Like in the preceding test, the best results are obtained with
Van Leer FVS and Roe EF 3. Both schemes reproduce the unstable behavior with
10 Pts/L1/2, but like in ZND Test 1 Van Leer FVS gives a better approximation
to the peak pressure. The worst physically reasonable results are obtained with
Steger-Warming FVS and HLL, which reproduce the instability only at the highest
test resolution.

6.1.4 Second-order Accuracy

In order to increase the accuracy of the results the second-order accurate MUSCL-
Hancock method of Sec. 4.3 is applied. Following Sec. 4.7.1 the total density, the
momentum density, the energy density and the mass fractions Z, 1− Z are extrap-
olated, where the limiter value for the mass fractions is computed by Eq. (4.101).
We repeat ZND Test 1 and apply the Minmod-limiter (4.49) in all computations. A
sharper representation of the detonation front is obtained with all upwind schemes
(compare the left picture of Fig. 6.7 to the right picture of Fig. 6.2), but the front
is captured now one cell to the left. In perfect agreement with the second-order
results of Sec. 4.8.2 all schemes show larger oscillations in the front pressure than
in Sec. 6.1.2 (compare Fig. A.3). As it can be expected from of Sec. 4.8.2, the
numerical instability observed for Roe HH and Godunov’s Method in the first-order
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Figure 6.7: Density distributions of second-order results of ZND Test 1 at tend = 50,
10 Pts/L1/2, the full line is the exact solution of Fig. 3.3. Left: Minmod-limiter.
Right: comparison of the robust Roe-HLL EF 3 with Van Leer-limiter and Roe EF
3 with Minmod-limiter.

test is amplified. Also Van Leer FVS shows a small oscillation for 10 Pts/L1/2 that
indicates that the scheme does not harmonize perfectly with the MUSCL approach
for these kind of problems. Like in Sec. 4.8.2 the Roe EF 3 scheme seems to be
superior in combination with MUSCL. Fig. A.3 shows that Roe EF 3 achieves the
smallest front pressure variations at tend at all resolutions.

For both ZND tests the Roe schemes and Steger-Warming FVS only work with
Minmod. For other limiters with a sharper discontinuity reconstruction (see Sec.
4.3.1) unphysical cell values occur that terminate the calculations after a few time-
steps (compare Sec. 4.8.1). In case of the Roe scheme, the reason for this behavior is
that the Roe linearization becomes unphysical for the first extrapolated RP directly
at the head of the detonation front. We therefore recommend to include the steps
(S8), (S9) of Algorithm 1 into Roe EF 3. We denote this robust variant, which
consists of the steps (S1) to (S9), (S10a), (S11) of Algorithm 1, by Roe-HLL EF 3.
Roe-HLL EF 3 gives a reliable result with every slope limiter. The right picture of
Fig. 6.7 shows that the resolution of the detonation front can be improved further,
if Roe-HLL EF 3 is used together for instance with the Van Leer-limiter (4.51).
For this limiter, Roe-HLL EF 3 switches to HLL nearly in every time-step, but the
application of HLL is restricted to the single cell interface abutting the unburned
gas region. Hardly any switching to HLL occurs with Minmod. No usage of HLL
has been observed in all first-order computations.

A drastic improvement of the first-order results for Steger-Warming and Van Leer
FVS, HLL and Roe-HLL EF 3 can be achieved, if the MUSCL-Hancock method
is applied to ZND Test 2 (compare Fig. A.4). The schemes that allow the Van
Leer-limiter now reproduce the instability at all test resolutions. For resolutions
≥ 10 Pts/L1/2 a very regular oscillation is visible for t > 40. To quantify the
approximation quality exactly we follow Quirk [151] and Hwang, Fedkiw et al. [95]
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Figure 6.8: First and second-order results for Roe-HLL EF 3 and Van Leer FVS for
ZND Test 2. Left: peak pressure. Right: period of time between successive pressure
peaks. Averaged values over the time interval [70, 100] are displayed.

and plot the peak front pressure and the time period between two successive pressure
peaks against the relative mesh spacing (10 : [Pts/L1/2] ⇒ 10 Pts/L1/2

∼= 1). The
averages of the four peak values within the time interval [70, 100] are used. The
results for Roe-HLL EF 3 and Van Leer FVS with Minmod- and Van Leer-limiter
are displayed in Fig. 6.8. A comparison with first-order reference results uncovers
that the MUSCL-Hancock method reduces the necessary resolution at least by a
factor of 4, but especially for the Roe scheme even factors around 8 to 10 can be
achieved. The peak pressure values converge toward ≈ 99.06 with Minmod and
toward ≈ 99.23 with Van Leer-limiter. The time period limit is ≈ 7.360. These
values do not fully agree to theoretical estimates that have been published earlier,
but they are in good agreement with other numerical results and are probably more
correct.3 The best scheme of this test is Roe-HLL EF 3 with Van Leer-limiter. It
converges quickly against the peak pressure limit and achieves an extraordinarily
good approximation to the time period limit even at coarser resolutions.

6.1.5 Comparison with Other Numerical Results

In most numerical studies [35, 151, 122, 95, 144] ZND detonations were simulated
with zero inflow velocity, i.e. in these studies the detonations move with velocity D
through the computational domain. But the movement of the detonation through
the fixed grid introduces a significant discretization error. The temporal develop-

3Fickett and Wood [74] estimated a peak pressure of 98.6. Erpenbeck [66] estimated a period
of 7.41 to 7.49, depending on the perturbation method he used. Hwang, Fedkiw et al. observed
a convergence of their third-order ENO methods to a peak pressure of ≈ 99 and to a time period
of 7.33 to 7.37 [95]. LeVeque and Shyue approximated a peak pressure of 99.83 ± 0.2 and a time
period of 7.38±0.11 utilizing a MUSCL-type reconstruction with the Roe scheme and front-tracking
algorithm [122] (see also Sec. 6.1.5).
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Figure 6.9: Exemplary first-order results for ZND Test 1 with a moving detonation.
Left: density distributions at tend = 50, the full line is the exact solution of Fig. 3.3.
Right: L1-norm of the density. 10 Pts/L1/2.

ment of the L1-error (right picture of Fig. 6.9) visualizes the oscillations generated
by this effect. The enlarged discretization error increases the numerical viscosity
drastically and all previously studied upwind schemes now give the same poor ap-
proximation. In particular, the larger amount of numerical viscosity stabilizes also
Godunov’s Method and Roe HH. Consequently, all upwind schemes can now be
used within MUSCL with all limiters without any problems. Exemplary data of a
first-order computation of ZND Test 1 are displayed in Fig. 6.9. The graphs clearly
illustrate that the results for instance of Godunov’s Method and of Steger-Warming
FVS are now nearly identical.

Second-order results of ZND Test 2 are shown in Fig. 6.10. Like in the pre-
ceding section, we plot the peak front pressure and the time period between two
peaks. It is apparent, that for resolutions ≥ 20 Pts/L1/2 the data hardly depend
on the particular upwind scheme, but mostly on the limiter. Consequently, the
graphs of Fig. 6.10 reflect mainly the ability of the MUSCL approach to handle
fast moving detonations, but not the possible approximation quality of a particular
upwind scheme for detonation waves. For fast traveling detonations our results are
in good agreement with the observations of Quirk [151], who also used the MUSCL
approach, but only in combination with the Roe scheme. If peak pressure and time
period approximation are considered together, MUSCL seems to give better results
than a second-order ENO reconstruction and slightly worse results than third-order
ENO schemes, depending on the limiter (see [95] for results of ENO methods for
ZND Test 2 with a moving detonation).

In order to decrease the large discretization error of a moving detonation, Bour-
lioux, Majda and Roytburd [35] and also LeVeque and Shyue [122] combined their
numerical methods with front-tracking algorithms. Bourlioux et al. use a stan-
dard technique [42] that treats the leading shock wave as an explicitly stored mov-
ing boundary and calculates the front velocity from the Rankine-Hugoniot rela-
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Figure 6.10: Exemplary second-order results for ZND Test 2 with a moving detona-
tion. Left: peak pressure. Right: period of time between successive pressure peaks.
Averaged values over the time interval [70, 100] are displayed.

tion (2.10). For their best scheme, the piecewise parabolic method [44] with front-
tracking, Bourlioux et al. report a peak pressure of 104 ± 0.4 for 10 Pts/L1/2 and
101 ± 0.3 for 20 Pts/L1/2, which is comparable to MUSCL with Minmod without
front-tracking. LeVeque and Shyue adapt the space-discretization and ensure that
the detonation front is always aligned to a cell interface. They estimate the front
velocity by applying (2.10) to the Roe linearization (see [122] for details). The Roe
scheme is used within a MUSCL approach that allows one-sided reconstructions near
the tracked detonation front. For 16 Pts/L1/2 they approximated a peak pressure of
99.83 ± 0.2 and time period of 7.38 ± 0.11. For a moving detonation our standard
MUSCL technique requires about the double resolution to reproduce this good re-
sult (see Fig. 6.10), but for a quasi-stationary detonation we obtain similar results
at the same resolution with Roe-HH EF 3 or Van Leer FVS (compare Fig. 6.8).

Another interesting approach to improve the capturing of the leading shock front
is the level-set method, which is applied by Fedkiw and his collaborators in combi-
nation with the conservative ghost fluid method to detonation waves [70, 134]. The
idea of this technique is to use a level-set function [132] to track the location of the
shock front. From the level-set function an internal boundary is reconstructed at
the shock location. On both sides of this boundary auxiliary ghost cells are utilized
allowing a decoupled solution with a standard shock-capturing scheme, e.g. with an
approximate Riemann solver. The shock velocity necessary to update the level-set
function is calculated by applying the Rankine-Hugoniot relation (2.10) to the in-
ternally reconstructed values. The technique avoids the explicit storage of internal
boundary locations by utilizing a globally defined level-set function (which can be
treated as an additional component of the vector of state in a computer program)
and ensures that the shock-capturing scheme is applied exactly at the detonation
front. Unfortunately, Fedkiw and his collaborators do not provide any exact mea-
surements for ZND Test 2 with this method.
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A further test is the reproduction of the limit of absolute stability f ?
0 = 1.73. For

a resolution of 16 Pts/L1/2 LeVeque and Shyue report an amplification of the peak
pressure for f = 1.72 and a decline for f = 1.74. Bourlioux et al. obtained com-
parable results for resolutions ≥ 20 Pts/L1/2. The overdrive parameter variations in
Fig. A.5 and A.6 that have been calculated with our best scheme, the Roe-HLL EF
3 scheme with MUSCL variable extrapolation and Van Leer-limiter, illustrate that
for quasi-stationary detonations our method easily reproduces the limit of stability
for resolutions ≥ 20 Pts/L1/2 without any front-tracking.

The other computations shown in Fig. A.5 and A.6 are intended as a reference.
For f = 1.36, 1.38, 1.40, 1.50, 1.54, 1.58 these computations are qualitatively identical
to the results in [35] obtained at the same resolution. The two highly unstable cases
f = 1.1 and f = 1.3 are comparable to the calculations of Papalexandris et al. in
[144] at similar resolutions. But note, that a simulation time of 100 time units is too
short to allow the development of a regular oscillation as f approaches 1.0. At least
for f = 1.1 and f = 1.2 it can not be concluded reliably from Fig. A.5, whether the
approximation has already converged toward a regular oscillation or not. A study
of the necessary grid resolutions and the simulation times that can be required in
extreme cases has been presented by Sharpe and Falle [164].

6.2 Two-dimensional Cellular Structure

In this section we simulate typical unstable two-dimensional ZND detonations with
the previously derived upwind schemes. In particular, we compare the Godunov
dimensional splitting (4.22) with the two-dimensional Wave Propagation Method
(4.58). To suppress the carbuncle phenomenon that would destroy every simulation
with the Roe scheme, we extend the entropy enforcement formula EF 3 by the multi-
dimensional H-correction in all three waves that has been introduced in Sec. 4.8.3.
Following the notation of Sec. 4.8.3 we denote this variant by Roe-HLL EF 3?-H.

6.2.1 Validation of Dimensional Splitting

We start our considerations with a test of the applicability of the Godunov dimen-
sional splitting (4.22) for the approximation of multi-dimensional detonation waves
in general. Further on, the basic computational setup to record triple point tracks
is introduced. To provide results that are easily reproducible, intentionally a con-
figuration has been chosen that develops typical detonation cells already at coarsest
resolutions.

Initialization

The unstable ZND detonation with γ = 1.2, E?
0 = 50, Q0 = 50, f = 1.6 of Sec.

6.1.3 is extended to two space dimensions with U2 = 0 and placed on a rectangular
domain of the size [0, 20] × [0, 5] (ZND Test 3). Like in the previous section all
velocities in the x1-direction are shifted by −D. Initially, the von Neumann point
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Figure 6.11: Flow field at t = 21 and t = 25 for ZND Test 3. Top: schlieren
plots of ρ̄ and Z (mirrored) on [0, 15]× [0, 5], bottom: detonation fronts plotted on
distribution of Σ (domain doubled).

is at X1 = 6. In- and outflow boundary conditions are applied at the right and left
side, reflective boundary conditions are used in the x2-direction. Following Geßner,
who also studied this particular example in his thesis [78], we initiate a transverse
perturbation of the planar detonation by increasing the pressure by +15% inside
the pocket [5.45, 5.94]× [0.0, 0.25].

Reference Computation

To test the Godunov splitting (4.22) in general, we carry out a reference computation
with Van Leer FVS without MUSCL reconstruction on a uniform grid of 800× 200
cells, i.e. 40 Pts/L1/2. The computation ends at tend = 25. Automatic time step
adjustment based on CV L

CFL ≈ 0.95 is applied (see Eq. (4.70).

The numerical simulation clearly represents the unstable behavior of a multi-
dimensional detonation wave. While a regular longitudinal pulsation is visible in
the one-dimensional results (compare Sec. 6.1.3), the two-dimensional computation
uncovers an instability in the transverse direction. As it can be expected (compare
Sec. 3.3), the transverse instability is much stronger than the pulsation in the
normal direction and suppresses it completely. After approximately 10 time units
the transverse oscillation is fully established and dominates the computation. An
instationary transverse pressure wave travels regularly up- and downward. A triple
point with the typical sub-structure explained in Sec. 3.3 is formed where the
transverse wave hits the detonation front.

The distributions of ρ̄ and Z at t = 21 and tend = 25 in Fig. 6.11 display the
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Figure 6.12: Maximal amount of vorticity at every point in space overrun by the
detonation of ZND Test 3. The auxiliary grid is mirrored at X2 = 0 for visual-
ization. Top: [0, 120] × [−5, 5], bottom: [120, 240] × [−5, 5]. First-order accurate
computations with Van Leer FVS, 40 Pts/L1/2, C

V L
CFL ≈ 0.95.

temporal development of the flow field while the triple point is moving. The graphic
at t = 21 is a snapshot of the flow situation in the second half of a detonation cell,
while the other graphic at t = 25 displays the first half. At t = 21 the shock at the
symmetry axis is the incident shock. It is strong enough to achieve a complete rapid
reaction directly behind it. No further reaction is possible behind this combustion
region and the transverse wave is therefore not visible in the schlieren plot of the
mass fraction. It is interesting to note, that the flame front in this example becomes
so wrinkled at the end of a detonation cell that an unreacted pocket is formed on
each side of the symmetry axis. The mass fraction distribution at t = 21 uncovers
two of these pockets.

At t = 25 the shock at X2 = 0 is a Mach stem. It is much stronger than the
incident shock and the distance between detonation front and the beginning of the
reaction region is drastically decreased. The vorticity track (see explanation below)
in Fig. 6.11 reflects this decrease of reaction velocity behind the shock inside the
detonation cell by a continuous decrease of Σ (see explanation below).

Obtaining Triple Point Tracks

As the velocities have their maximal changes in the triple point region, the vorticity

ω =
∂U2

∂X1

− ∂U1

∂X2

(6.3)

is an appropriate quantity to detect the triple point and a local maximum in |ω|
exactly at the triple point can be expected. Eq. (6.3) is approximated by standard
difference quotients. We utilize an auxiliary grid for a scalar quantity Σ to record
the maximum of |ω| over time at every point in space overrun by the detonation in
the quasi-stationary simulation. In the reference computation the auxiliary grid has
the size [0, 240] × [0, 5] and 9600 × 200 uniform cells. It is initialized with Σ ≡ 0.
During the simulation the auxiliary cell values Σj?,k? are updated by

Σj?,k? := max(Σj?,k? , |ωj,k|)

with j? =

[
tD

∆X1

]
+ j , k? = k for all j = 1, . . . , 800 , k = 1, . . . , 200 ,
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Figure 6.13: Density distribution for ZND Test 3 with different first-order upwind
schemes at t = 25, 10 Pts/L1/2.

which corresponds to a constant movement with velocity −D of the auxiliary grid
through the domain. Fig. 6.12 displays the distribution of Σ at the end of the
computation. The grid is mirrored at X2 = 0 to visualize the regular cellular
structure written by the triple points tracks. Each detonation cell has a length of
L ≈ 22.6L1/2. With D ≈ 8.6134 this corresponds to a time period of tp ≈ 2.62.

6.2.2 Validation of Upwind Schemes

We repeat ZND Test 3 on a coarse grid of 200×50 cells (10 Pts/L1/2) with the first-
order FVS schemes of Steger-Warming, Van Leer and with the first-order approx-
imate Riemann solvers HLL and Roe-HLL EF 3?-H. Like in the preceding section
the first-order Godunov splitting (4.22) is utilized for the dimensional extension.

All schemes reproduce the cellular structure qualitatively correctly. The results
of the FVS schemes are nearly identical, but Van Leer FVS gives sharper resolved
results than Steger-Warming FVS (compare Fig. 6.13), as we expect it from our
one-dimensional results. The periodic movement of the triple point in the FVS
approximation is slightly ahead of the approximation with the Roe-HLL EF 3?-H
scheme. Roe-HLL EF 3?-H shows a resolution of the detonation front similar to Van
Leer FVS, but as in Sec. 6.1.2 the Roe solver seems to approximate the reaction
region better and more details show up here. The HLL scheme approximates a triple
point that is drastically delayed compared to the results of all other upwind methods
and as in Sec. 6.1 this simple Riemann solver gives the worst result.

6.2.3 Validation of the MUSCL-Hancock Method

In order to get a rough estimate on the accuracy improvement by applying the
MUSCL-Hancock reconstruction technique in the multi-dimensional case, we com-
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Figure 6.14: Improvement of the solution by MUSCL reconstruction. Left column:
without MUSCL, right column: MUSCL-Hancock method with different slope lim-
iters. Density distributions for ZND Test 3 at t = 25.

pare coarse-grid solutions of ZND Test 3 computed with MUSCL to higher resolved
results obtained with a first-order upwind scheme alone. All computations used the
first-order dimensional splitting (4.22).

In the multi-dimensional case the one-dimensional MUSCL-Hancock reconstruc-
tion of Sec. 4.3.1 is applied in every dimensional sweep X (∆t)

n separately. Analo-
gously to Sec. 6.1.4 the variable extrapolation for multi-component Euler equations
of Sec. 4.7.1 is used. Based on our experiences in the one-dimensional case (compare
Fig. 6.8) we utilize Van Leer FVS and not Roe-HLL EF 3?-H for this comparison
to obtain an estimation for the minimal resolution reduction factor that can be
expected.

The results at t = 25 are displayed in Fig. 6.14. The reference calculations
with the upwind scheme alone (left column) show that the triple point approaches
the upper boundary with increasing resolution. This behavior is reproduced in the
coarser MUSCL results, if a slope limiter with sharp discontinuity reconstruction is
employed (compare Fig. 6.7). The factors of grid refinement of corresponding refer-
ence solutions are in good agreement with the values found in the one-dimensional
case in Sec. 6.1.4. With the diffusive Minmod-limiter the MUSCL computation
corresponds to a solution that is about four times finer, with the sharper Van Leer-
limiter the MUSCL result is similar to a six times finer result. As it is reasonable,
the Van Albada-limiter produces an approximation that lies between both other
results.
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Test E?
0 Q0 f D tend

4 50.0 50.0 3.0 11.794 50.0
5 10.0 50.0 1.2 7.459 70.0

Table 6.1: Parameters of the ZND Tests 4 and 5, γ = 1.2.

6.2.4 Dimensional Splitting versus Wave Propagation

In this section, we simulate two-dimensional unstable ZND detonations that require
a significantly higher resolution than the example in Sec. 6.2.1. The two configu-
rations studied have been proposed by Bourlioux and Majda in [34]. In particular,
the parameters of ZND Test 5 correspond roughly to low pressure H2 : O2 mixtures
diluted with 60% − 80% argon and the configuration is a reasonable test for the
computations in the next chapter. ZND Test 4 has the same parameters as the
calculations in Sec. 6.1. Its overdrive parameter f = 3.0 is drastically above the
one-dimensional limit of absolute stability and in the planar case this detonation
would remain stable (compare Sec. 3.2).

In order to determine the approximation quality of the available multi-dimensional
transport schemes, we test the Van Leer FVS and the Roe-HLL EF 3?-scheme with
MUSCL-Hancock reconstruction within the splitting method

Ql+1 = S( 1
2
∆t)X (∆t)

2 X (∆t)
1 S( 1

2
∆t)(Ql) (6.4)

and the Roe-HLL EF 3?-scheme in the splitting scheme

Ql+1 = S( 1
2
∆t)H(∆t)

W S( 1
2
∆t)(Ql) . (6.5)

Herein, H(∆t)
W denotes the two-dimensional Wave Propagation scheme (4.58) that

is implemented as described in detail in Sec. 4.7.2 with MUSCL-Hancock variable
extrapolation and positivity correction. Scheme (6.4) is formally only first-order
accurate, but Eq. (6.5) is a fully two-dimensional second-order accurate method
that can be expected to produce even better results than a splitting method utilizing
the second-order accurate dimensional splitting (4.23).

Computational Setups and Initialization

The ZND parameters for both test cases are displayed in Tab. 6.1. The basic
computational setup is nearly identical to ZND Test 3. The exact quasi-stationary
one-dimensional ZND solutions are placed on the same two-dimensional domain
[0, 20] × [0, 10] with the von Neumann point at X1 = 12 and disturbed by a 15%
pressure increase in the pocket [11.45, 11.95]× [5.25, 4.75].

We employ base grids with a resolution of 10 Pts/L1/2 in both directions, i.e. with
200 × 100 cells and use the AMR algorithm of the preceding chapter as explained
in Sec. 5.7 to achieve a moderate reduction of the computational costs. Only
one refinement level is applied (r1 = 4). An extensive adaptation is ensured by
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Van Leer FVS, (6.4) Roe-HLL EF 3?-H, (6.4) Roe-HLL EF 3?-H, (6.5)

Figure 6.15: Schlieren plots of T and Z for ZND Test 4 at t = 30.4 for the three
transport schemes, displayed: 6.0 < X1 < 15.0.

selecting the very sensitive adaptation criteria ερ̄ = 5.0, εP = 20.0 and εZ = 0.005.
Consequently, the results agree mostly with uniformly refined reference data (not
shown). The effective resolution of 40 Pts/L1/2 is 1.67 times finer than the highest
resolution of 24 Pts/L1/2 in [34] and we therefore expect mostly converged solutions
for our specific setup (compare Sec. 6.1.5).4 Based on the results of Sec. 6.2.3
we employ the Van Albada-limiter. Like in Test 3, we use automatic step size
adjustment with CCFL ≈ 0.95 (Test 4 needs ≈ 7000 time steps, Test 5 requires
≈ 6500 time steps).

4Analogously to their studies in the one-dimensional case [35] Bourlioux and Majda simulated
fast propagating detonations with zero inflow velocity with the Piecewise Parabolic Method in
combination with dimensional splitting and conservative front tracking in [34] and obtained mostly
converged solutions at 24Pts/L1/2. Based on the one-dimensional comparisons in Sec. 6.1.5 we
can expect to achieve slightly improved results with the second-order accurate shock-capturing
schemes for our quasi-stationary setup already at this resolution.
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Figure 6.16: Schlieren plots of T and Z for ZND Test 5 at t = 54.5 for the three
transport schemes, displayed: 6.0 < X1 < 15.0.

Computational Results and Comparison with Other Numerical Results

For all three transport schemes we obtain similar numerical approximations that
are nearly converged in time and in space. As expected, all results are in perfect
agreement with the solutions in [34], but have a significantly sharper resolution.
Therefore, we omit an explanation for the different unstable behavior (see [34] for a
detailed interpretation) and focus our attention on the differences between our three
transport schemes instead.

The Figs. 6.16 and 6.15 display exemplary snapshots for both configurations. It
is apparent, that all results with Roe-HLL EF 3?-H are remarkably sharper resolved
than with Van Leer FVS. While the second-order MUSCL results of the Roe scheme
were only slightly better in one space dimension (compare Sec. 6.1.4), its superiority
for multi-dimensional problems is indisputable. Further on, we have to note that the
differences between the results of the formally first-order method (6.4) and the fully
multi-dimensional second-order scheme (6.5) are negligible. As it can be expected,
scheme (6.5) approximates two-dimensional structures smoother and produces less
grid-aligned results than method (6.4), but the improvements are minor. For regular
detonation cell simulation in open space both methods are mostly equivalent. The
Figs. A.8, A.7 display reference results and triple point tracks for Roe-HLL EF 3?-H
within (6.5). For ZND Test 4 regular detonation cells with length L ≈ 25.2L1/2 and
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time period tp ≈ 2.14 can be measured. ZND Test 5 develops regular cells with
L ≈ 23.9L1/2 and a time period of tp ≈ 3.20. Although ZND Test 4 would remain
stable in one space dimension, the simulation uncovers a stronger two-dimensional
instability than in ZND Test 5.

It is interesting to note, that at least in a distributed memory environment
the two-dimensional methods (6.4) and (6.5) require similar computational times
(compare Sec. 6.3.1 for the three-dimensional case). For example, ZND Test 4 took
exactly 11.6 h with both methods on four nodes of a Pentium III-850 MHz-cluster
connected with Fast Ethernet (Van Leer FVS with scheme (6.4) required 8.5 h).
The Wave Propagation Method is computationally more expensive (compare last
paragraph of Sec. 4.3.2), but the dimensional splitting scheme requires an additional
parallel synchronization step (compare Sec. 5.6.2).

6.3 Three-dimensional Cellular Structure

Although it is known experimentally that detonations exhibit an inherently three-
dimensional structure (compare Sec. 3.3) most simulations so far considered only the
two-dimensional case. While the computational expense of two-dimensional ZND
simulations with a necessary resolution of 20 to 40 Pts/L1/2 is moderate from today’s
point of view, the costs of three-dimensional computations are still enormous.

A completely documented three-dimensional test case has been presented by
Williams, Bauwens and Oran [203]. To our best knowledge, their work is the only
successful extension of some earlier attempts, e.g. [77], and is the only source of com-
parative data for the three-dimensional case up to now. In [203] Williams, Bauwens
and Oran studied the configuration of ZND Test 5 in a quasi-stationary setup with
a resolution of 16 Pts/L1/2. Based upon the expectation that the cell width λ will
remain unchanged in three dimensions as long as only no-slip or symmetry boundary
conditions are applied, they utilized a quadratic channel with 10× 10 cross-section.
They exploited the symmetry of the problem and simulated just one quarter of the
domain. As expected, they observed regular detonation cells with λ = 10 in x2-
and in x3-direction. The detonation cells were formed by straight triple point lines
mostly parallel to the boundaries and orthogonal to each other. They discovered
a remarkable phase-shift between the waves in both direction of approximately 90
degree.

6.3.1 Validation of the AMR Method

We use the three-dimensional example proposed in [203] to verify the applicability of
the parallel AMR algorithm as described in Sec. 5.7 to complex unstable detonation
waves. The hydrodynamic transport is computed with our most efficient method, the
Godunov dimensional splitting with Roe-HLL EF 3? Riemann solver and MUSCL-
Hancock reconstruction. In Sec. 6.2.4 we compared this formally first-order scheme
to the fully multi-dimensional second-order accurate Wave Propagation Method and
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Figure 6.17: Maximum of |ω| at every point in space overrun by the detonation of
ZND Test 6b. Mirrored at X2 = 0, X3 = 0 for visualization. Top: [0, 250]× [−5, 5]×
[−5, 5], bottom: [250, 500]× [−5, 5]× [−5, 5].

found that both schemes approximate unstable two-dimensional detonation struc-
tures in open space with similar quality. Consequently, only negligible differences
between both transport schemes could be observed in first three-dimensional test
simulations at 20 Pts/L1/2. But unlike to the two-dimensional case, where both
variants were found to require similar computational times in parallel (compare last
paragraph of Sec. 6.2.4), these computations uncovered that the application of the
three-dimensional Wave Propagation Method results nearly in a doubling of the
overall computational time. We do not describe these test simulations further, but
present the results of finer resolved adaptive simulations instead.

Computational Setups and Initialization

We use a computational setup that is in principle identical to the setup in the
two-dimensional case. Analogously to ZND Test 5 the exact quasi-stationary ZND
solution with parameters γ = 1.2, E?

0 = 10, Q0 = 50, f = 1.2 is extended to three
dimensions with U2 = 0, U3 = 0. The von Neumann point is placed at X1 = 12 on
a [0, 20] × [0, 5]× [0, 5] grid. Except the usual in- and outflow at the right and left
side, reflective boundary conditions are applied. The transverse wave is initiated
by a pressure increase of +15% in the pocket [11.45, 11.95] × [0.25, 0.0] × [0.0, 5.0].
In contrast to the recommendation in [203] an orthogonal perturbation is generated
by an identical pocket at [11.45, 11.95] × [5.0, 0.0] × [Xp, Xp + 0.5]. The starting
location Xp of this pocket is varied to verify the independence of the periodic three-
dimensional cellular structure from the initial disturbance. We test the three values
Xp = 0.65 (ZND Test 6a), Xp = 1.45 (ZND Test 6b), Xp = 2.25 (ZND Test 6c).

Based on the previously discussed test computations and Sec. 6.2.4 we apply
the splitting scheme Ql+1 = S(∆t)X (∆t)

3 X (∆t)
2 X (∆t)

1 (Ql) in combination with Roe-
HLL EF 3? and MUSCL variable extrapolation as described in Sec. 6.2.3 and Van
Albada-limiter. Like in all quasi-stationary computations we use an auxiliary grid
for a scalar quantity Σ moving constantly with velocity −D to record the maximum
value of |ω|, the magnitude of the vorticity vector. In the three-dimensional case
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Figure 6.18: ZND Test 6b. Isolines of ρ̄ on the two levels of refinement at t = 53.5,
mirrored at X2 = 0, X3 = 0 for visualization, [0, 20]× [−5, 5]× [−5, 5].

the vorticity vector is defined as

ω =
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)T
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In the ZND Tests 6a to 6c this auxiliary grid has the mesh widths of the adaptive
base grid and consists of 3200× 25× 25 cells. Like in ZND Test 5, it is shifted with
the constant velocity −7.459 through the computational domain.

The adaptive grid has 100× 25× 25 cells at the coarsest level and two levels of
refinement with r1 = 2 and r2 = 3, which corresponds to an effective resolution of
30 Pts/L1/2 and is nearly twice as fine as the resolution used in [203]. The adaptation
criteria are set to ερ̄ = 5.0, εP = 20.0 and εZ = 0.05. This setting achieves an
adaptation to the stronger flow phenomena, but is not as stringent as in Sec. 6.2.4.
Instead of 13.5 M cells like a uniformly refined computation the adaptive simulations
use around 3.6 M cells. A typical snapshot of the dynamic refinement is shown in
Fig. 6.18. All computations end at tend = 70.0 and require approximately 3300 time
steps with an automatically adjusted step size of CRoe

CFL ≈ 0.95.
The computations were run on the Helics (HEidelberg LInux Cluster System)

at the University of Heidelberg. The Helics cluster consists of 256 Athlon-1.4 GHz
double-processor boards connected with 2 Gb Myrinet high-speed network. On 32
processors each run took about 48 h real time.

Comparison of the Computational Results

Regular three-dimensional detonation cells are developed in the ZND Tests 6a and
6b. In ZND Test 6c three-dimensional detonation cells are initiated, but the strength
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Figure 6.19: max(|ω|) at [385.0, 440.0]× [−5, 5]× [−5, 5] for ZND Test 6a (top), 6b
(middle), 6c (bottom). The middle picture also shows the detonation front.

in both transverse directions is not equal and the waves in the x3-direction disappear
during the simulation. The different character of the calculations can be seen clearly
in the maximal vorticity notated on the auxiliary meshes. Fig. 6.17 displays this
mesh mirrored twice for ZND Test 6b. Analogously to ZND Test 5 (compare triple
point tracks of Fig. A.8) two detonation cells with λ = 5L1/2 can be observed during
the first quarter of the simulation, but the detonation changes its mode quickly and
in the second half of the computation regular detonation cells with λ = 10L1/2

evolve.

Fig. 6.19 compares the tracks of the triple point lines within the temporal range
t ≈ 49 to t ≈ 57 for all three computations. Obviously, Test 6a and 6b simulate the
same three-dimensional periodic situation. The small temporal shift is due to the
different initial conditions. The detonation cells in both transverse directions have
the same length as in the two-dimensional case of ZND Test 5, i.e. L ≈ 23.9L1/2

and the same time period tp ≈ 3.20. The initiation of the detonation cell in the
x3-direction is delayed roughly by 0.80 which corresponds to a phase delay between
x2- and x3-direction of about 90 degree. Test 6c shows only the regular oscillation
in x2-direction. Around t ≈ 50 the waves in x3-direction die out and only waves
in x2-direction remain. While the transverse waves seem to have equal strength in
Test 6a and 6b, the waves in x2-direction are significantly stronger in Test 6c and
suppress the weaker orthogonal waves for t > 50.

All graphics of Fig. 6.19 reproduce the phenomenon of slapping waves that
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Figure 6.20: Left: three-dimensional detonation front of ZND Test 6b at t = 53.5,
right: sketch of the periodic rectangular shock structure for t = 53.5. The grey
square corresponds to the domain of the left picture.

frequently has been observed in experiments [203]. When a triple point line is
reflected it seems to slap multiple times against the wall. The slapping is associated
to the complex process of triple point reinitiation (compare Sec. 7.2.3). Especially
in the top picture of Fig. 6.19 the slapping is clearly visible twice in both transverse
directions.

Test 6c reproduces only the two-dimensional unstable mode already seen in ZND
Test 5, but Test 6a and 6b develop a new, genuinely three-dimensional mode of
oscillation. In both transverse directions the strong two-dimensional oscillations is
present and forces the creation of detonation cells of equal size, but both transverse
modes are now coupled in a complex three-dimensional manner. This coupling seems
to be unique and in all our computations (also with different initial conditions) we
only observed this complex three-dimensional mode or the purely two-dimensional
mode of ZND Test 5.

The Periodic Three-dimensional Structure

The Figs. A.9 to A.11 visualize the periodic change of three-dimensional detonation
structures during one detonation cell. Like in the previous plots the computational
domain has been mirrored twice. The three-dimensional graphics show schlieren
plots of ρ̄ and an isosurface of the detonation front. The two-dimensional graphics
are roll-ups of the four sides of the cube marked in the three-dimensional plots (see
also the sketch in Fig. A.11). They display schlieren plots of ρ̄ and P .

The isosurfaces of the detonation front clearly represent the four triple point lines
formed by the transverse waves. During a complete detonation cell the four lines
remain mostly parallel to the boundary and hardly disturb each other. The schlieren
plots of the Figs. A.9 to A.11 show the characteristic triple point flow pattern of
Fig. 3.6 in all planes perpendicular to a triple point line. Each triple point line is
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driven forward by a Mach stem line into an incident shock region. A region which is
a Mach stem in one direction can be either a Mach stem or an incident shock in the
orthogonal direction. The same is true for the incident shock and we consequently
have three different types of rectangular shock regions at the detonation front: Mach
stem - Mach stem (MM), Incident - Incident (II) and mixed type regions (MI) [203].
An MM region is bounded only by Mach stems and expands in x2- and x3-direction.
An II rectangle is formed only by incident shocks and shrinks in both directions.
The MI region is of mixed type and expands in one direction, while it shrinks in the
other. Fig. 6.20 displays the different rectangular shock regions for t = 53.5. As the
computation corresponds only to a section of a periodic situation the sketch in Fig.
6.20 displays an enlarged region.

A comparison of the schlieren plots for ZND Test 6b with those of ZND Test
5 (see Fig. A.8) uncovers that the three-dimensional mode of propagation is con-
siderably more unstable than the purely two-dimensional one. The graphics of the
three-dimensional computation show remarkable minor disturbances behind the det-
onation front and the degree of instability seems to correspond more to the unstable
ZND Test 5 than to its own two-dimensional analogue. Together with the char-
acteristic phase shift this observation could be an indication that beside the two
strong two-dimensional modes of oscillation a third, genuinely three-dimensional,
mode shows up in these computations.

Comparison with Other Numerical Results

In principle our results are in perfect agreement with the uniform results in [203].
The successful application of the parallel AMR algorithm allowed simulations with
an effective resolution, which was nearly twice times finer in space and time than
the results in [203]. Consequently, our results are significantly better resolved. This
improvement in approximation quality is probably the reason, why the periodic
three-dimensional oscillation was clearly present in our computations at the same
physical time as in the two-dimensional reference computation (compare Sec. 6.2.4).
This is remarkably earlier than it was reported by Williams, Bauwens and Oran,
and in contrast to their recommendation in [203] no modified initial perturbation
technique had to be applied.

The example demonstrates that the application of a thoroughly validated high res-
olution transport method within the blockstructured AMR algorithm has the po-
tential to simulate even three-dimensional unstable detonation waves with high res-
olution at a reasonable expense. The implemented parallelization strategy ensures
that these simulations can be run on todays distributed memory machines in an ac-
ceptable computing time. In the last chapter we therefore apply our computational
framework to detonations with detailed chemical reaction.



Chapter 7

Detonations with Real Chemistry

In this chapter we extend the simulation techniques validated in the previous chap-
ter to CJ detonations with detailed non-equilibrium chemistry. We simulate multi-
dimensional structures of detonation waves in low-pressure hydrogen-oxygen mix-
tures with high argon diluent that would occur in open space and their changes
under transient conditions.

In Sec. 7.1 we carry out purely chemical kinetics computations in order to verify
the employed reaction mechanism. In Sec. 7.2 we simulate the two-dimensional
cellular structure of a H2 : O2 : Ar CJ detonation with molar ratios 2 : 1 : 7 at T0 =
298 K and p0 = 6.67 kPa. We present a reference solution that is remarkably finer
resolved than previously published results [138, 59, 78]. The given hydrodynamic
analysis of the instationary detonation structure is the most detailed one that has
been presented so far [113, 138]. The CJ detonation of Sec. 7.2 is extended to three
space dimensions in Sec. 7.3. To our best knowledge, Sec. 7.3 presents the first
successful simulation of three-dimensional cellular detonation structure with detailed
chemistry up to now. The simulation uncovers that the reinitiation process at the
beginning of a new detonation cell involves a considerably higher local overdrive
factor than in the two-dimensional case. Further on, the formation of unreacted
regions toward the end of a detonation cell is analyzed.

In the last section of this final chapter two complex two-dimensional problems
are tackled with highly adaptive setups: the Mach reflection of a CJ detonation wave
at a wall and its diffraction when propagating out of a rectangular tube into an un-
confined region. The simulations demonstrate the efficiency of the AMR algorithm
for detonation simulation and the solution quality that can be obtained on recent
parallel computers of moderate size. The computational setups are similar to those
utilized in Sec. 5.6. Except an initial pressure of p0 = 10.0 kPa the configuration
in the unreacted gas is identical to the two previous sections. All simulations are
sufficiently resolved to display the development of the cellular structure under tran-
sient conditions. The numerical results are in perfect qualitative agreement with
experimental observations [7, 163]. In particular, the experimentally measured crit-
ical tube width of approximately 10 detonation cells in rectangular channels [112] is
reproduced in the diffraction simulations in Sec. 7.4.2.

171
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Figure 7.1: Induction times tig with respect to the initial temperature T0 in an
adiabatic constant volume environment for two configurations using Mechanism 1.

7.1 Reaction Mechanism

For all simulations we utilize the reaction mechanism of Westbrook [202] that has
been derived originally for hydrocarbon oxidations in gaseous detonations. While
the entire mechanism in [202] consists of 174 elementary reactions we only use the
first 34 elementary reactions that are required for hydrogen-oxygen combustion. The
mechanism is tabulated on page 225 (Mechanism 1). In order to validate Mechanism
1 and the integration of the chemical source terms according to Sec. 2.3.7 separately,
we measure auto-ignition times with respect to the initial temperature T0 by purely
chemical kinetics computations in an adiabatic constant volume environment. This
specific configuration corresponds exactly to the integration of a reaction term (2.78)
in a fractional step method (see Sec. 4.10.1), where the total density ρ and the
specific internal energy e are held constant when integrating the source term. The
initial condition for the ODE (4.116) is uniquely specified by the initial molar ratios
X0

i and the initial values T0 and p0 by

ρi(0) = ρY 0
i for all i = 1, . . . , K with ρ =

p0W0

T0R
, Y 0

i = X0
i

Wi

W0

, W0 =
K∑

i=1

X0
i Wi .

We solve the stiff ODE (4.116) with the semi-implicit GRK4A method and the
techniques described in Sec. 4.10. A computation is terminated, if the temperature
satisfies the criterion T > T0 + 20 K. The current time then defines the induction
time tig(T0).

Two different H2 : O2 : Ar mixtures discussed in detail in [139] are considered.
The first configuration has molar ratios 2 : 1 : 7 and an initial pressure of p0 =
1.3 atm, the second one has molar ratios 8 : 2 : 90 and a pressure of p0 = 3.4 atm.
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d
CJ

[m/s] 1626.9
p

vN
[kPa] 177.3

ù
vN

[m/s] 395.5
T

vN
[K] 1921.7

tig[µs] 3.55
lig[mm] 1.404

Table 7.1: Values of the
H2 : O2 : Ar/2 : 1 : 7 CJ
detonation at T0 = 298 K
and p0 = 6.67 kPa.

Figure 7.2: The computational domain has the size
10 cm× 3 cm. The leading shock of the CJ-detonation
is placed at x1 = 8.6 cm. The center of the unreacted
pocket is at x1 = 7.8 cm.

The computed induction times over a suitable initial temperature range for both
configurations are visualized in Fig. 7.1.

7.2 Two-dimensional Cellular Structure

We start our considerations with simulations of the cellular structure of self-sustained
CJ detonations analogously to Sec. 6.2. The H2 : O2-system diluted with a large
portion of Ar is known experimentally [176] to produce very regular detonation cells
(compare Fig. 3.5). Hence, it is an ideal candidate for numerical simulations and
especially the early computations were done for this system. The primary goal of
the first calculations [185, 99, 114, 115] was a qualitatively correct reproduction
of the detonation cells in two space dimensions. Due to the strong limitations of
the computational resources in these times only simplified one- or two-step reaction
models were applied. The basic flow structure around a triple point (compare right
picture of Fig. 3.6) was roughly reproduced.

The first successful two-dimensional detonation structure simulation with de-
tailed non-equilibrium chemistry was presented by Oran and her collaborators in
[138]. They applied uniform Cartesian meshes to investigate the CJ detonation of
a H2 : O2 : Ar mixture with molar ratios 2 : 1 : 7 at room temperature T0 = 298 K
and pressure p0 = 6.67 kPa for which the one-dimensional detonation structure has
already been shown in Fig. 3.4.

Geßner [78] repeated the test case in [138] on unstructured adaptive grids and
discovered that Mechanism 1 and the mechanism of Oran et al. [136, 139, 138]
both create cellular structures with identical macroscopic parameters L and λ, but
Mechanism 1 produces significantly sharper triple point tracks. As Mechanism 1
is smaller than the mechanism utilized in [136, 139, 138] we only use the faster
Mechanism 1 in all our computations. Tab. 7.1 displays the flow values at the von
Neumann point and the estimated induction length lig (see Sec. 3.1.2) for the test
detonation and Mechanism 1.

In a recent work, Eckett [59] employed a serial version of the blockstructured
AMR algorithm of Sec. 5.2 to solve the example in [138] with a reduced mechanism.
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Setup Base grid r1 r2 Pts/lig
1 100× 20 2 4 11.2
2 100× 20 4 4 22.4
3 200× 40 4 4 44.8

Table 7.2: Base grid and refinement factors of the
three different setups.

Yi SYi
· 10−4 ηr

Yi
· 10−4

O2 10.0 2.0
H2O 8.5 1.0
H 0.2 5.0
O 1.0 5.0

OH 1.3 5.0
H2 1.2 2.0
εT = 500 K, εp = 15 kPa,

ερ = 0.01 kg m−3

Table 7.3: Refinement criteria used in all three
computations.

He successfully applied the reduction technique of Intrinsic Low-Dimensional Man-
ifolds (ILDM) originally developed by Maas and Pope [128] for flame calculations
and was able to reproduce the results of Oran et al. at a similar resolution with the
ILDM reduced mechanism.

7.2.1 Computational Setups and Initialization

The computational setup in [138] is similar to Sec. 6.2. The one-dimensional CJ
detonation is extended to two space dimensions with u2 = 0 and transverse dis-
turbances are initiated by placing a rectangular unreacted pocket downstream of
the detonation front. Based on their experiences with simplified models [114, 99]
Oran et al. proposed to use a pocket of unreacted gas of the size 10 mm × 14 mm
with a temperature of 2086 K starting 3 mm behind the leading shock front for this
purpose. They employed a computational domain of 6 cm width and measured a
detonation cell height λ of approximately 3 cm.

After our good experience with quasi-stationary detonations in Sec. 6.1, we do
not simulate the example from [138] with zero inflow velocity like it is usually done
[138, 78, 59], but shift all velocities in the x1-direction by −d

CJ
. This allows us

to use a channel of only 10 cm length. Analogously to Sec. 6.2.1 we use a larger
auxiliary grid to record the maximum of |ω| for the visualization the triple point
tracks. Furthermore, we exploit the symmetry of the problem and simulate only
the upper half of the physical domain. The computational setup with boundary
conditions is shown in Fig. 7.2.

Like in the preceding chapter we use the operator splitting approach to treat
the chemical kinetics and the homogeneous fluid dynamic equations separately.
Based on the results of the preceding chapter we apply the splitting method Ql+1 =
S(∆t)X (∆t)

2 X (∆t)
1 (Ql) and utilize the Roe-HLL EF 3?-H scheme for the fluid dynamic

integration. Like in all simulations with detailed chemistry the rate equations are
integrated with the GRK4A method.

We utilize the three different adaptive setups of Tab. 7.2 with the resolutions
of 11.2, 22.4 and 44.8 Pts/lig on the finest level to study the convergence of the
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Figure 7.3: Triple point tracks for the time interval [0µs, 400µs] with temporal
development of the detonation velocity at x2 = 0.0 cm. Top: Setup 1, middle: Setup
3, bottom: Setup 2. After ≈ 200µs the detonation velocity d oscillates regularly.

solution and to obtain highly resolved reference results.1 All computation end at
tend = 800µs, where automatic time step adjustment based on CRoe

CFL ≈ 0.95 (see
Eq. (4.84)) was applied.

A physically motivated combination of scaled gradients and heuristically esti-
mated relative errors is used as adaptation criteria (compare Sec. 5.4). The scaled
gradients of total density ρ, total hydrodynamic pressure p and temperature T are
used to achieve a reasonable adaptation to the most relevant discontinuous flow
phenomena, which are the shock front of the detonation, the transverse waves and
the slip lines (see Fig. 3.6). An appropriate adaptation to the chemical reaction
region (see Fig. 3.6) is realized by applying the relative error criteria (5.26) to the
mass fractions Yi of the most relevant chemical species. For all six species tabulated
in Tab. 7.3 the scaling limit SYi

is chosen to be 1% of the maximal value of Yi for
the undisturbed CJ detonation.

7.2.2 Comparison of the Computational Results

The adaptive setups 1 to 3 lead to basically similar numerical results. All compu-
tations reproduce the basic flow pattern discussed in Sec. 3.3 clearly and after an
initial period, regular detonation cells with λ = 3 cm show up. Triple point tracks
of the initial phase with the generation of a new triple point are shown in Fig. 7.3.
Further on, Fig. 7.3 displays the detonation velocity d along the line of symme-
try x2 = 0.0 cm for Setup 2. After ≈ 200µs the oscillation becomes regular. The

1In a resolution study in [138] Oran et al showed that a minimal resolution of about 6Pts/lig is
necessary to allow the correct approximation of the macroscopic parameter λ and the convergence
of the numerical solution on the three setups can therefore be expected.
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Setup 1: 11.2 Pts/lig Setup 2: 22.4 Pts/lig Setup 3: 44.8 Pts/lig

Figure 7.4: Schlieren plots of T for the three computational setups.

oscillation period tp ranges from ≈ 31.3µs for Setup 1 to ≈ 32.5µs for Setup 3,
which corresponds to an increase of the cell length L from ≈ 5.1 cm to ≈ 5.3 cm
as the grid is refined. A direct comparison of the triple point tracks uncovers that
the generation of the second triple point after the initial disturbance is delayed by
one detonation cell in the coarsest computation. Further on, the triple point tracks
appear to be more curved with increasing resolution.

A comparison of typical schlieren plots of relevant flow quantities for all three
setups is presented in Fig. 7.4. While the results of the coarsest computation
only allow the distinction of the discontinuities of the basic triple point structure
visualized in Fig. 3.6, the results of Setup 2 and especially of Setup 3 show important
sub-structures. In particular, a secondary triple point can clearly be distinguished
along the transverse wave. The detailed flow pattern along a single transverse wave
will be analyzed in Sec. 7.2.3.

The dynamic adaptation is qualitatively similar in all computations. Two typical
situations in the first and the second half of a detonation cell are displayed in Fig.
A.12. In case of Setup 1 the adaptive computation uses about 36.000 cells instead of
128.000 cells (uniform refinement).2 A breakdown of the computational time spent
in the computationally most expensive parts of the code analogously to the analyzes
in Chap. 5 is given in Tab. 7.4. The numerical integration is split into the two main
steps of the fractional step method: the homogeneous fluid dynamic update and the
integration of the reactive source term. The ratio of the times for advancing the
chemistry and the hydrodynamic transport is about 1.1 in all computations. This
corresponds well to a ratio of about 0.8 in [138], where the usually faster ODE solver

2The threshold values for the scaled gradients in Tab. 7.3 have been adjusted to achieve also
an adaptation to the downstream slip lines that have been torn off the detonation front in the
reinitiation of previous detonation cells (compare Sec. 3.2). As the downstream slip lines do not
influence the flow at the detonation front their adaptation can be omitted by increasing ερ, εp

without changing the cellular structure. For ερ = 0.03 kg m−3, εp = 40 kPa Setup 1 uses only
about 13.000 cells. The computational time for Setup 1 than reduces to 3.4 h.
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Task Setup 1 Setup 2 Setup 3
s % s % s %

Fluid dynamics 10049 31.5 72216 31.0 366496 33.5
Chemical kinetics 11347 35.5 77435 33.2 403006 36.8
Boundary setting 9776 30.6 78922 33.9 293798 26.8
Recomposition 595 1.9 3685 1.6 26392 2.4
Misc. 158 0.5 719 0.3 5558 0.5
Total 31925 8.9 h 232977 2.7 d 1095250 12.8 d

Table 7.4: Breakdown of total computational times for the three different setups on
a PC-Cluster of 7 Pentium III-850MHz-PCs connected with 1 Gb Myrinet.

SIAM was employed (compare Sec. 4.10.1). On the other hand, the good ratio of
1.1 proves that the distribution strategy presented in Sec. 5.3 achieves a reasonable
load-balancing for this current problem without considering the number of expected
local time steps for the source integration in the workload estimation as it has been
done in [138]. The third important portion in Tab. 7.4 is the time for setting
the ghost cell values, which is dominated (≈ 90 %) by the parallel synchronization
overhead.

7.2.3 Flow Features of the Reference Solution

The comparisons in the previous section enlightened that the highest resolved simu-
lation allows the deepest insight into the detailed sub-structures of the flow. Hence,
the following discussion is based on the results of Setup 3, which can be regarded
as a new reference for the problem in [138] with an increase of spatial resolution
compared to all published results [138, 78, 59] by a factor > 4.5 in both space
dimensions.

The highly resolved results of Setup 3 uncover a flow structure in the vicinity
of a triple point that is remarkably more complex than the basic flow field shown
in Fig. 3.6. The first refinement of the basic flow interpretation for low-pressure
H2 : O2 CJ detonations was given by Lefebvre and Oran in [113] utilizing a two-
step reaction model and extended (at least partially) to detailed chemistry in [138].
The results of Setup 3 allow a significant improvement of these previously published
results [113, 138]. In particular, the formation of an unreacted region during the
reinitiation process at the end of a regular detonation cell and the interaction of
pressure waves emanating from the burning of this region with the reinitiated triple
points will be described in detail.

Initialization of the Periodic Oscillation

The situation at the beginning of the simulation is visualized in Fig. A.14, where
schlieren plots of the density for the region [6 cm, 9 cm]× [0 cm, 3 cm] are displayed.
The burning of the unreacted region downstream of the detonation initiates shock
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t = 100µs t = 120µs t = 180µs

Figure 7.5: Stream lines (black) on schlieren plots of T (gray) show the generation
of the new triple point.

waves that form a triple point at the detonation front quickly (see t = 20µs). This
triple point propagates through the channel with the flow pattern shown in Fig.
3.6 (see t = 80µs). Approximately at t = 90µs the triple point is reflected at the
lower boundary, which corresponds exactly to the reinitiation phase between the
two artificially generated triple points of a double-sized computation. No incident
shock wave exists at the point of reflection and the old slip line is torn off (compare
Sec. 3.2). When the triple point is reinitiated, a new slip line is established at the
detonation front and the old one remains behind (see t = 100µs).

At t = 100µs the generation of a new triple point near the upper boundary can
be observed. The long induction length between the beginning of the combustion
zone and the incident shock decreases continuously around an inflection point at
x2 ≈ 2.3 cm. No discontinuous transverse pressure wave is present yet, but the
beginning formation of the new triple point can be seen very well by observing the
stream lines at t = 100µs in Fig. 7.5 that already point downward around the
inflection. The new triple point and its discontinuous transverse wave come into
existence at t ≈ 110µs, directly after the collision of the inflection region with the
old triple point. The newly created transverse wave spreads out downstream with
ù1 − c. A very rough estimate for this velocity is −500 m/s and the new pressure
wave consequently has a length of about 1.5 cm at t = 140µs. At t = 180µs the flow
patterns around both triple points show only differences in the minor sub-structures.
A few detonation cells later a perfectly symmetric flow is established.

Regularity of the Cell Structure

The two transverse waves form a perfectly regular hydrodynamic flow that is repro-
duced almost identically after tp ≈ 32.5µs. The flow during a regular detonation
cell is presented in the Figs. A.15 and A.16. The symmetry line at x2 = 1.5 cm is
apparent. This perfect regularity allows us to reduce the following detailed hydrody-
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Figure 7.6: Consecutive schlieren plots (black) of the density plotted on triple point
tracks (gray) display the temporal development of the triple point structure. Top:
regular detonation cell, bottom: enlargement of a single triple point between two
triple point collisions, 44.8 Pts/lig.

namic analysis to a single triple point between two triple point collisions. The upper
graphic of Fig. 7.6 illustrates the flow symmetry after 1

2
tp ≈ 16.25µs. It displays

the strongest discontinuities and the combustion region between transverse wave
and slip line for t = 616, 624, 632, 640, 648µs. The lower picture shows in detail the
strongest phenomena around the lower triple point from t = 622µs to t = 634.8µs
where an output time step of 1.6µs was used. The first collision considered in the
lower picture of Fig. 7.6 occurs at t = 620.4µs, the second one, which ends our
description, takes place at t = 636.25µs.

Triple Point Structure Before a Collision

We start our presentation of the detailed triple point flow structure with the situ-
ation that is mostly preserved from t = 630µs until the collision at t = 636.25µs.
Schlieren plots allowing the separation of all flow phenomena discussed are shown
in Fig. 7.7. Fig. A.13 presents various color plots to read physical values in the
triple point region. The color graphics for the mass fractions additionally display
the main discontinuities in ρ, the other plots are supplemented with isolines of YOH
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Figure 7.7: Flow structure before the next collision t = 632µs. Large: isolines of
YOH (black) on schlieren plot of u2 (gray). Small: schlieren plot of p (top) and |ω|
(bottom).
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Figure 7.8: Flow structure around a single triple point before the next collision.
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to visualize the induction length. In particular, an enormous increase in hydrody-
namic pressure due to the transverse wave can be observed. The temperature in
the incident shock region along the transverse wave is nearly as high as behind the
Mach stem. Unreacted gas downstream of the incident shock passes through the
transverse wave and is heated further. The particle movement relative to the triple
point flow pattern can be seen in the color plot of the total velocity |u| where the
actual stream lines at t = 632µs relative to the primary triple point A have been
plotted.

Fig. 7.8 displays two minor triple points along the transverse wave behind the
primary triple point A. While the characteristic inflection at point B is clearly vis-
ible, the triple point C is very diffused and the inflection of the transverse wave is
extremely small. B is caused by the interaction of the strong shock wave BD with
the transverse wave. The slip line emanating from B to K is clearly present. C
seems to be caused by the reaction front (which can be interpreted as a diffused
contact discontinuity) and generates the very weak shock wave CI. Downstream of
BD a weaker shock wave EF shows up. It is refracted in the point F, when it hits
the slip line BK. From F to G this minor shock is parallel and close to the transverse
wave, which results in a higher pressure increase in the region FG than in the region
EF (see Fig. A.13). Unreacted gas crossing the transverse wave between B and C
therefore shows a shorter induction length than gas entering through AB (compare
color plot of T in Fig. A.13). The minor shock is refracted and weakened by the
reaction front at point G and forms the shock GH that is almost parallel to CI.

The downstream line of separation between particles which have passed through
incident or Mach Stem shock is the slip line AD. The movement of the triple point A
creates a shear flow along DEL between the reaction front behind the Mach stem and
the reaction zone downstream of BD. In the actual picture the contact discontinuity
LM seems to originate in this shear flow region, but in fact it is only a relict of the
reinitiation phase and propagates constantly downstream. It has been caused by the
interaction of a shock wave produced by the burning of an unreacted region during
the reinitiation phase with the Mach stem shock (see below).

Temporal Development of the Triple Point Structure

The flow pattern described in the previous subsection develops out of the reinitiation
after the triple point collision at t = 620.4µs in a time of about 10µs. This complex
flow process is shown in the schlieren plot of the Figs. A.17, A.18 and schematically
sketched in the graphics of the Figs. 7.9 and 7.10. Color plots of the reinitiation
phase are displayed in Fig. A.19. Analogously to Fig. A.13 isolines of YOH visualize
the induction zone.

When the two triple points A hit at t = 620.4µs in one single point, the stable
configurations around both triple points break down and the old slip lines are torn
off immediately (compare the steps t = 620.4µs and t = 620.8µs in Fig. A.17).
They start to propagate downstream and after the merging of both points D at
t ≈ 620.8µs they travel as one contact discontinuity. At the same time the new
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Figure 7.9: Collision of triple points and development of the double Mach structure.

Mach stem is initiated in a point-wise fashion. The temperature behind this new
Mach stem is drastically higher than the temperature behind the old Mach stem
before the collision. It increases rapidly from ≈ 2500 K at t = 619.6µs to more
than 3500 K at t = 621.6µs. The isolines of YOH in Fig. A.19 clearly represent
the extraordinarily small induction length behind the Mach stem directly after the
reinitiation.

The reinitiation separates the combustion zone behind the leading shock waves
from the reaction regions downstream of the transverse wave. An unreacted region
forms. It is bounded to the right by the old slip lines (see t = 621.2µs in Fig.
7.9). Its burning generates shock waves that hit the transverse waves in minor triple
points N and P. At t = 622.0µs two shocks emanating in the upstream direction are
visible. Further on, a thorough analysis of the time step t = 622.0µs uncovers that
the secondary triple point B and its shock wave BD are already present. This is very
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Figure 7.10: Development of the triple Mach structure out of the double Mach
structure before the next collision.

much earlier than it was found in [113]. It is therefore reasonable to assume that the
triple point B is inherently connected to the primary triple point A and that only
the limited resolution prevents its appearance in the simulation at an earlier stage.

At t = 624.4µs both shock waves spreading out from the unreacted region have
passed the old slip line and the first shock interacts with the new slip lines. It is
refracted slightly and very weak triple points R are formed on the new slip lines.
Further on, the minor shock emanating from E can be distinguished. Its refraction
on the slip line of B can not be observed yet, because the shock forms a weak triple
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Figure 7.11: Comparison of schlieren plots of T for a quasi-stationary (left) and a
fast propagating (right) detonation with 44.8 Pts/lig.

point Q with the shock wave PR. In the next time step also the stronger second
shock reaches the new slip lines and forms the triple point T. The triple points Q, R
and T are so weak that no corresponding slip lines can be observed at this resolution.
The upstream velocity of the stronger shock NT is higher than that of PR and at
t = 626.0µs NT has caught up with PR and strengthens it (compare t = 626.0µs
of Fig. 7.10). The triple point R is overrun by T. At t = 626.8µs NT has merged
with BD and the shock wave EQ has vanished completely during the passage of
NT. The shock wave NT forms a triple point S where it hits the Mach stem. The
contact discontinuity emanating from S is clearly visible. In the following, the
shock NTS propagates even through the area ABDS and finally reaches the primary
triple point A at t = 628.4µs. At t = 628.4µs this shock has vanished completely
above the slip line AD, only below AD a minor pressure wave has been preserved.
Also the minor shock behind BD has reappeared at this time. From t = 629.2µs
on the double refraction of this minor shock at F and G can be clearly observed.
During the following time steps FG approaches the transverse wave and becomes
tangential. The diffusive triple point C is observed first at t = 630.0µs. It seems
to appear upstream of the reaction front at first, but merges with the beginning of
the combustion region subsequently. The contact discontinuity LM, which has been
created originally in the triple point S, propagates constantly downstream bounded
by the primary slip line.

7.2.4 Comparison with Other Numerical Results

All previously published two-dimensional simulations of the CJ detonation of Tab.
7.1 used computational setups with zero inflow velocity. As explained in Sec. 6.1.5
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the rapid propagation of a detonation wave through a fixed mesh introduces a dis-
cretization error especially at the detonation front that can mostly be avoided by
employing a quasi-stationary setup. Fig. 7.11 compares a typical triple point struc-
ture obtained in Setup 3 with the result of an analogous adaptive computation in a
long channel with zero inflow velocity [52]. Both simulations have the same maxi-
mal resolution of 44.8 Pts/lig in the x1-direction and require similar computational
times (because of the usage of dynamic mesh adaptation), but the quasi-stationary
computation is obviously sharper resolved.

In [138] Oran et al. presented results for a resolution of 9.4 Pts/lig in the x1-
direction. They applied the method of fractional steps with local sub-cycling (com-
pare Sec. 4.1.3). Their transport scheme was a recent version of the second-order
accurate Flux-Corrected Transport (FCT) algorithm of Boris and Book [31, 33, 32]
with fourth-order phase accuracy in space, which was extended by dimensional split-
ting to two space dimensions. With automatic time step adjustment based on an
intended Courant number CCFL ≈ 0.30 their results on uniform grids are slightly
better than our adaptive results and the approximation quality in [138] ranges be-
tween Setup 1 and Setup 2. The triple point tracks are clearly curved and secondary
triple points can be identified at least at the end of a detonation cell (compare Fig.
7.8).

Eckett [59] used the same computational setup as Oran et al., but employed the
sequentiel AMR algorithm of Sec. 5.2 and an ILDM reduced reaction mechanism to
minimize the computational costs. Instead of FCT he utilized the Roe scheme of Sec.
4.6.1 with entropy enforcement in combination with switching to HLL to prevent
the carbuncle phenomenon [150]. Probably a MUSCL reconstruction technique was
applied. Because of the smaller intended Courant number the results in [59] at
9.4 Pts/lig seem to be slightly better than our results in Setup 1. Like in Setup 1
secondary triple points are not sufficiently resolved.

Geßner [78] utilized an unstructured adaptation strategy (see Sec. 5.1.1) to
solve the example of [138]. He also used the method of fractional steps with local
sub-cycling, but applied the Van Leer FVS of Sec. 4.5.2 without higher-order re-
construction as transport scheme. His simulations are for a maximal resolution of
7.2 Pts/lig in the x1-direction and reproduce the macroscopic parameters λ and L
correctly, but the approximation quality is below the results of Setup 1.

7.3 Three-dimensional Cellular Structure

In this section we simulate the regular cellular structure of the CJ detonation of
Tab. 7.1 in a rectangular three-dimensional channel. The effective resolution of all
computations is 16.8 Pts/lig in the x1-direction. Although the dynamically adaptive
method validated with similar computations in Sec. 6.3 was utilized, each run
required about 3.3 d real time on 48 processors of the Helics cluster (compare page
167). To our best knowledge our results document the first successful attempt
to simulate the three-dimensional regular structure of a detonation with detailed
chemical reaction.
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Setup 4a:
20µs + 600µs

Setup 1:
600µs

Setup 4b:
20µs + 610µs

Setup 1:
610µs

Setup 4c:
20µs + 620µs

Setup 1:
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Figure 7.12: Two-dimensional initial conditions for Setup 4a to 4c and flow field
after 20µs simulation time, schlieren plots of ρ, 3 cm < x1 < 5 cm.

7.3.1 Computational Setups and Initialization

The computational setup is almost identical to ZND Test 6a to 6c, but unlike Sec.
6.3 we do not simulate just one quarter of a detonation cell, but one half. The
computational domain has the size [0 cm, 7 cm] × [0 cm, 1.5 cm] × [0 cm, 3 cm]. In
contrast to ZND Test 6a to 6c we use the regular oscillating solution of Setup
1 of Sec. 7.2 as initial condition and disturb the oscillation in the x2-direction
with an appropriate unreacted pocket in the orthogonal direction. We use the so-
lution of Setup 1 at the three time steps 600µs, 610µs and 620µs in the range
0 cm < x2 < 1.5 cm and extend it to three dimensions with u3 = 0 m/s. The dif-
ferent initial conditions are shown in the upper row of Fig. 7.12. They define the
computational Setups 4a to 4c. In all setups the regular structure is shifted equally
to the left, such that the nearly planar detonation front in Setup 4a is aligned to
x1 = 4.6 cm. In all configurations unreacted gas at 2086 K is placed in the region
[4.1 cm, 4.3 cm]× [0 cm, 3 cm]× [0 cm, 0.2 cm]. While the initial triple point line or-
thogonal to the x1-x2-plane continuous to propagate regularly, the burning of the
unreacted pocket initiates a triple point line perpendicular to the x1-x3-plane that
is clearly established after 20µs simulation time (see lower row of Fig. 7.12).
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Figure 7.13: Detonation structure plotted on refinement grids. Result of Setup 4c
at t = 660µs + 620µs, displayed: 4.5 cm < x1 < 7.0 cm.

Analogously to Sec. 7.2 the splitting method Ql+1 = S(∆t)X (∆t)
3 X (∆t)

2 X (∆t)
1 (Ql)

and the Roe-HLL EF 3?-H scheme are applied. As usual, the chemical rates are
integrated with GRK4A. Like in the two-dimensional case, all calculations end at
tend = 800µs and use automatic time step adjustment based upon CRoe

CFL ≈ 0.95. All
setups utilize a base grid of 140× 12× 24 cells and use two levels of refinement with
r1 = 2 and r2 = 3, which corresponds to a uniformly refined grid of 8.7 M cells.

We apply the adaptation criteria of Tab. 7.3, but set εp and ερ to the higher values
εp = 40 kPa and ερ = 0.03 kg m−3. Further on, all refinement flags are overall deleted
in the range 0 cm < x1 < 4 cm+v0t. Herein, v0 := 20 m/s is a constant velocity that
is used to extend the definitely unrefined region continuously to 0 cm < x1 < 5.6 cm
at tend. As the computational domain is chosen as small as possible, the flow values
have not completely reached the equilibrium state at the left boundary and a minor
propagation of the quasi-stationary detonation to the right occurs. The parameter
v0 is used to extend the region without refinement with respect to this motion. With
this trick the average refinement width is about 1 cm and the average total number
of cells is around 1.35 M. Fig. 7.13 clearly reflects the artificial removal of refinement
flags in the downstream region.

A uniform auxiliary grid of 2560 × 12 × 24 cells with the mesh widths of the
base grid is utilized to record the maximal magnitude of the vorticity as explained
in Sec. 6.3.1.

7.3.2 Flow Features of the Periodic Solution

After approximately 250µs simulation time a second triple point line orthogonal to
the x1-x3-plane has formed in all computational setups. In Setup 4a and Setup 4c
the triple point lines in x2 and x3-direction have equal strength after about 600µs,
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Figure 7.14: Triple point tracks of Setup 4a (upper two tracks) and 4c (lower
two tracks). Mirrored at x2 = 0 cm for visualization, the regions [0 cm, 64 cm] ×
[−1.5 cm, 1.5 cm]× [0 cm, 3 cm] and [64 cm, 128 cm]× [−1.5 cm, 1.5 cm]× [0 cm, 3 cm]
are shown.

but the particular configuration of Setup 4b does not admit a three-dimensional
mode of propagation and the initial triple point line propagating in the x2-direction
is suppressed by the regular oscillation in the x3-direction after about 400µs (not
shown). The triple point tracks of Setup 4a and Setup 4c seem to be different
at a first glance (compare Fig. 7.14), but a detailed analysis uncovers that both
calculations simulate the same periodic flow situation, similar, but not identical, to
the one studied in Sec. 6.3.

Periodicity of the Regular Structure

Like in Sec. 6.3 the typical triple point flow pattern known now in detail from Sec.
7.2.3 is preserved in three space dimensions. The similarity of the schlieren plots of
Fig. 7.16 along planes perpendicular to the detonation front with those of Sec. 7.2.3
is apparent. Fig. 7.16 displays the flow field in Setup 4a at 680µs and in Setup 4c at
660µs simulation time, and it is obvious that both computations display the same
periodic flow situation. Only the triple point lines propagating in the x3-direction
are periodically shifted by x3 = 1.5 cm. The triple point line moving in x2-direction
is at the same position and it is interesting to note, that the temporal delay of
20µs between the initial values is exactly preserved throughout both calculations.
Because of this reason we add the time value of the initial data to the simulation
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Figure 7.15: Top: regular triple point tracks of Setup 4a, middle: regular triple point
tracks of Setup 4c. Bottom: Bisecting the middle vorticity record at x3 = 1.5 cm
and mirroring it at x3 = 0 cm gives triple point tracks that are de facto identical to
upper ones.

time in the following description. The equivalence of both computations can also
be seen, if the maximal vorticity record of one calculation is bisected at x3 = 1.5 cm
and mirrored at x3 = 0 cm. Beside the temporal shift of 20µs the result is de facto
identical to the vorticity record of the other computation. Fig. 7.15 displays the
mirroring for Setup 4c and the equivalence of the result with the vorticity record of
Setup 4a.

Unlike the example in Sec. 6.3 no phase shift between x2- and x3-direction
can be observed. Consequently, the Incident-Incident (II) and Mach stem-Mach
stem (MM) regions (compare page 170) are always quadratic. The periodic triple
line configuration shown in Fig. 7.16 at t = 660µs + 620µs ≡ 680µs + 600µs is
visualized in Fig. 7.17. The gray square corresponds to the sector visible in Setup
4a at t = 680µs + 600µs, the black dotted square displays the sector in Setup 4c
at t = 660µs + 620µs. Further on, the middle row of Fig. 7.16 presents roll-ups of
the cube marked in the three-dimensional graphics. They display schlieren plots of
ρ and p. The lower graphic of Fig. 7.16 visualizes the location and orientation of
these roll-ups with respect to the 3D graphic of Setup 4a. As the triple point lines
in both transverse directions are exactly in phase, two orthogonal sides of the cube
are almost perfectly symmetric, respectively. Therefore, a visualization of a single
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Figure 7.16: The schlieren plots of Setup 4a at t = 680µs + 600µs and Setup 4c at
t = 660µs + 620µs display the same periodic situation. Mirrored at x2 = 0 cm for
visualization, 5.0 cm < x1 < 7.0 cm. Top: 3D graphics show ρ, middle: 2D roll-ups
of ρ (left) and p (right), bottom: location and orientation of the 2D roll-ups in both
setups.
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Figure 7.17: Schematic front view of the periodic triple point line structure at
t = 1280µs. Gray square: Setup 4a at t = 680µs + 600µs. Black dotted square:
Setup 4c at t = 660µs + 620µs. Compare 3D graphics of Fig. 7.16.

side from each of these pairs is sufficient to analyze the entire periodic flow field.
This is done in the upper of Fig. A.20, where only color graphics of the sections 2
and 3 are displayed.

Although Setup 4a and 4c start from very different initial conditions, they both
develop the same three-dimensional mode of propagation with a perfect symmetry
between x2- and x3-direction. This mode is extremely regular and, compared to the
overdriven detonation with simplified chemistry in Sec. 6.3, extraordinarily stable.
While the vorticity record in Fig. 6.17 uncovers a continuous weakening of the three-
dimensional oscillations toward the end of the simulation, no decrease in vorticity
production is visible in Fig. 7.14. In all our computations only this particular
three-dimensional mode or a purely two-dimensional mode with triple point lines
just in x2- or x3-direction did occur. The three-dimensional mode of propagation,
called “rectangular-mode-in-phase”, has recently also been found in experiments
with hydrogen-oxygen CJ detonations [86].

Temporal Development of the Triple Point Line Structure

Analogously to Sec. 7.2.2 we monitor the temporal development of the detonation
velocity along specially selected lines perpendicular to the x2-x3-plane. These lines
are displayed in topview in the left part of Fig. 7.17. Fig. 7.15 also displays some
exemplary sideviews.
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Figure 7.18: Point-wise reinitiation along L1 (left) and L1’ (right). The time
between both flow situations is exactly a half oscillation period.

The reinitiation of rectangular detonation cells only occurs along the lines L1
and L1’. At the beginning of a new detonation cell stands a point-wise reinitiation,
when the four triple point lines bounding an II-square merge exactly in a single
point. Because of the regularity of the oscillation these points lie all along lines L1
and L1’. The time between the reinitiation on all lines L1 and along all lines L1’ is
exactly a half oscillation period (compare Fig. 7.18). After the reinitiation the four
triple point lines are diverging and the former II-sector has become an MM-square.

A line-wise reinitiation occurs when the converging two triple point lines of an
MI-rectangle merge in a single line. Beside L1 and L1’ a merging of triple point
lines in both transverse directions occurs only along the lines L2 and L2’. The
lines L2 and L2’ pass through the center of the MI-rectangles. The time between
the intersection of two triple point lines on L2 or L2’ is a half oscillation period
(compare Fig. 7.18).

Fig. 7.19 displays the temporal development of the detonation velocity relative
to d

CJ
along the lines L1 and L2 in Setup 4a (see also Figs. 7.15, 7.17 and the

2D sketch in Fig. 7.16) and both functions show the proposed periodicity. The
time period between two cell reinitiations along L1 is ≈ 31.7µs. This estimate
is in good agreement with our two-dimensional measurements in Sec. 7.2.2 and
corresponds exactly to the oscillation time that can be expected for our numerical
method for 16.8 Pts/lig. The result clearly underlines that the basic two-dimensional
instability is exactly preserved in three dimensions, although its manifestation in
the hydrodynamic flow field is different. In particular, a direct comparison of the
graphs in the two- and three-dimensional case in Fig. 7.20 (compare also Fig. 7.3)
uncovers that the three-dimensional detonation is significantly higher overdriven in
the reinitiation points of the detonation cells than in the two-dimensional case. On
the other hand, the line-wise reinitiation along L2 or L2’ involves a considerably less
overdriven detonation. It is interesting to note, that the minimal overdrive factor
throughout a detonation cell seems to be independent of the dimension.
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Figure 7.19: Temporal development of the detonation velocity along the lines L1
and L2 in Setup 4a.

The development of the three-dimensional flow field in the one detonation cell
completely covered by Fig. 7.20 is displayed in the Figs. A.21 and A.22. While the
graphics of the left column display schlieren plots of ρ analogously to Fig. 7.16, the
right column shows schlieren plots of YOH overlaid by a transparent blue isosurface
of the density. The distance between this isosurface and the gray isosurface of YOH

behind it visualizes the induction distance lig in the three-dimensional case. The
Figs. A.23 and A.24 show two-dimensional roll-ups of ρ and YOH. Together with
the three-dimensional graphics in the Figs. A.21, A.22 these two-dimensional plots
allow the detailed analysis of the entire flow situation. As the periodic oscillation is
symmetric in both transverse directions, it suffices to display the four sides 1 to 4
during one half of a regular oscillation to visualize the flow over an entire detonation
cell. In particular, the sides 1 and 2 in the Figs. A.23, A.24 show already the flow
field along the sides 3 and 4 in the second half of the detonation cell, which is
therefore omitted.

The detonation cell is reinitiated on L1 at t ≈ 675µs + 600µs. Fig. A.21 shows
the first half of the detonation cell, when L1 is in the center of the MM-square.
The two-dimensional graphics clearly reflect the enormous decrease of the induction
length immediately after the reinitialization due to the high overdrive factor by the
merging of orthogonal triple point lines in the MM-region. The high overdrive factor
also changes the appearance of the transverse waves. This can be seen for instance
by observing the 2D graphics of Fig. 7.16 or Fig. A.21. Two parallel sides 1, 3 or
2, 4 always display perpendicular cuts through the same triple point line. While the
triple point line acts as a diverging boundary of an MM-square on the one side, it is
a converging boundary of an II-region on the other. The 2D graphic uncovers that
the transverse waves of the same triple point line form very different angles with
their corresponding incident shock region. While the angle between transverse wave
and plane II-shock is approximately 24o at t ≈ 680µs + 600µs, the angle between
transverse wave and MI-shock is only ≈ 10o. Nevertheless, the propagation velocity
of the triple point lines is equal everywhere. This observation is a strong indication
that the transverse waves are only the result of the triple point lines. The triple
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Figure 7.20: Temporal development of the detonation velocity along the lines L1
and L2 in Setup 4a compared to the result of a purely two-dimensional simulation.

point lines by themselves seem to be the fluid dynamical manifestation of a general
oscillation mechanism. Their actual geometry seems to be determined just by the
shape of the surrounding combustion chamber.

The development of the detonation front in the second half of a detonation cell
is shown in Fig. A.22. Especially the right 3D graphic for t = 704µs+600µs clearly
displays the formation of unreacted regions similar to the one analyzed in the two-
dimensional case. In three space dimensions a deep unreacted region is formed by
the four converging triple point lines of the II-square, shallower oblong unreacted
regions are developed through the merging of two triple point lines in the MI-regions.
The formation of unreacted regions at the boundary of the computational domain
can be seen on the sides 1 and 2 of Fig. A.24. The schlieren plot of YOH at
t = 690.4µs + 600µs displays the formation of the deep unreacted region along L1’
and the simultaneous closing of the oblong unreacted regions. The three-dimensional
shape of these regions is visualized in the lower graphics of Fig. A.20. The sequence
in Fig. A.20 displays the rapid burning of these regions leading to extraordinary high
local values of YOH especially behind the new MM-squares (the uncolored regions
in the graphics for t = 691.2µs + 600µs and t = 692.0µs + 600µs are above the
previous maximum).

Analogously to the two-dimensional case, the merging of two triple point lines in a
single line causes a temporary breakdown of the stable triple point configuration. In
particular, the old slip lines are torn off from the detonation front and remain behind.
These slip lines have the usual shape along planes perpendicular to a particular triple
point line, but they appear as almost straight lines on planes orthogonal to the triple
point lines’ vector of motion. The time steps t ≥ 696µs+600µs of Fig. A.22 display
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Figure 7.21: Results of Setup 4a. Top: Triple point tracks along diagonal cut,
mirrored at x2 = 0 cm. Bottom, left: cutting planes shown on front view of triple
point line structure at t = 680µs+600µs. Bottom, middle and right: schlieren plots
of ρ for one half of 2nd and 3rd detonation front displayed on upper triple point
track.

the downstream propagation of slip lines that have been torn off from the detonation
front in the slapping of the triple point lines at the boundary at t ≈ 691µs+600µs.
The separation process along two such sides can be studied in detail in Fig. A.24
for t ≥ 691.2µs + 600µs for the sides 1, 2 and in Fig. A.24 for the sides 3, 4.

Finally, we note that regular two-dimensional detonation cells can also be found
along the two diagonal cuts going through the middle axis of the computational
domain. A diagonal cut through the maximal vorticity record and diagonal schlieren
plots of the density for Setup 4a are displayed in Fig. 7.21. The detonation cells
shown in Fig. 7.21 have the same length as for example in Fig. 7.15, but the height
is λ = 3

√
2 cm. The schlieren plots display the basic triple point pattern. It is

interesting to note, that the measurable angle between transverse wave and incident
shock in the four points, where II- and MM-region abut directly, is approximately
18o at t = 680µs+600µs and therefore between the two previously measured angles.
This indicates that the angle of the transverse waves to the detonation front depends
more on the absolute strength of the Mach stem than on the differences between
Mach stem and incident shock.

7.4 Cellular Structure Under Transient Conditions

In this last section of Chap. 7 we study the behavior of the previously presented
regular cellular detonation structure under transient conditions. We consider two
different problems in two space dimensions: the reflection of a detonation wave un-
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Figure 7.22: Schlieren photographs of detonation waves under transient conditions.
Top: reflection, left: Θ = 15o, middle: Θ = 30o, right: Θ = 45o [7]. Bottom:
diffraction, left: super-critical, successful transmission, middle: critical, right: sub-
critical, detonation failure [163].

der different angles, in particular in the case of Mach reflection (compare Sec. 5.6.1),
and the detonation failure due to diffraction when a detonation wave propagates out
of a duct into an unconfined region. Both studies have fundamental character and
provide basic insight into the process of detonation propagation in complex geome-
tries as they typically appear for instance in propulsion systems or in safety and
hazard analysis. Hence, both cases have been investigated in numerous experiments
for a large number of combustible mixtures [7, 163, 112, 61, 189].

The following subsections are intended to demonstrate the efficiency of the AMR
algorithm for detonation simulation and the solution quality that can be obtained
on recent parallel computers of moderate size. The physical interpretation of the
combustion phenomena will be much shorter than in the preceding two sections.
Detailed discussions of the computations in the subsections 7.4.1 and 7.4.2 will be
presented elsewhere. All simulations utilized the same numerical methods as the
calculations in Sec. 7.2.

Recently, Ohyagi et al. [135] carried out a numerical study for a two-step reac-
tion model that investigated the devolopment of the cellular structure under Mach



7.4. CELLULAR STRUCTURE UNDER TRANSIENT CONDITIONS 197

d
CJ

[m/s] 1638.5
p

vN
[kPa] 269.5

ù
vN

[m/s] 397.3
T

vN
[K] 1944.6

tig[µs] 2.21
lig[mm] 0.878

Table 7.5: Values of the
H2 : O2 : Ar/2 : 1 : 7 CJ
detonation at T0 = 298 K
and p0 = 10.0 kPa.

Yi SYi
· 10−4 ηr

Yi
· 10−4

O2 10.0 4.0
H2O 8.5 2.0
H 0.2 10.0
O 1.0 10.0

OH 1.3 10.0
H2 1.2 4.0
εT = 500 K, εp = 40 kPa,

ερ = 0.05 kg m−3

Table 7.6: Refinement criteria for the
computations in Sec. 7.4

reflection. They utilized the method of fractional steps in combination with the
FCT scheme [31, 33, 32], but simplified the simulation by updating just cells in the
vicinity of the shock at the head of the detonation. Therefore, their calculations do
not provide insight into the change of the characteristic triple point pattern down-
stream of the leading shock front. In a different recent study Arienti and Shepherd
[8] simulated the detonation diffraction process for a one-step reaction model with
a parallel version of Eckett’s code (compare Sec. 7.2.4).

To our best knowledge, our calculations document the first successful attempts
with detailed chemical reaction in both problem classes that are suffiently resolved
to study the instationary triple point structures at the detonation front in detail.

Initialization

Analogously to Sec. 7.2 we utilize a CJ detonation of a H2 : O2 : Ar mixture with
molar ratios 2 : 1 : 7 at T0 = 298 K in all simulations. Unlike to the previous
calculations the pressure in the unreacted mixture is p0 = 10.0 kPa. Although
the higher initial pressure leads to smaller detonation cells with λ ≈ 1.6 cm and
L ≈ 2.75 cm, the triple point pattern is similar. Characteristic flow quantities of the
undisturbed CJ detonation are tabulated in Tab. 7.5.

In the following subsections we use a regular oscillating detonation propagating
with velocity d

CJ
into unreacted gas at rest as initial condition. This is a reasonable

idealization for the flow situation in typical detonation tubes with rectangular cross-
section directly before the experimental setup. This initial condition is effectively
derived by calculating a regular oscillating solution with a width of one detona-
tion cell in advance and by reproducing the flow field of an appropriate snapshot
periodically.

7.4.1 Mach Reflection of a Detonation Wave

We simulate the reflection of a detonation wave at three different wedges (Θ =
15o, 30o, 45o) with the technique of Sec. 5.6.1 and rotate the surface of the wedge
and the incident detonation by an angle of −Θ. In particular, this transformation re-
quires a point-wise rotation of the initial velocity vector u = (u1, u2)

T by −Θ. Note,
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Figure 7.23: Record of triple point tracks for the entire computational domain at
tend = 100µs for Setup 5b with Θ = 30o.

that the instationary flow field calculated from these initial values it only correct
below the initially highest triple point propagating downward. A strictly Cartesian
code does not allow the reflection of triple points perpendicular to the detonation
velocity vector. Hence, upward propagating triple points reach the uninitialized
region above the detonation front some time and the height of the regular detona-
tion structure above the lower boundary declines continuously. As we are interested
just in the change of the cellular structure for a relatively small simulation time
(tend = 100µs), we ensure the correctness of the flow near the lower boundary sim-
ply by taking a sufficiently large computational domain of 40 cm× 25 cm. Fig. 7.23
illustrates the development of the triple point structure for an angle of Θ = 30o dur-
ing the simulation. The decline of the regularly oscillating region is clearly visible.

The domain is discretized with a base grid of 180 × 80 cells and five refine-
ment levels with r1,2,3,4 = 2 and r5 = 4 are applied (uniform refinement: ≈ 59.0 M
cells). The effective resolution is around 20 Pts/lig. The adaptive criteria are given
in Tab. 7.6. In order to reduce the computational expense further, we allow an
adaptive mesh refinement only in the declining valid flow region. With this tech-
nique the number of cells decreases continuously from 0.9 M to 400 k for Θ = 15o

and from 1.35 M to 507 k for Θ = 45o. On 16 Pentium-III-850 MHz CPUs connected
with 1 GHz Myrinet the computing times range between 2.9 d (Θ = 15o) and 4.2 d
(Θ = 45o), where around 50 % of the computational time are spent in the numerical
solution routines.

Fig. 7.24 displays schlieren plots for all three different angles at t = 48µs. All
flow fields are in perfect qualitative agreement with the snapshots in the upper row
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Figure 7.24: Schlieren plot of the density at t = 48µs for Setup 5a to 5c. Top, left:
Θ = 15o, top, right: Θ = 30o, middle: Θ = 45o, bottom: schlieren plot of density
on refinement levels.
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Figure 7.25: Simulated triple point tracks of Setup 5a with Θ = 15o (left) and
Setup 5b with Θ = 30o (right).

of Fig. 7.22. The upper row of Fig. 7.22 displays schlieren photographs taken in
experiments with a combustible mixture that exhibits detonation cells of similar
size [7]. While the angle Θ = 15o (Setup 5a) allows a regular reflection, the angles
Θ = 30o (Setup 5b) and Θ = 45o (Setup 5c) cause a Mach reflection with the
characteristic triple point configuration introduced in Sec. 5.6.1.3 In the Mach stem
region the detonation becomes remarkably higher overdriven than under regular
reflection. While for Θ = 15o the pressure increase due to reflection is moderate,
the pressure at the detonation front under Mach reflection is almost doubled for
Θ = 30o (compare Fig. A.26). A regular reflection results in a minor decrease of the
detonation cell size (see left triple point record of Fig. 7.25), but the high overdrive
of a Mach reflection suppresses the instationary triple points at the detonation front
quickly (see right picture of Fig. 7.25).

The height of the Mach stem in a Mach reflection is reciprocal to Θ. The Mach
stem for Θ = 45o is so small that the slip line originating in the triple point of the
Mach reflection is reflected by itself directly behind the Mach stem. The reflection at
the lower boundary generates unstable vortices that remain behind as the detonation
wave proceeds (compare left upper picture of Fig. 7.22 and lower picture of Fig.
7.24).

7.4.2 Diffraction of a Detonation Wave

Experiments have shown that the behavior of planar CJ detonations propagating
out of tubes into unconfinement is determined mainly by the width of the tube. For
square tubes the critial tube width has been found to be of the order of 10 times
the cell height, i.e. 10λ [112]. For widths significantly below 10λ the process of
shock wave diffraction introduced in Sec. 5.6.2 causes a pressure decrease at the
head of the detonation wave below the limit of detonability across the entire tube
width. Hydrodynamic shock and reaction front decouple and the detonation decays
to a shock-induced flame (see lower right picture of Fig. 7.22). This observation

3Note, that the appearance of the Mach reflected shock can not be identical in the Figs. 7.24
and 7.22, because the hydrodynamic quantities in the unreacted mixtures are not equal.
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w Sw ηr
w · 10−3

ρ 0.006 kg m−3 5.0
p 3.0 kPa 5.0
T 30 K 5.0

Table 7.7: Additional refinement criteria for Setup 6a, 6b beside the criteria of Tab.
7.6.

is independent of a particular mixture. While the successful transmission of the
detonation is hardly disturbed for tubes widths � 10λ, considerable vortices are
created for widths of ≈ 10λ (see lower middle picture of Fig. 7.22). The disturbances
are caused by a backward-facing re-ignition wave that reinitiates the detonation in
the partially decoupled region.

We are interested in the decoupling of shock and reaction and also in the re-
ignition phenomenon. Therefore, we simulate the diffraction of the H2 : O2 : Ar
detonation for two different tube widths. The first tube has the half width rw =
5λ = 8.0 cm (Setup 6a), the second one has rw = 4λ = 5.6 cm (Setup 6b). Like
in Sec. 5.6.2 we exploit the symmetry of the problem and simulate just one half
of the tube, which laps ≈ 17.2 cm into the domain. The computational domain
has the extensions 56 cm × 32 cm and is discretized with base grids of 508 × 288
(Setup 6a) and 508× 290 (Setup 6b) cells. We assume a wall thickness of the tube
of two base grid cells. The adaptive calculation uses four levels of refinement with
r1,2,3 = 2, r4 = 4 and utilizes the refinement criteria of Tab. 7.7 in addition to those
of Tab. 7.3 in order to achieve an almost complete adaptation to the diffracted
shock. The calculations correspond to a uniform computation with ≈ 150 M cells
and have an effective resolution of 25.5 Pts/lig in the x1-direction (with respect to the
initial detonation). The initial detonation is placed into the tube at x1 = 16.0 cm.
The simulations are stopped at tend = 240µs, when the flow situations of interest
are clearly established. Each run required ≈ 4 d on 48 CPUs of the Helics cluster
(compare page 167).

The enormous efficiency of the refinement is visualized in Fig. A.25. At tend

Setup 6a uses ≈ 3.0 M cells on all levels, where ≈ 2.4 M cells are inside one of the
2479 grids of the highest level (with clustering efficiency 0.8). Fig. A.27 displays the
complex distribution of Setup 6a generated by a generalization of Hilbert’s space-
filling curve (compare Sec. 5.3.4) at tend to the 48 CPUs.

Fig. 7.26 shows a comparison of the flow fields in both setups after 160µs, 200µs
and 240µs simulation time. After 160µs the separation of shock and reaction front
is clearly visible below the outlet. The shock strength increases continously from
left to right and directly downstream of the tube shock and reaction are almost
coupled in both calculations. But at t = 200µs the extinction of the detonation in
Setup 6b and the re-ignition wave in Setup 6a is already clearly developed. Color
plots of both simulations at tend = 240µs are given in the Figs. A.28, A.29. Further
on, these figures show a record of the triple point tracks. The appearance of triple
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t = 160µs t = 200µs t = 240µs

Figure 7.26: Schlieren plot of density for Setup 6a with rw = 5λ (upper row) and
Setup 6b with rw = 4λ (lower column).

points is a characteristic indicator for the preservation of a detonation throughout
the diffraction. While the typical triple point pattern with transverse wave and slip
line is visible multiple times in Fig. A.28, it has vanished almost completely in Fig.
A.29. It is intersting to note, that the re-ignition wave in Setup 6a by itself is a
detonation. The triple point track of Fig. A.28 uncovers that it has developed out
of the transverse wave of an initial triple point.



Chapter 8

Conclusions and Outlook

In this thesis an efficient solution strategy for the numerical simulation of detona-
tion waves with detailed chemical reaction has been described. All temporal and
spatial scales relevant for the complex process of detonation propagation were suc-
cessfully resolved. The achieved resolutions are significantly finer than in previous
publications [138, 59, 78] and provide new insight into the formation and propa-
gation of transient detonation structures. For the first time, the three-dimensional
cellular structure of a detonation with detailed hydrogen-oxygen chemistry has been
simulated successfully.

A time-operator splitting technique [96, 175] was applied to decouple hydrody-
namic transport and chemical kinetics. It allows the separate numerical integration
of the homogeneous Euler equations with fast time-explicit finite volume methods
and uses an time-implicit discretization only for the stiff reaction terms. As the inte-
gration of the reaction terms is only a cell-wise operation, the mixed explicit-implicit
approach avoids the expensive solution of a globally coupled system of nonlinear al-
gebraic equations.

High-resolution shock capturing schemes were employed to reduce the number
of FV cells to the minimum. In particular, a hybrid Roe-solver-based scheme has
been constructed. It allows the reliable simulation of detonation waves in all space
dimensions and avoids several significant problems of the unmodified Roe method
[84]. Different test configurations showed that this hybrid Roe-type method is supe-
rior for detonation simulation to the Flux-Vector Splittings of Steger-Warming- and
Van Leer-type [169, 127, 109, 84] and to the Harten-Lax-Van Leer scheme [91, 62].

The key to the high efficiency of the presented simulations is the blockstructured
adaptive mesh refinement algorithm of Berger and Collela [21]. This algorithm is
tailored especially for time-explicit FV methods and uses a hierarchy of spatially
refined subgrids that are integrated recursively with reduced time steps. The AMR
algorithm provides the required resolution dynamically and avoids inefficient uniform
meshes. A suitable parallelization strategy for this algorithm for distributed memory
machines has been developed. It is based upon a domain decomposition approach
that partitions the entire hierarchy. It was implemented with modern object-oriented
techniques in our code AMROC [53], which was the basis for the presented large-

203
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scale computations. These simulations demonstrate that our approach allows the
accurate simulation of detonation structures in realistic two-dimensional setups on
parallel machines of moderate size. In three space dimensions basic studies are
currently possible.

Outlook on Possible Future Work

The work presented in this thesis allows several reasonable extensions. The sim-
ulation of detonation waves in realistic combustion chambers necessitates a gen-
eralization of the proposed FV methods to non-Cartesian meshes. As the Euler
equations satisfy the rotational invariance property (2.12), all FV schemes devel-
oped throughout this thesis can be employed directly for the flux approximation in
locally rotated coordinates. Two mesh generation techniques are compatible with
the blockstructured AMR algorithm: logically rectangular boundary-fitted meshes
(cf. [94]) or Cartesian meshes with embedded geometries (see [24]). The classical
boundary-fitted approach necessarily requires a separate mesh generating tool, but
has the advantage that extremely small cells can be avoided. The Cartesian tech-
nique constructs irregular cells along complex boundaries on-the-fly, but can suffer
significantly from the time step restriction due to the CFL condition, because almost
arbitrary small cut-cells can occur. Several ideas have been proposed to circumvent
the CFL condition for the cut-cells [25, 147, 149, 75], but up to now none of these
techniques has been proven to be second-order accurate along the boundary [24].

The boundary-fitted blockstructured AMR technique is followed by the AMR++
classes of the Overture package [36] that are still under development and are not
available for public use; the cut-cell approach of Pember et al. [147] is included
in Berkeley-Lab-AMR [153]. Both variants are compatible with the object-oriented
AMR design explained in Sec. 5.5.2. The boundary-fitted technique requires the
incorporation of the geometry information almost in every object in Fig. 5.13, but
the basic design and especially the parallelization strategy would remain unchanged.
The cut-cell method requires a separate module for the creation of the irregular cells
and needs an extended numerical method step(), but the AMR algorithm does
not have to be modified. An accurate parallel implementation would require an
appropriate generalization of the work load estimation formula (5.18).

A better approximation quality for fast propagating detonations will be achieved,
if the developed FV methods would be supplemented with a technique that improves
the capturing of the shock at the head of the detonation wave [35, 122, 70, 134].
Most interesting from the practical point of view are methods based upon the level-
set approach [132], because essentially an additional numerical scheme is required
to advance the level-set function.

For larger reaction systems, e.g. for hydrocarbon combustion, reduced reaction
mechanisms will have to be utilized [59, 128]. As the evaluation of the reaction
terms is just a cell-wise operation, the application of reduced mechanisms is straight-
forward within the proposed solution strategy.
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Appendix

A.1 Properties of the Jacobians

In this section useful mathematical properties of the Jacobians of the Euler equa-
tions for mixtures of thermally perfect gaseous species (see Sec. 2.3) are supplied.
The following derivation of the Jacobians and their properties is restricted to f1(q),
the flux function in the x1-direction of the three-dimensional case. The Jacobians
of f2(q) and f3(q) follow directly by interchanging the velocities u1, . . . , ud canoni-
cally and all results, which are derived for the Jacobian of f1(q), carry over to the
Jacobians of f2(q) and f3(q) immediately.

In order to compute A1(q) = ∂f1(q)/∂q the flux function f1(q) has to be ex-
pressed in terms of the conserved variables, i.e.

f1(q) = f1(ρ1, . . . , ρK , ρu1, ρu2, ρu3, ρE) = f1(ρ1, . . . , ρK ,m1,m2,m3, Ē)

=

(
ρ1
m1

ρ
, . . . , ρK

m1

ρ
,
m2

1

ρ
+ p,

m1m2

ρ
,
m1m3

ρ
,
m1

ρ
(Ē + p)

) (A.1)

Beside the evaluation of the partial derivatives of the hydrostatic pressure p in section
2.3.2 the derivation of the Jacobian is a straight-forward calculation. It reads

A1(q) =



u1(1− Y1) −u1Y1 . . . −u1Y1 Y1 0 0 0
−u1Y2 u1(1− Y2) . . . −u1Y2

...
. . .

...
...

...
...

...
−u1YK−1 . . . u1(1− YK−1) −u1YK−1

−u1YK . . . −u1YK u1(1− YK) YK 0 0 0
φ1 − u2

1 . . . φK − u2
1 (3− γ)u1 −γ̄u2 −γ̄u3 γ̄

−u1u2 . . . −u1u2 u2 u1 0 0
−u1u3 . . . −u1u3 u3 0 u1 0

u1(φ1 −H) . . . u1(φK −H) H − γ̄u2
1 −γ̄u1u2 −γ̄u1u3 γu1


(A.2)

where φi is defined in expression (2.60).
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Proposition 8 (Homogeneity Property). The flux function f1(q) defined in
Eq. (A.1) and their Jacobian matrices A1(q) satisfy the homogeneity property for
all admissible states of q.

f1(q) = A1(q)q .

Proof. A direct computation proves the proposition. During the calculation the
identity

K∑
i=1

Yi φi − γ̄u2 + γ̄E =
p

ρ
,

which is derived by setting Eq. (2.69) equal to Eq. (2.70), is applied to eliminate
sums of φi. �

Proposition 9 (Eigenvalues). For all admissible states q the eigenvalues of A1(q)
are u1 − c, u1 and u1 + c. The eigenvalue u1 occurs K + 2 times.

Proof. The proof of the proposition requires the evaluation of the characteristic
polynomial |A1(q)− λ I| for all admissible states. The calculation can be simplified
significantly, if column-wise algebraic manipulations are applied. After some simple
modifications we obtain

|A1(q)− λ I| =

1

λ− u1



u1 − λ 0 . . . 0 0 0 0 0
0
...

. . .
...

...
...

...
...

0
0 . . . 0 u1 − λ 0 0 0 0

φ1 − ξ . . . φK − ξ τ −γ̄u2 −γ̄u3 γ̄
0 . . . 0 u2 u1 − λ 0 0
0 . . . 0 u3 0 u1 − λ 0

u1(φ1 − γ̄u2
1) . . . u1(φK − γ̄u2

1) δ −γ̄u1u2 −γ̄u1u3 γu1 − λ


with

τ = (λ− u1) [(2− γ̄)u1 − λ] + u1(u1 − λ)− γ̄u2
1 +

K∑
i=1

Yiφi ,

δ = (λ− u1)
[
H − γ̄u2

1

]
− γ̄u3

1 + u1

K∑
i=1

Yiφi ,

ξ = (λ− u1)u1 + γ̄u2
1 .
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The eigenvalues are the roots of the characteristic polynomial, i.e.

|A1(q)− λ I| = (λ− u1)
K
([

(λ− u1)τ − γ̄(u2
2 + u2

3)
]
(γu1 − λ)−

γ̄
[
(λ− u1)δ − γ̄(u2

2 + u2
3)
])

= (λ− u1)
K+2

(
λ2 − 2λu1 + u2

1 − γ̄H −
K∑

i=1

Yiφi + γ̄u2

)
= 0.

(A.3)

After canceling the factor (λ − u1)
K+2 of the multiple eigenvalue u1 and applying

relation (2.69) for the frozen speed of sound the remaining term reads

λ2 − 2λu1 + u2
1 − c2 = 0 .

Its real roots λ1 = u1 − c and λK+4 = u1 + c are the two remaining eigenvalues. �

Proposition 10 (Complete set of eigenvectors). The Jacobian matrix A1(q)
has a complete set of eigenvectors, hence it is diagonalizable with R−1

1 (q)A1(q)R1(q) =
Λ1(q) for all admissible states q with Λ1(q) = diag(u1 − c, u1, . . . , u1, u1 + c).

Proof. Tedious but straight-forward linear algebra is necessary to derive three linear
independent sets of basic vectors that span up the three vector spaces defined by
(A1(q)− λI) r = 0 corresponding to λ = {u1− c, u1, u1 + c}. In the matrix of right
eigenvectors

R1(q) =



Y1 1 0 . . . 0 0 0 Y1

0
...

...
. . .

...
...

...
...

0
YK 0 . . . 0 1 0 0 YK

u1 − c u1 . . . u1 0 0 u1 + c
u2 u2 . . . u2 1 0 u2

u3 u3 . . . u3 0 1 u3

H − u1c u2 − φ1

γ̄
. . . u2 − φK

γ̄
u2 u3 H + u1c


(A.4)

the first and the last column are the vectors that span up the one-dimensional vector
spaces corresponding to u1−c and u1+c. The vectors of the columns 2 to K+3 span
up the K + 2-dimensional vector space for u1. R1(q) has full rank and is therefore
invertible for all admissible states.
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The inverse of R1(q) reads

R−1
1 (q) =

1

c2
·

φ1 + u1c

2
. . .

φK + u1c

2
− γ̄u1 + c

2
− γ̄

2
u2 − γ̄

2
u3

γ̄

2
c2 − Y1φ1 −Y1φ2 . . . −Y1φK Y1γ̄u1 Y1γ̄u2 Y1γ̄u3 −Y1γ̄

−Y2φ1 c2 − Y2φ2 . . . −Y2φK
...

. . .
...

...
...

...
...

−YK−1φ1 . . . c2 − YK−1φK−1 −YK−1φK

−YKφ1 . . . −YKφK−1 c2 − YKφK YK γ̄u1 YK γ̄u2 YK γ̄u3 −YK γ̄

−u2c
2 . . . −u2c

2 0 c2 0 0

−u3c
2 . . . −u3c

2 0 0 c2 0

φ1 − u1c

2
. . .

φK − u1c

2
− γ̄u1 − c

2
− γ̄

2
u2 − γ̄

2
u3

γ̄

2



.

A.2 Mixture Properties

In this section useful relations for thermally perfect multi-component gas-mixtures
are notated.

ρ =
K∑

i=1

ρi

K∑
i=1

Yi =
K∑

i=1

Xi = 1 Yi =
ρi

ρ
=
XiWi

W
Xi =

YiW

Wi

cv =
K∑

i=1

Yi cvi ei = h0
i +

∫ T

T0

cvi(s)ds cp =
K∑

i=1

Yi cpi hi = h0
i +

∫ T

T0

cpi(s)ds

e =
K∑

i=1

Yi ei h0 =
K∑

i=1

Yi h
0
i h =

K∑
i=1

Yi hi

E = e+
u2

2
H = h+

u2

2
ρh− ρe = p ρH − ρE = p

R = cp−cv =
R
W

=
K∑

i=1

YiRi Ri = cpi−cvi =
R
Wi

W =
K∑

i=1

XiWi =

(
K∑

i=1

Yi

Wi

)−1

γ =
cp
cv

=
cp

cp −R
γi =

cpi

cvi

γ − 1 =
R

cp −R
=

(
K∑

i=1

Xi

γi − 1

)−1

p = ρRT = ρ
R
W
T =

K∑
i=1

pi pi = ρiRi T = ρ Yi
R
Wi

T
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A.3 Units of Reactive Flow Quantities

The computations in Chap. 7 utilize the Chemkin-II-library [102]. All simulations
have been run in the unit system determined by Chemkin-II and have been converted
into SI-units only for visualization subsequently. The two following tabulars display
the conversion factors.

Symbol Definition Chemkin SI F†

ω̇i
Chemical production
rate of species i

mol cm−3 s−1 mol m−3 s−1 106

Af
j , A

r
j Pre-exponential factor

for Arrhenius law of re-
action j. Reaction j
has order ro.

s−1

(
cm3

mol

)ro−1

s−1

(
m3

mol

)ro−1 (10−6)ro−1

βf
j , βr

j Temperature depen-
dent exponent of
reaction j

- - -

Ef
j , Er

j Activation energy of re-
action j

cal mol−1 J mol−1 4.18392

kf
j , k

r
j Forward and backward

reaction rate of reac-
tion j

s−1

(
cm3 K
mol

)ro−1

s−1

(
m3 K
mol

)ro−1 (10−6)ro−1

νf
ji, ν

r
ji Stoichiometric coeffi-

cient of species i as
reactant and product
in reaction j

- - -

ς̇ Thermicity. See Eq.
(2.87).

m−2 s−1 m−2 s−1 10−4

ς̇i Thermicity coefficients.
See Eq. (2.88).

cm−2 m−2 10−4

R Gas constant∗=1.98723 cal mol−1 K−1 8.31441
J

mol K
4.18392

Subscripts

j Reaction j = 1, . . . , J

† Conversion factor from units used in Chemkin- into SI-units.
∗ used for activation energy within Chemkin.

1 J = 1 kg m2 s−2, 1 erg = 1 g cm2 s−2 = 10−7 J = 2.3901 · 10−8 cal
1 Pa = 1 Nm−2 = 1 kg m−1 s−2, 1 dyne = g cm s−2 = 10−5 kg m2 s−2

1 atm = 1.01325 · 105 Pa = 1.01325 · 106 dyne cm−2

Table A.1: Quantities for chemical reactions in the gas-phase and their units.
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Symbol Definition Chemkin SI F†

c Speed of sound for frozen mixture cm s−1 m s−1 10−2

cp, cpi

cv, cvi

Heat capacity at constant pres-
sure/volume of mixture and for
species i

erg g−1 K−1 J kg−1 K−1 10−4

Ci Specific concentration of species i mol cm−3 mol m−3 106

e, E Specific internal and total energy erg g−1 J kg−1 10−4

γ, γi Adiabatic coefficient of mixture
and for species i

- - -

h,H Specific internal and total en-
thalpy

erg g−1 J kg−1 10−4

hi Specific enthalpy of species i erg g−1 J kg−1 10−4

h0, h0
i Standard heat of formation of

mixture and for species i at a ref-
erence temperature T0

erg g−1 J kg−1 10−4

mn Momentum density mn = ρun g cm−2 s−1 kg m−2 s−1 101

p, pi Hydrostatic pressure of mixture
and partial pressure of species i

dyne cm−2 N m−2 10−1

R Gas constant = 8.31441 · 107 erg mol−1 K−1 J mol−1 K−1 10−7

R,Ri Specific gas constant of mixture
and for species i

erg g−1 K−1 J kg−1 K−1 10−4

ρ, ρi Density of mixture and partial
density of species i

g cm−3 kg m−3 103

s Specific entrophy erg K−1 J K−1 10−7

T Temperature K K -
un n-th component of fluid velocity

vector u
cm s−1 m s−1 10−2

W,Wi Molecular weight of mixture and
for species i

g mol−1 kg mol−1 10−3

Xi Mole fraction of species i - - -
Yi Mass fraction of species i - - -

Abbreviations Subscripts

u2 u2
1 + · · ·+ u2

d i Indiviual species i = 1, . . . , K
m2 m2

1 + · · ·+m2
d n Space direction n = 1, . . . , d

γ̄ γ − 1

Table A.2: Hydrodynamic flow quantities for gas-mixtures and their units.
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A.4 Reaction Mechanism

Aj

[cm,mol, s] βj

Ej

[cal mol−1]
1. H + O2 −→ O + OH 1.86× 1014 0.00 16790.
2. O + OH −→ H + O2 1.48× 1013 0.00 680.
3. H2 + O −→ H + OH 1.82× 1010 1.00 8900.
4. H + OH −→ H2 + O 8.32× 1009 1.00 6950.
5. H2O + O −→ OH + OH 3.39× 1013 0.00 18350.
6. OH + OH −→ H2O + O 3.16× 1012 0.00 1100.
7. H2O + H −→ H2 + OH 9.55× 1013 0.00 20300.
8. H2 + OH −→ H2O + H 2.19× 1013 0.00 5150.
9. H2O2 + OH −→ H2O + HO2 1.00× 1013 0.00 1800.

10. H2O + HO2 −→ H2O2 + OH 2.82× 1013 0.00 32790.
11. HO2 + O −→ OH + O2 5.01× 1013 0.00 1000.
12. OH + O2 −→ HO2 + O 6.46× 1013 0.00 56160.
13. HO2 + H −→ OH + OH 2.51× 1014 0.00 1900.
14. OH + OH −→ HO2 + H 1.20× 1013 0.00 40100.
15. HO2 + H −→ H2 + O2 2.51× 1013 0.00 700.
16. H2 + O2 −→ HO2 + H 5.50× 1013 0.00 57800.
17. HO2 + OH −→ H2O + O2 5.01× 1013 0.00 1000.
18. H2O + O2 −→ HO2 + OH 6.31× 1014 0.00 73860.
19. H2O2 + O2 −→ HO2 + HO2 3.98× 1013 0.00 42640.
20. HO2 + HO2 −→ H2O2 + O2 1.00× 1013 0.00 1000.
21. H2O2 + H −→ HO2 + H2 1.70× 1012 0.00 3750.
22. HO2 + H2 −→ H2O2 + H 7.24× 1011 0.00 18700.
23. H2O + M −→ H + OH + M 2.19× 1016 0.00 105000.
24. H + OH + M −→ H2O + M 1.41× 1023 −2.00 0.
25. H + O2 + M −→ HO2 + M 1.66× 1015 0.00 −1000.
26. HO2 + M −→ H + O2 + M 2.29× 1015 0.00 45900.
27. H2O2 + M −→ OH + OH + M 1.20× 1017 0.00 45500.
28. OH + OH + M −→ H2O2 + M 9.12× 1014 0.00 −5070.
29. O + H + M −→ OH + M 1.00× 1016 0.00 0.
30. OH + M −→ O + H + M 7.94× 1019 −1.00 103720.
31. O2 + M −→ O + O + M 5.13× 1015 0.00 115000.
32. O + O + M −→ O2 + M 4.68× 1015 −0.28 0.
33. H2 + M −→ H + H + M 2.19× 1014 0.00 96000.
34. H + H + M −→ H2 + M 3.02× 1015 0.00 0.

Third body efficiencies: f(O2) = 0.40, f(H2O) = 6.50

Table A.3: Mechanism 1. Hydrogen-oxygen mechanism extracted from the hydro-
carbon mechanism of Westbrook [202].
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A.5 Numerical Results

The last section of the appendix contains graphics of numerical simulations, espe-
cially from the Chaps. 6 and 7.
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Figure A.1: Front pressure histories of ZND Test 1 for different first-order accurate
FV upwind schemes. CCFL ≈ 0.9.
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Figure A.2: Front pressure histories of ZND Test 2 for different first-order accurate
FV upwind schemes. CCFL ≈ 0.9.
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Figure A.3: Front pressure histories of ZND Test 1 for second-order MUSCL-
Hancock method (Minmod limiter) with different upwind schemes. CCFL ≈ 0.9.
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Figure A.4: Front pressure histories of ZND Test 2 for second-order MUSCL-
Hancock method with different upwind schemes and limiters. CCFL ≈ 0.9. The
Van Leer-limiter is used where possible. Steger-Warming FVS only works with
Minmod. Roe HH gives a result only with Minmod for 5 Pts/L1/2.
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Figure A.5: Front pressure histories for overdrive factors f = 1.1 to f = 1.54,
γ = 1.2, E?

0 = 50, Q0 = 50. MUSCL-Hancock method with Roe-HLL EF 3 and Van
Leer-limiter. CCFL ≈ 0.9.
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Figure A.6: Front pressure histories for overdrive factors f = 1.56 to f = 2.0,
γ = 1.2, E?

0 = 50, Q0 = 50. MUSCL-Hancock method with Roe-HLL EF 3 and Van
Leer-limiter. CCFL ≈ 0.9.
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Figure A.7: Schlieren plots for ZND Test 4. Roe-HLL EF 3?-H
with Wave Propagation Method, Van Albada-limiter, 40Pts/L1/2,
CRoe

CFL ≈ 0.95.
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Figure A.8: Schlieren plots for ZND Test 5. Roe-HLL EF 3?-H
with Wave Propagation Method, Van Albada-limiter, 40Pts/L1/2,
CRoe

CFL ≈ 0.95.
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t = 52.0

t = 52.5

Figure A.9: Schlieren plots for ZND Test 6b. Displayed: 7.2 < X1 < 14.5. 3D
graphics display ρ̄, 2D roll-ups show ρ̄ (left) and P (right). See Fig. A.11 for the
location and orientation of the two-dimensional roll-ups.



A.5. NUMERICAL RESULTS 235

t = 53.0

t = 53.5

t = 54.0

Figure A.10: Schlieren plots for ZND Test 6b. Displayed: 7.2 < X1 < 14.5. 3D
graphics display ρ̄, 2D roll-ups show ρ̄ (left) and P (right). See Fig. A.11 for the
location and orientation of the two-dimensional roll-ups.
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Figure A.11: Schlieren plots for ZND Test 6b. Displayed: 7.2 < X1 < 14.5. 3D
graphics display ρ̄, 2D roll-ups show ρ̄ (left) and P (right). Bottom: location and
orientation of the two-dimensional roll-ups.
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Figure A.12: Color plots of the temperature and schlieren plots of the density on
refinement regions in the first (upper pictures) and second half (lower pictures) of a
detonation cell, 22.4 Pts/lig.
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Figure A.13: Color plots of the triple point structure close to the end of a detonation
cell at t = 632µs.
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t = 0µs t = 20µs t = 40µs

t = 60µs t = 80µs t = 100µs

t = 120µs t = 140µs t = 160µs

t = 180µs t = 200µs t = 220µs

Figure A.14: Schlieren plot of ρ at the beginning of the computation. The oscillation
becomes regular after ≈ 200µs, 44.8 Pts/lig.
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t = 620µs t = 624µs

t = 628µs t = 632µs

Figure A.15: Triple point tracks and schlieren plots of T (upper
graphic for each time step) and p (lower graphic) for the reiniation
and for the first half of a detonation cell, 44.8 Pts/lig.
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t = 636µs t = 640µs

t = 644µs t = 648µs

Figure A.16: Schlieren plots of T (upper graphic for each time step) and
p (lower graphic) for the second half of a detonation cell, 44.8 Pts/lig.
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Figure A.17: Schlieren plots T (upper graphic for each time step) and p (lower
graphic) of the reinitiation process at the end of an old and at the beginning of a
new detonation cell 44.8 Pts/lig.
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Figure A.18: Schlieren plots T (upper graphic for each time step) and p (lower
graphic) before a triple point collision.
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Figure A.19: Color plots of the reinitiation process at the end of a detonation cell,
44.8 Pts/lig.
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t = 689.6µs + 600µs t = 690.4µs + 600µs

t = 691.2µs + 600µs t = 692.0µs + 600µs

Figure A.20: Results of Setup 4a. Top: 2D color plots for the sides 2 and 3 (cf.
Fig. 7.16) at t = 680µs + 600µs. Bottom: Color plots of YOH show the formation
of unreacted regions during reinitiation. 5.0 cm < x1 < 7.0 cm
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t = 676µs
+600µs

t = 680µs
+600µs

t = 684µs
+600µs

t = 688µs
+600µs

Figure A.21: Schlieren plots for Setup 4a of ρ (left) and YOH (right) in the first half
of a detonation cell, mirrored at x2 = 0 cm, 5.0 cm < x1 < 7.0 cm.



A.5. NUMERICAL RESULTS 247

t = 692µs
+600µs

t = 696µs
+600µs

t = 700µs
+600µs
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Figure A.22: Schlieren plots for Setup 4a of ρ (left) and YOH (right) in the second
half of a detonation cell, mirrored at x2 = 0 cm, 5.0 cm < x1 < 7.0 cm.
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Figure A.23: Roll-ups of schlieren plots for ρ and YOH for Setup 4a. Compare Fig.
7.16 for orientation and location of 2D graphcis.



A.5. NUMERICAL RESULTS 249

t
=

69
2.

0
µ
s

+
60

0
µ
s

t
=

69
1.

2
µ
s

+
60

0
µ
s

t
=

69
0.

4
µ
s

+
60

0
µ
s

t
=

68
9.

6
µ
s

+
60

0
µ
s

t
=

68
8.

8
µ
s

+
60

0
µ
s

t
=

68
7.

2
µ
s

+
60

0
µ
s

t
=

68
5.

6
µ
s

+
60

0
µ
s

Figure A.24: Roll-ups of schlieren plots for ρ and YOH for Setup 4a. Compare Figs.
7.16 and A.23 for orientation and location of 2D graphcis.



250 APPENDIX

Figure A.25: Density distribution on four refinement levels at t = 240µs for Setup
6a.
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t = 48µs t = 60µs

Figure A.26: Color plots of T and p for a Mach reflection with Θ = 30o (Setup 5b).

Figure A.27: Distribution of Setup 6a with rw = 5λ to 48 nodes at t = 240µs.
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Figure A.28: Results of Setup 6a with rw = 5λ at t = 240µs. Top: triple point
tracks, middle: color plot of T in the entire computational domain, bottom: color
plots of important flow quantities.
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Figure A.29: Results of Setup 6b with rw = 4λ at t = 240µs. Top: triple point
tracks, middle: color plot of T in the entire computational domain, bottom: color
plots of important flow quantities.
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Figure A.30: Left column: color plot of ρ on three refinement levels at tend for AMR
Test 2. Right column: actual distribution at tend to 16 nodes.
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Ē total energy density, Ē = ρE [cf. page 19]
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	Introduction
	Detonation Structure
	Detonation Simulation
	Contents of this Thesis

	Governing Equations
	Hyperbolic Conservation Laws with Source Terms
	Weak Solutions
	Entropy Solutions
	Jump Conditions
	Rotational Invariance

	The Homogeneous Riemann Problem
	Linear Systems
	Nonlinear Systems

	Reactive Multi-Component Euler Equations
	Boundary Conditions
	Mixture Properties
	Equation of State
	Speed of Sound
	Hyperbolicity
	The Non-reactive Riemann Problem
	Reactive Source Terms
	Alternative Formulations


	Detonation Theory
	Planar Detonation Structure
	Simplified Reaction Model
	Detailed Chemical Reaction

	Instabilities in Detonation Waves
	Transverse Detonation Structure

	Numerical Methods
	Finite Volume Methods
	Generalities
	Conservation Laws with Source Terms
	The Method of Fractional Steps

	Upwind Methods
	Linear Upwind Scheme
	Nonlinear Equations
	Flux-Vector Splitting Approach
	Flux-Difference Splitting Approach

	Methods of Higher Order
	MUSCL-Hancock Method
	Wave Propagation Method

	Multi-Component Euler Equations
	Discrete Boundary Conditions
	Evaluation of the Temperature
	Shocktube Example

	Flux-Vector Splitting
	Steger-Warming Splitting
	Van Leer Splitting

	Godunov-type Methods
	Roe Scheme
	Entropy Corrections
	A Robust Roe-type Method
	Harten-Lax-Van Leer Scheme

	Application of Higher-Order Methods
	MUSCL Extrapolation
	Multi-Dimensional Wave Propagation

	Problems and Failures of Upwind Schemes
	Unphysical Values
	Slowly Moving Strong Shocks
	Multi-Dimensional Strong Shocks

	Multi-Component Specific Problems
	Mass Fraction Positivity
	Contact Discontinuities

	Source Term Integration
	Integration of the Rate Equation
	Accuracy Considerations
	Evaluation of Reaction Rates


	Adaptive Mesh Refinement
	Adaptive Mesh Refinement Strategies
	Unstructured Approach
	Structured Approach
	Blockstructured Adaptive Mesh Refinement

	Serial Algorithm
	The Grid Hierarchy
	Numerical Update
	Conservative Flux Correction
	Boundary Conditions
	The Recursive Algorithm
	Grid Generation

	Parallel Algorithm
	Decomposition of the Hierarchy
	The Parallel Recursive Algorithm
	Parallel Grid Generation
	Partitioning

	Refinement Criteria
	Scaled Gradients
	Heuristic Error Estimation

	Object-oriented Implementation
	Three-level Design
	The Hierarchical Data Structures
	Comparison with Other Implementations

	Non-reactive Examples
	Mach Reflection at a Wedge
	Shock Wave Diffraction

	Reactive flows

	Validation with Simplified Chemistry
	Planar Detonation Structure
	Validation of Upwind Schemes
	Stable ZND Detonation
	Unstable ZND Detonation
	Second-order Accuracy
	Comparison with Other Numerical Results

	Two-dimensional Cellular Structure
	Validation of Dimensional Splitting
	Validation of Upwind Schemes
	Validation of the MUSCL-Hancock Method
	Dimensional Splitting versus Wave Propagation

	Three-dimensional Cellular Structure
	Validation of the AMR Method


	Detonations with Real Chemistry
	Reaction Mechanism
	Two-dimensional Cellular Structure
	Computational Setups and Initialization
	Comparison of the Computational Results
	Flow Features of the Reference Solution
	Comparison with Other Numerical Results

	Three-dimensional Cellular Structure
	Computational Setups and Initialization
	Flow Features of the Periodic Solution

	Cellular Structure Under Transient Conditions
	Mach Reflection of a Detonation Wave
	Diffraction of a Detonation Wave


	Conclusions and Outlook
	Bibliography
	Appendix
	Properties of the Jacobians
	Mixture Properties
	Units of Reactive Flow Quantities
	Reaction Mechanism
	Numerical Results

	List of Figures
	List of Tables
	List of Algorithms
	List of Definitions
	List of Theorems
	List of Propositions
	List of Symbols

