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Block-structured AMR with complex boundaries

Block-structured adaptive mesh refinement (SAMR)

Originally for conservation laws ∂tq(x , y , t) + ∂x f(q(x , y , t)) + ∂yg(q(x , y , t)) = 0

I Refined blocks overlay coarser ones

I Refinement in space and time by factor rl

[Berger and Colella, 1988]

I Block (aka patch) based data structures

+ Numerical scheme only for single patch
necessary

+ Efficient cache-reuse / vectorization
possible

- Cluster-algorithm necessary

I Implicit geometry representation with
signed distance function(s)

I Level-set-type techniques for
embedded/immersed boundary condition
construction

I Papers: [Deiterding, 2011a,
Deiterding et al., 2009b,
Deiterding et al., 2007]
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Block-structured AMR with complex boundaries

Recursive integration order

I Space-time interpolation of coarse data to set I s
l , l > 0

I Regridding:

I Creation of new grids, copy existing cells on level l > 0
I Spatial interpolation to initialize new cells on level l > 0
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Root Level
r0 = 1

Level 1
r1 = 4

Level 2
r2 = 2

Time

Regridding of finer levels.
Base level ( ) stays fixed.
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AMROC software

AMROC framework and most important patch solvers
I Implements described algorithms and facilitates easy

exchange of the block-based numerical scheme

I Shock-induced combustion with detailed chemistry:
[Deiterding, 2003, Deiterding and Bader, 2005,
Deiterding, 2011b, Cai et al., 2016, Cai et al., 2018]

I Hybrid WENO methods for LES and DNS:
[Pantano et al., 2007, Lombardini and Deiterding, 2010,
Ziegler et al., 2011, Cerminara et al., 2018]

I FSI deformation from water hammer:
[Cirak et al., 2007, Deiterding et al., 2009a,
Perotti et al., 2013, Wan et al., 2017]

I Level-set method for Eulerian solid mechanics:
[Barton et al., 2013]

I Ideal magneto-hydrodynamics:
[Gomes et al., 2015, Souza Lopes et al., 2018]

I ∼ 500, 000 LOC in C++, C, Fortran-77, Fortran-90

I V2.0 plus FSI coupling routines as open source at http://www.vtf.website

I Used here V3.0 with significantly enhanced parallelization (V2.1 not released)
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AMROC software

UML design of AMROC

I Classical framework approach with generic
main program(s) in C++

I ∼ 50, 000 LOC for C++ SAMR kernel, but
very complex code

I Fortran patch solvers require only linking to
F77 functions for initial and boundary
conditions, source terms

I Applications of recent C++-only patch solvers
(LBM, MHD) are customized in Problem.h

I Predefined, scheme-specific classes provided
for standard simulations

I autoconf / automake environment with
support for typical parallel high-performance
system

I Expert usage (algorithm modification,
advanced output, etc.) also in Problem.h by
derivation from base classes and redefining
virtual interface functions

+set_patch()

NumericalScheme

+set_patch_boundary()

BoundaryConditions

+set_patch()

InitialConditions

+next_step()

+advance_level()

+update_level()

+regrid()

HypSAMRSolver

1

1

1

1

+restrict_patch()

+prolong_patch()

LevelTransfer

+find_boxes()

Clustering

+flux_correction()

+add_fine_fluxes()

+add_coarse_fluxes()

Fixup

+recreate_patches()

GridFunction

dim:int, data_type

1

+VectorOfState1

+set_new_boxes()

+redistribute_hierachy()

GridHierarchy

-follows distribution0..*

1

Patch

dim:int, data_type

1 0..*

Box

1 0..*

0..1

1

TimeStepControler

1

1

+evaluate()

Criterion

+flag_patch()

Flagging

0..*

1

1
+Flags

1

0..1

1

1

0..1

1

-dF

1..*

1

1

0..1

1

0..1

1
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Construction principles

Lattice Boltzmann method

Lattice Boltzmann equation ∂t f + u · ∇f = ω(f eq − f ) is solved with the steps

1.) Transport step solves ∂t fα + eα · ∇fα = 0
Operator: T : f̃α(x + eα∆t, t + ∆t) = fα(x, t)

2.) Collision step solves ∂t fα = ω(f eq
α − fα)

Operator C: fα(·, t + ∆t) = f̃α(·, t + ∆t) + ωL∆t
(

f̃ eq
α (·, t + ∆t)− f̃α(·, t + ∆t)

)
State vector is a template parameter. Any LBM scheme on a block fits easily into the
framework.

Currently available implementations:

I SRT-D2Q9: Isothermal, SRT-D2Q9-D2Q4 with temp. field,
SRT-D2Q9-D2Q9(-D2Q4) scalar transport with temp. field

I SRT-D3Q19: Isothermal, SRT-D3Q19-D3Q6 with temp. field,
SRT-D3Q19-D3Q19(-D3Q6) scalar transport with temp. field

I SRT-RR-D2Q9, SRT-RR-D3Q27: Regularized recursive for isothermal

I Experimental: D2Q9 for shallow water, FV-D2Q9 on mapped meshes

Currently available LES models:

I Constant Smagorinsky: SRT-D2Q9, SRT-D3Q19, SRT-RR-D2Q9,
SRT-RR-D3Q27 (in development for temp. field and passive scalar)

I WALE: SRT-D3Q19, SRT-RR-D3Q27

I Dynamic Smagorinsky: SRT-D3Q19
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Construction principles

Initial and boundary conditions
I Initial conditions are constructed as f eq

α (ρ(t = 0), u(t = 0))

Boundary conditions on cell-centered data – applied before streaming step

No-slip

b

b

b

b

Slip

b

b

b

b

Symmetry

bb

I Simple and characteristic outlet boundary conditions

I Inlet and pressure boundary conditions use f eq
α [Guo et al., 2002]

Complex geometry:

I Use level set method to construct macro-values in embedded boundary cells by
interpolation / extrapolation.

I Construct macro-velocity in ghost cells for no-slip BC as u′ = 2w − u
I Then use f eq

α (ρ′, u′) or interpolated bounce-back [Bouzidi et al., 2001] to
construct distributions in embedded ghost cells

I Wall function boundary conditions [Malaspinas and Sagaut, 2014] currently
experimental
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Construction principles

Dimensional vs. non-dimensional units
AMROC assumes dimensional units (normal for finite volume solvers).
LBM on patch is implemented on the unit lattice with ∆x̃ = ∆t̃ = 1

∆x

l0
= 1,

∆t

t0
= 1 −→ c = 1

Rescaling takes place in IO functions of the respective LBM patch solver class.
Velocity normalization factor: u0 = l0

t0
, density ρ0

Re =
uL

ν
=

u/u0 · l/l0
ν/(u0l0)

=
ũl̃

ν̃

AMROC-specific trick for scheme acceleration: Use ū = Su and ν̄ = Sν which
yields

ω̄L =
c2

s

Sν + ∆t/S c2
s /2

For instance, the physical hydrodynamic pressure is then obtained for a caloric
gas as

p = (ρ̃− 1)c̃2
s
u2

0

S2
ρ0 +

c2
s ρ0

γ
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Construction principles

Adaptive LBM

1. Complete update on coarse grid: f C ,n+1
α := CT (f C ,n

α )

2. Interpolate f C ,n
α,in onto f f ,n

α,in to fill fine halos. Set physical boundary
conditions.

3. f̃ f ,n
α := T (f f ,n

α ) on whole fine mesh. f
f ,n+1/2
α := C(f̃ f ,n

α ) in interior.

4. f̃
f ,n+1/2
α := T (f

f ,n+1/2
α ) on whole fine mesh. f f ,n+1

α := C(f̃
f ,n+1/2
α ) in

interior.
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(outer halo layer) to obtain f̃ C ,n
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6. Revert transport into halos:
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7. Parallel synchronization of f C ,n
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Ralf Deiterding – Adaptive lattice Boltzmann methods in AMROC 10



Adaptive Cartesian methods Adaptive LBM Summary

Construction principles

Flow over 2D cylinder, d = 2 cm

I Air with
ν = 1.61 · 10−5 m2/s,
ρ = 1.205 kg/m3

I Domain size
[−8d , 24d ]× [−8d , 8d ]

I Dynamic refinement based
on velocity. Last level to
refine structure further.

I Inflow from left.
Characteristic boundary
conditions [Schlaffer, 2013]
elsewhere.

I Base lattice 320× 160, 3 additional levels with factors rl = 2, 4, 4.

I Resolution: ∼ 320 points in diameter d

I Computation of CD on 400 equidistant points along circle and averaged
over time. Comparison above with [Henderson, 1995].
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Performance assessments

Oscillating cylinder, VR = 0.5, ft = fθ = 3, Re = 6310
AMROC XFlow
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I Oscillation period: T = 1/ft = 0.33 s. 10 regular vortices in 1.67 s.

I CPU time on 6 cores for AMROC: 635.8 s, XFlow ∼ 50 % more expensive when
normalized based on number of cells
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Performance assessments

Computational performance

Flow type Case ∆t0 [s]
Total cells

∆te [s] Re y+ CPU time [s]

AMROC XFlow AMROC XFlow

Laminar
1a 0.0015 85982 84778 3.33 1322 0 161.89 176

1b 0.0015 91774 90488 3.33 1322 0 165.97 183

Turbulent
2a 0.00031 232840 216452 1.66 6310 2.4 635.8 887

2b 0.00031 255582 246366 1.66 6310 2.6 933.2 1325

I [Laloglu and Deiterding, 2017]

I Intel-Xeon-3.50-GHz desktop workstation with 6 cores, communication through
MPI

I Same base mesh and always three additional refinement levels

I AMROC: single-relaxation time LBM, block-based mesh adaptation

I XFlow: multi-relaxation time LBM, cell-based mesh adaptation

I AMROC uses ∼ 7.5 % more cells on average more cells

I Normalized on cell number Case 2a is 50 % more expensive for XFlow than for
AMROC-LBM

I Case 2b is 42 % more expensive in CPU time alone
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Performance assessments

AMROC strong scalability tests

3D wave propagation method with Roe scheme:
spherical blast wave

I Tests run IBM BG/P (mode VN)
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3D SRT-D3Q19: flow over rough surface of 19 ×
13 × 2 spheres
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2 1728 10,838,016
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Realistic case

Mesh adaptation over a prototype car
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Realistic case

Mesh adaptation over a prototype car
Used refinement blocks and levels (indicated by color)

I SAMR base grid 600 × 200 × 132 cells, r1,2,3 = 2 yielding
finest resolution of ∆x = 3.125 mm

I Adaptation based on level set and scaled gradient of
magnitude of vorticity vector

I 236M cells vs. 8.1 billion (uniform) at t = 0.4075 s

Refinement at t = 0.4075 s

Level Grids Cells
0 11,605 15,840,000
1 11,513 23,646,984
2 31,382 144,447,872
3 21,221 52,388,336
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Summary

Conclusions / Ongoing work
I AMROC-LBM provides a fully dimensional interface for real-world CFD.

I User has to create surface mesh files (e.g. Gmsh, Cubit, Centaur, Meshlab) in
OBJ and use converter into ISS format.

I Typically copy and adjust suitable Problem.h in C++ and build the specific case.

I Visualization nowadays for instance with Paraview, VisIt (.vtk), Tecplot (.dat)
using own converter tool from native hierarchical HDF4 data.

I Reliable and validated fully for laminar flows.

I Incorporation of complex turbulence models and wall functions is still
experimental.

I Excellent interface for incorporating LBM schemes of arbitrary state vector.

I Cartesian CFD with block-based AMR is faster than cell-cased AMR and tailored
for massively parallel computer systems using MPI.

I Fast dynamic mesh adaptation in AMROC makes FSI problems with complex
motion easily accessible. See talk tomorrow.

I Currently working on non-Cartesian and overlapping adaptive meshes for
hypersonic finite volume schemes and FV-LBM.

I Experiments with CUDA and OpenMP GPU code versions of LBM so far outside
of AMROC.

I More information about AMROC (including doxygen pages with LBM codes)
can be found at http : //rdeiterding .website/html/amrcourse.htm
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Clustering by signatures
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Technique from image detection: [Bell et al., 1994], see also

[Berger and Rigoutsos, 1991], [Berger, 1986]
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Closest point transform algorithm

The signed distance ϕ to a surface I satisfies the eikonal equation [Sethian, 1999]

|∇ϕ| = 1 with ϕ
∣∣
I = 0

Solution smooth but non-diferentiable across characteristics.

Distance computation trivial for non-overlapping elementary shapes but difficult to do
efficiently for triangulated surface meshes:

I Geometric solution approach with plosest-point-transform algorithm
[Mauch, 2003]

b-rep

Surface mesh I Distance ϕ Normal to closest point
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The characteristic / scan conversion algorithm

1. Build the characteristic
polyhedrons for the surface mesh

2. For each face/edge/vertex

2.1 Scan convert the polyhedron.
2.2 Compute distance to that

primitive for the scan
converted points

3. Computational complexity.

I O(m) to build the b-rep and
the polyhedra.

I O(n) to scan convert the
polyhedra and compute the
distance, etc.

4. Problem reduction by evaluation
only within specified max. distance

[Mauch, 2003], see also
[Deiterding et al., 2006]

Characteristic polyhedra for faces, edges, and vertices

(a) (b)

(c) (d)

Slicing and scan conversion of apolygon
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Driven cavity - 3d cavity

I Intel Xeon-2.67 GHz 6-core (Westmere) dual-processor nodes with Qlogics interconnect

I Unigrid with 1 ghost cell

Cores 6 12 24 48 96
Time per step 2.80s 1.46s 0.73s 0.37s 0.18s
Par. Efficiency 100.00% 96.09% 95.33% 95.21% 94.82%
LBM Update 78.05% 77.08% 75.85% 74.50% 71.38%
Synchronization 7.25% 8.67% 10.00% 11.32% 14.35%
Phys. Boundary 0.51% 0.46% 0.45% 0.44% 0.44%
Misc 14.19% 13.79% 13.70% 13.73% 13.83%

I AMR with 4 ghost cells

Cores 6 12 24 48 96
Time per step 3.32s 1.90s 1.21s 0.54s 0.30s
Par. Efficiency 100.00% 87.42% 68.76% 77.02% 68.19%
LBM Update 43.44% 40.93% 31.33% 34.64% 30.11%
Synchronization 14.13% 18.26% 34.73% 25.76% 30.69%
Phys. Boundary 1.03% 0.98% 0.77% 0.86% 0.77%
Regridding 15.53% 16.02% 13.87% 18.72% 20.82%
Interpolation 16.74% 15.71% 11.95% 13.15% 11.51%
Fixup 2.89% 2.60% 2.02% 2.28% 2.03%
Misc 6.22% 5.50% 5.33% 4.59% 4.08%

I Expense for boundary is increased compared to FV methods because the algorithm uses few
floating point operations but a large state vector!
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Space-filling curve algorithm

High Workload

Medium Workload

Low Workload

Proc. 1

Proc. 2

Proc. 3

Calculation
domain

Necessary domain of
Space-Filling Curve
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