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Construction principles

Approximation of Boltzmann equation

Is based on solving the Boltzmann equation with a simplified collision operator

∂t f + u · ∇f = ω(f eq − f ) + F

I Kn = lf /L� 1, where lf is replaced with ∆x

I Weak compressibilty and small Mach number assumed

Equation is approximated in simplified phase space and with a splitting
approach.

1.) Transport step solves ∂t fα + eα · ∇fα = 0

Operator: T : f̃α(x + eα∆t, t + ∆t) = fα(x, t)

ρ(x, t) =
18∑
α=0

fα(x, t), ρ(x, t)ui (x, t) =
18∑
α=0

eαi fα(x, t)

Discrete velocities:

eα =


0, α = 0,
(±1, 0, 0)c, (0,±1, 0)c, (0, 0,±1)c, α = 1, . . . , 6,
(±1,±1, 0)c, (±1, 0,±1)c, (0,±1,±1)c, α = 7, . . . , 18

c =
∆x

∆t
, Physical speed of sound: cs =

c√
3
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Construction principles

Approximation of thermal equilibrium

2.) Collision step solves ∂t fα = ω(f eq
α − fα) + Fα

Operator C:

fα(·, t + ∆t) = f̃α(·, t + ∆t) + ωL∆t
(

f̃ eq
α (·, t + ∆t)− f̃α(·, t + ∆t)

)
+ ∆tFα

with Fα = 3ρtαeαF/c2 and equilibrium function

f eq
α (ρ, u) = ρtα

[
1 +

3eαu

c2
+

9(eαu)2

2c4
− 3u2

2c2
+

eαu

3c2

(
9(eαu)2

2c4
− 3u2

2c2

)

]
with tα = 1

9

{
3, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

2
, 1

4
, 1

4
, 1

4
, 1

4
, 1

4
, 1

4
, 1

4
, 1

4
, 1

4
, 1

4
, 1

4
, 1

4
,
}

Pressure δp =
∑
α f eq
α c2

s = ρc2
s .

Dev. stress Σij =

(
1− ωL∆t

2

)∑
α

eαieαj (f eq
α − fα)

A Chapman-Enskog expansion (fα = fα(0) + εfα(1) + ε2fα(2) + ...) shows that

∂tρ+∇ · (ρu) = 0, ∂tu + u · ∇u = −∇p + ν∇2u + F

are recoverd to O(ε2,3) [Hou et al., 1996] and also ωL = τ−1
L =

c2
s

ν + ∆tc2
s /2
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Complex geometry handling and adaptation

Level-set method for boundary embedding
I Implicit boundary representation via distance

function ϕ, normal n = ∇ϕ/|∇ϕ|.
I Construction of macro-values in embedded

boundary cells by interpolation / extrapolation.

I Complex boundary moving with local velocity w,
ghost cell velocity: u′ = 2w − u

I Then use f eq
α (ρ′, u′) to construct distributions in

embedded ghost cells.

I Wall function acts on first layer of exterior cells.
Sets shear velocity according to Spalding function.

I Distance computation for triangulated grids with
CPT algorithm [Mauch, 2000].

Block-structured adaptive mesh refinement (SAMR)

I Refinement in all spatial directions and time by same factor

I Refined blocks overlay coarser ones

I Most efficient LBM implementation with patch-wise for-loops

I LBM implemented on finite volume grids

I AMROC V3.0 with significantly enhanced parallelization [Deiterding et al., 2007,
Deiterding, 2011, Deiterding and Wood, 2015, Deiterding et al., 2006]
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LES models and verification

Turbulence modeling

Pursue a large-eddy simulation approach with f α and f
eq
α , i.e.

1.) f̃ α(x + eα∆t, t + ∆t) = f α(x, t)

2.) f α(·, t + ∆t) = f̃ α(·, t + ∆t) + 1
τ?

∆t
(

f̃
eq

α (·, t + ∆t)− f̃ α(·, t + ∆t)
)

Effective viscosity: ν? = ν + νt =
1

3

(
τ?L
∆t
− 1

2

)
c∆x with τ?L = τL + τt

Use Smagorinsky model to evaluate νt , e.g., νt = (Csm∆x)2|S|, where

|S| =

√
2
∑

i,j

S ij S ij

The filtered strain rate tensor S ij = (∂j ui + ∂i uj )/2 can be computed as a
second moment as

S ij =
Σij

2ρc2
s τ?L

(
1− ωL∆t

2

) =
1

2ρc2
s τ?L

∑
α

eαi eαj (f
eq
α − f α)

τt can be obtained as [Yu, 2004, Hou et al., 1996]

τt =
1

2

(√
τ 2

L + 18
√

2(ρ0c2)−1C 2
sm∆x |S| − τL

)
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LES models and verification

Further LES models

Dynamic Smagorinsky model (DSMA)

Csm(x, t)2 = −1

2

〈Lij Mij〉
〈Mij Mij〉

Lij = Tij − τ̂ij = ûi uj − ûi ûj Mij = ∆̂x
2
|Ŝ|Ŝ ij −∆x2 |̂S|S ij

Computations here do not use van Driest damping yet.

Wall-Adapting Local Eddy-viscosity model (WALE)

νt = (Cw ∆x)2OPWALE , where Cw = 0.5

WALE turbulence time-scale

OPWALE =
(JijJij )

3
2

(S ij S ij )
5
2 + (JijJij )

5
4

Jij = S ik Skj + Ωik Ωkj −
1

3
δij (SmnSmn − ΩmnΩmn)

Effective relaxation time (see previous slide): τ?L =
(ν + νt) + ∆tc2

s /2

c2
s
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LES models and verification

Homogeneous isotropic turbulence

I Fourier representation

I Periodic boundaries, uniform mesh

I Use of external forcing term, i.e.,
result independent of initial
conditions

Forcing:

Fx = 2A
(κyκz

|κ|2
)

G(κx , κy , κz )

Fy = −A
(κxκz

|κ|2
)

G(κx , κy , κz )

Fz = −A
(κxκy

|κ|2
)

G(κx , κy , κz )

Iso-surface ||u||/〈urms〉 = 2

with phase

G(κx , κy , κz ) = sin

(
2πx

L
κx +

2πy

L
κy +

2πz

L
κz + φ

)
for (0 < κi ≤ 2) and φ

being a random phase value.
Ralf Deiterding – Application of lattice Boltzmann methods for wind turbine wake simulation 9
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I Use of external forcing term, i.e.,
result independent of initial
conditions

Forcing:

Fx = 2A
(κyκz

|κ|2
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Fy = −A
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|κ|2
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Fz = −A
(κxκy
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with phase
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L
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being a random phase value.
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LES models and verification
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Solid geometry

Motion solver

Based on the Newton-Euler method solution of dynamics equation of kinetic chains
[Tsai, 1999](
F
τP

)
=

(
m1 −m[c]×

m[c]×Icm −m[c]×[c]×

)(
aP
α

)
+

(
m[ω]×[ω]×c

[ω]×(Icm −m[c]×[c]×)ω

)
.

m = mass of the body, 1 = the 4×4 homogeneous identity matrix,
ap = acceleration of link frame with origin at p in the preceding link’s frame,
Icm = moment of inertia about the center of mass,
ω = angular velocity of the body,
α = angular acceleration of the body,
c is the location of the body’s center of mass,
and [c]× , [ω]× denote skew-symmetric cross product matrices.

Here, we additionally define the total force and torque acting on a body,
F = (FFSI + Fprescribed ) · Cxyz and

τ = (τFSI + τprescribed ) · Cαβγ respectively.

Where Cxyz and Cαβγ are the translational and rotational constraints,
respectively.
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Single turbine modeling

Single Vestas V27

I Inflow velocity 8m/s. Prescribed motion of rotor with 33 rpm, r = 14.5m: tip
speed 46.7m/s, Rer ≈ 919, 700, TSR=5.84

I Simulation with three additional levels with refinement factors 2, 2, 4

I Refinement based on vorticity and level set.

I ∼ 24 time steps for 1o rotation

I Validation results: Mexico rotor [Deiterding and Wood, 2016b],
[Deiterding and Wood, 2016a]
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Single turbine modeling

Rotor loads

I Sampled every 0.034 s on 18 radial sections binned into 36 circumferential sectors

I Mean pressure and torque ∝ 81 kW production, Cp = 0.44, and Ct = 0.78

I All within 5% of the rated values [Vestas, 1994]

I A simple actuator disc model predicts 95 kW production, Cp=0.53, and Ct =0.61 for the
ūx = 6.5 m/s [Schaffarczyk, 2014, Spera, 2009]
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Single turbine modeling

Method variation – wake vorticity field
CSMA WALE

NS

WF

I No-slip (NS) and wall function (WF) boundary condition, const. Smagorinksy model
(CSMA) with Csm = 0.14, WALE model with Cw = 0.5

I D3Q27 with recursive regularized approach by [Malaspinas, 2015] up to order 6

I Simulation with three additional levels with refinement factors 2, 2, 4

I Resolution ∆x = 6.25 cm at structures, ∆x = 50 cm in wake

I ∼ 45.6 s in 59 h wall time on 80 cores Intel-Skylake 2.0 GHz (∼ 188 h CPU per revolution)
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Multiple turbines

Simulation of the SWIFT array
I Three prototypical Vestas V27 turbines. 225 kW power generation at wind

speeds 14 to 25m/s (then cut-off)

I Prescribed motion of rotor with 33 and 43 rpm. Inflow velocity 8 and 25m/s

I TSR: 5.84 and 2.43, Rer ≈ 919, 700 and 1, 208, 000

I Simulation domain 448m×240m×100m

I Base mesh 448× 240× 100 cells with
refinement factors 2, 2, 4. Resolution of
rotor and tower ∆x = 6.25 cm

I 94,224 highest level iterations to 40 s
computed, then statistics are gathered for
10 s [Deiterding and Wood, 2016a]
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Multiple turbines

Vorticity development – inflow at 0o, 8m/s, 33 rpm

I Refinement of wake up to level 2 (∆x = 25 cm).
I Vortex break-up before 2nd turbine is reached.
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Multiple turbines

Mean point values – inflow at 0o,
I Turbines located at (0, 0, 0),

(135, 0, 0), (−5.65, 80.80, 0)

I Lines of 13 sensors with
∆y = 5m, z = 37m (approx.
center of rotor)

I u and p measured over
[40 s, 50 s] (1472 level-0 time
steps) and averaged

25 m/s, 43 rpm, TSR=2.43
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I Velocity deficits larger for higher TSR

I Velocity deficit before 2nd turbine more homogenous for small TSR
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Multiple turbines

Vorticity on levels – inflow at 30o, 8m/s, 33 rpm

I Top view at 30 m (hub height). Turbine hub and inflow at 30o yaw
leads to off-axis wake impact.

I 160 cores Intel-Xeon E5 2.6 GHz, 33.03 h for interval [50, 60] s.
∼ 320 h CPU per revolution and turbine

I At 63.8 s approximately 167M cells used vs. 44 billion (factor 264)

Level Grids Cells
0 2,463 10,752,000
1 6,464 20,674,760
2 39,473 131,018,832
3 827 4,909,632
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Wake comparison for different models

Method variation – Detailed wake vorticity field
No-slip boundary condition, Constant coefficient Smagorinsky model

I D3Q27, CSMA with Csm = 0.14, WALE with Cw = 0.5
I Lower resolution! ∆x = 12.5 cm at structures, ∆x = 50 cm in wake
I Simulation with three additional levels refined by 2, 2, 2. Only one level for wake
I ∼ 65 s in 56 h wall time on 240 cores Intel-Skylake 2.0 GHz
I 125 h CPU per revolution and turbine
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Wake comparison for different models

Method variation – 3D wake field

No-slip boundary condition, Constant coefficient Smagorinsky model

I Clearly greater extension of wake with WF boundary condition when same iso-surface value
of vortcity magnitude |ω| is considered

I Slightly greater wake spread and smaller structures better preserved with WALE
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Actuator line modeling

Actuator line model

Construction of velocity Urel in blade
coordinate system and evaluation of
local aerodynamic forces

L =
1

2
ρU2

rel cCl∂r , dD =
1

2
ρU2

rel cCd∂r

Gaussian spreading function [Sørensen et al., 1998]

f (d) =
1

ε3π
3
2

exp
(
−

d

ε

)2

Distance d between cell midpoint and ith actuator point

Overlapping actuator points

Appropriate choice of ε and dr is essential:

ε = 0.6, dr = 0.92 m ε = 0.7, dr = 0.65 m

Ralf Deiterding – Application of lattice Boltzmann methods for wind turbine wake simulation 21



Adaptive lattice Boltzmann method Wind turbine wake simulation Conclusions and outlook

Actuator line modeling

Simulation of single V27 rotor

I 8m/s, 33 rpm, TSR: 5.84

I 3 actuator lines with 40
points. Inner radius 0.5m,
outer radius 13.5m, ε = 2m,
dr = 0.325m

I Chord length modeled roughly
along actual blade

I Simulation domain
320m× 160m× 160m

I D3Q19 with CSMA

I Tip loss correction by [Shen et al., 2005] with g = exp[0.125(Bλ− 21)] + 0.1

F1 =
2

π
cos−1

[
exp

(
− g

B(R − r)

2r sinφ

)]
I Base mesh 80× 40× 40 cells with refinement factors 2, 2, 4. Finest resolution of

rotor and tower ∆x = 25 cm (same as before for wake)

I 50 s in 33 h on 12 cores Intel-Xeon-E5 2.10 GHz. ∼ 14.4 h CPU per revolution
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Actuator line modeling

Simulation of single V27 rotor

I 8m/s, 33 rpm, TSR: 5.84

I 3 actuator lines with 40
points. Inner radius 0.5m,
outer radius 13.5m, ε = 2m,
dr = 0.325m

I Chord length modeled roughly
along actual blade

I Simulation domain
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I D3Q19 with CSMA

I Tip loss correction by [Shen et al., 2005] with g = exp[0.125(Bλ− 21)] + 0.1

F1 =
2

π
cos−1

[
exp

(
− g

B(R − r)

2r sinφ

)]
I Base mesh 80× 40× 40 cells with refinement factors 2, 2, 4. Finest resolution of

rotor and tower ∆x = 25 cm (same as before for wake)

I 50 s in 33 h on 12 cores Intel-Xeon-E5 2.10 GHz. ∼ 14.4 h CPU per revolution

Ralf Deiterding – Application of lattice Boltzmann methods for wind turbine wake simulation 22



Adaptive lattice Boltzmann method Wind turbine wake simulation Conclusions and outlook

Actuator line modeling

Simulation of single V27 rotor

I 8m/s, 33 rpm, TSR: 5.84

I 3 actuator lines with 40
points. Inner radius 0.5m,
outer radius 13.5m, ε = 2m,
dr = 0.325m

I Chord length modeled roughly
along actual blade

I Simulation domain
320m× 160m× 160m

I D3Q19 with CSMA

I Tip loss correction by [Shen et al., 2005] with g = exp[0.125(Bλ− 21)] + 0.1

F1 =
2

π
cos−1

[
exp

(
− g

B(R − r)

2r sinφ

)]
I Base mesh 80× 40× 40 cells with refinement factors 2, 2, 4. Finest resolution of

rotor and tower ∆x = 25 cm (same as before for wake)

I 50 s in 33 h on 12 cores Intel-Xeon-E5 2.10 GHz. ∼ 14.4 h CPU per revolution

Ralf Deiterding – Application of lattice Boltzmann methods for wind turbine wake simulation 22



Adaptive lattice Boltzmann method Wind turbine wake simulation Conclusions and outlook

Actuator line modeling

Simulation of single V27 rotor

I 8m/s, 33 rpm, TSR: 5.84

I 3 actuator lines with 40
points. Inner radius 0.5m,
outer radius 13.5m, ε = 2m,
dr = 0.325m

I Chord length modeled roughly
along actual blade

I Simulation domain
320m× 160m× 160m

I D3Q19 with CSMA

I Tip loss correction by [Shen et al., 2005] with g = exp[0.125(Bλ− 21)] + 0.1

F1 =
2

π
cos−1

[
exp

(
− g

B(R − r)

2r sinφ

)]
I Base mesh 80× 40× 40 cells with refinement factors 2, 2, 4. Finest resolution of

rotor and tower ∆x = 25 cm (same as before for wake)

I 50 s in 33 h on 12 cores Intel-Xeon-E5 2.10 GHz. ∼ 14.4 h CPU per revolution

Ralf Deiterding – Application of lattice Boltzmann methods for wind turbine wake simulation 22



Adaptive lattice Boltzmann method Wind turbine wake simulation Conclusions and outlook

Actuator line modeling

Simulation of single V27 rotor

I 8m/s, 33 rpm, TSR: 5.84

I 3 actuator lines with 40
points. Inner radius 0.5m,
outer radius 13.5m, ε = 2m,
dr = 0.325m

I Chord length modeled roughly
along actual blade

I Simulation domain
320m× 160m× 160m

I D3Q19 with CSMA

I Tip loss correction by [Shen et al., 2005] with g = exp[0.125(Bλ− 21)] + 0.1

F1 =
2

π
cos−1

[
exp

(
− g

B(R − r)

2r sinφ

)]
I Base mesh 80× 40× 40 cells with refinement factors 2, 2, 4. Finest resolution of

rotor and tower ∆x = 25 cm (same as before for wake)

I 50 s in 33 h on 12 cores Intel-Xeon-E5 2.10 GHz. ∼ 14.4 h CPU per revolution

Ralf Deiterding – Application of lattice Boltzmann methods for wind turbine wake simulation 22



Adaptive lattice Boltzmann method Wind turbine wake simulation Conclusions and outlook

Wake comparison

Axial velocity profiles at t = 43 s

At hub height 100m downstream Downstream at rotor center

I Reasonable quantitative agreement in averaged axial velocity

I Smaller scale wake structures imminently different than with resolved geometry
approach
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Conclusions

Conclusions

I Thanks to the low dissipation property of the LBM wake convection
behavior is excellent. Hierachical meshes are crucial for efficiency.

I Conventional standard D3Q19 performs very similar to recursive
regularized D3Q27 when run under stable conditions.

I Influence of LES turbulence models when starting from laminar inflow is
small for our test configuration.

I Simple embedded no-slip and wall function boundary conditions give quite
similar results on the hiearchical Cartesian mesh.

I Error in geometry representation on Cartesian mesh dominant. Finite
volume LBM can eliminate this problem.

I Actuator line approach is at least O(10) faster than resolving geometry.

I Modelling challenges for medium and small-scale turbulent wake
structures are imminent.

I Consideration of tower and ground topology can pose stability
challenges.

I Immediate next steps: Test synthetic eddy inflow conditions and dynamic
Smagorinsky LES model with van Driest damping.
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Non-Cartesian lattice Boltzmann method

Lattice Boltzmann equation in mapped coordinates
Solves lattice Boltzmann equation in mapped coordinates

∂f

∂t
+ ẽαξ

∂fα

∂ξ
+ ẽαη

∂fα

∂η
= −

1

τ

(
fα − f eq

α

)
.

by applying finite volume scheme (2nd-order central differences with 4th-order dissipation
stabilization) to transport step. Collision step unchanged [Reyes Barraza and Deiterding, 2020].

Re Author(s) St Cd C′l
100 [Chiu et al., 2010] 0.167 1.35 0.30

AMROC-LBM 0.166 1.28 0.32
FV-LBM 0.165 1.36 0.35

200 [Chiu et al., 2010] 0.198 1.37 0.71
AMROC-LBM 0.196 1.26 0.70

FV-LBM 0.196 1.37 0.73

Re CPU-time Mesh

20 AMROC-LBM 24:55:21 297796
FV-LBM 06:08:41 65536

40 AMROC-LBM 27:10:08 317732
FV-LBM 05:57:17 65536

100 AMROC-LBM 113:15:37 1026116
FV-LBM 05:58:49 65536

200 AMROC-LBM 130:37:18 1130212
FV-LBM 06:03:42 65536
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Further LES verification results

Results
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Time-averaged energy spectrum (solid line) [N = 1283 cells, ν = 3e−5 m2/s]
against a modelled one (dashed line and the -5/3 power law (dot-dashed line).
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Further single turbine results

Near wake pressures
5 m 10 m 15 m 20 m

p̄

prms

I Sampled every 0.034 s on 6 circular regions centered at hub height (rc = 1.5R)

I 20 radial positions on 36 circumferential sectors

I Tower shadow prominent

I p̄ deficit recovers 60% by 20 m

I prms deficit recovers 22% by 20 m

I prms most intense in tower shadow
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Further single turbine results

Detailed wake vorticity field

No-slip boundary condition, Constant coefficient Smagorinsky model

I Stronger, more stable vortices with no-slip boundary condition from blade rotation and
behind tower

I Slightly larger expansion of downstream wake with WALE model than with CSMA
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Further single turbine results

Detailed wake vorticity field

Wall function boundary condition, Constant coefficient Smagorinsky model

I Stronger, more stable vortices with no-slip boundary condition from blade rotation and
behind tower

I Slightly larger expansion of downstream wake with WALE model than with CSMA
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Further single turbine results

Detailed wake vorticity field

Wall function boundary condition, Wall-adapting local eddy-viscosity model

I Stronger, more stable vortices with no-slip boundary condition from blade rotation and
behind tower

I Slightly larger expansion of downstream wake with WALE model than with CSMA
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Further multiple turbine results

Refinement – inflow at 0o, 8m/s, 33 rpm
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Further multiple turbine results

Vorticity – inflow at 30o, 8m/s, 33 rpm

I Top view in plane in z-direction at 30 m (hub height)

I Turbine hub and inflow at 30o yaw leads to off-axis wake impact.

I 160 cores Intel-Xeon E5 2.6 GHz, 33.03 h wall time for interval [50, 60] s (including
gathering of statistical data)
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Further multiple turbine results

Method variation – Wake vorticity field
CSMA WALE

NS

WF

I D3Q27, CSMA with Csm = 0.14, WALE with CW = 0.5

Ralf Deiterding – Application of lattice Boltzmann methods for wind turbine wake simulation 33



References Supplementary

Further multiple turbine results

Method variation – Wake vorticity field
CSMA WALE

NS

WF

I D3Q27, CSMA with Csm = 0.14, WALE with CW = 0.5

Ralf Deiterding – Application of lattice Boltzmann methods for wind turbine wake simulation 33



References Supplementary

Further multiple turbine results

Method variation – Wake vorticity field
CSMA WALE

NS

WF

I D3Q27, CSMA with Csm = 0.14, WALE with CW = 0.5

Ralf Deiterding – Application of lattice Boltzmann methods for wind turbine wake simulation 33



References Supplementary

Further multiple turbine results

Method variation – Wake vorticity field
CSMA WALE

NS

WF

I D3Q27, CSMA with Csm = 0.14, WALE with CW = 0.5

Ralf Deiterding – Application of lattice Boltzmann methods for wind turbine wake simulation 33



References Supplementary

Further multiple turbine results

Method variation – Wake vorticity field
CSMA WALE

NS

WF

I D3Q27, CSMA with Csm = 0.14, WALE with CW = 0.5

Ralf Deiterding – Application of lattice Boltzmann methods for wind turbine wake simulation 33



References Supplementary

Further multiple turbine results

Method variation – Wake vorticity field
CSMA WALE

NS

WF

I D3Q27, CSMA with Csm = 0.14, WALE with CW = 0.5

Ralf Deiterding – Application of lattice Boltzmann methods for wind turbine wake simulation 33



References Supplementary

Further actuator line model results

Axial velocity, 100-150m downstream, t = 43 s

SWIFT ALM
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Further actuator line model results

Vorticity between -5 and 25m downstream, t = 43 s

SWIFT ALM
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